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Abstract 

Parkinson’s disease (PD) is associated with abnormal beta oscillations (13-30 Hz) in the 

basal ganglia and motor cortex (M1). Recent reports show that M1 beta-high gamma (50-200 

Hz) phase-amplitude coupling (PAC) is exaggerated in PD and is reduced following acute deep 

brain stimulation (DBS). Here we analyze invasive M1 electrocorticography recordings in PD 

patients on and off DBS, and in isolated cervical dystonia patients, and show that M1 beta 

oscillations are nonsinusoidal, having sharp and asymmetric features. These sharp oscillatory 

beta features underlie the previously reported PAC, providing an alternative to the standard 

interpretation of PAC as an interaction between two distinct frequency components. Specifically, 

the ratio between peak and trough sharpness is nearly perfectly correlated with beta-high 

gamma PAC (r = 0.96) and predicts PD-related motor deficit. Using a simulation of the local field 

potential, we demonstrate that sharp oscillatory waves can arise from synchronous synaptic 

activity. We propose that exaggerated beta-high gamma PAC may actually reflect such 

synchronous synaptic activity, manifesting as sharp beta oscillations that are “smoothed out” 

with DBS. These results support the “desynchronization” hypothesis of DBS wherein DBS 

counteracts pathological synchronization throughout the basal ganglia-thalamocortical loop. We 

argue that PAC can be influenced by more than one mechanism. In this case synaptic 

synchrony, rather than the often assumed spike-field coherence, may underlie exaggerated 

PAC. These often overlooked temporal features of the oscillatory waveform carry critical 

physiological information about neural processes and dynamics that may lead to better 

understanding of underlying neuropathology. 
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Introduction 

Parkinson’s disease (PD) is characterized by neuronal degeneration in multiple systems, 

including midbrain dopaminergic neurons. Though beta (13-30 Hz) oscillations are a normal 

feature of the basal ganglia-thalamocortical loop, PD is associated with excessive neuronal 

synchronization in the beta band (1, 2). Despite an established relationship between beta band 

neuronal synchronization and PD, the physiological mechanism causing motor dysfunction has 

been unclear. Excessive phase-amplitude coupling (PAC) between beta phase and high gamma 

amplitude (50-200 Hz) may offer an explanation (3–5). PAC between distant neural populations 

has been linked to enhanced neural information flow (6–8), long-term potentiation (9), and 

improved behavioral performance (10). However PAC strength is greater in M1 of PD patients 

compared to patients with isolated cervical dystonia or epilepsy (3), leading to the hypothesis 

that beyond its facilitative role, PAC may play a role in neural pathology (3, 4, 11). 

Analyses of PAC implicitly presuppose two separate, interacting physiological 

processes: a low-frequency component associated with an oscillation in the synaptic currents 

and a separate high-frequency component associated with local spiking activity. The degree of 

interaction between these two signals is then quantified using a single PAC metric, often with 

the assumption that low frequency oscillatory phase organizes neuronal cell assembly spiking 

(3, 4, 8, 12–14). 

However the spectral features indicative of PAC can also arise from different temporal 

features in data, such as sharp temporal deflections in the local field potential (LFP) (15, 16) 

produced by synchronous synaptic activity (17, 18). That is, rather than PAC reflecting two 

distinct, interacting processes, one asymmetric, nonsinusoidal oscillation will also manifest PAC. 

In order to adjudicate between these two possible mechanistic interpretations of pathological 

PAC in PD, we characterize the shape of oscillatory waveforms in 23 PD patients on and off 

DBS (data from (4)), as well as from 9 patients with isolated cervical dystonia without arm 

involvement (data from (3)). 

We report that beta-high gamma PAC in PD does not primarily arise from the coupling 

between a beta oscillation and a high-frequency asynchronous signal. Instead, M1 PAC is 

almost fully captured by changes in the shape of the beta waveform. We further show that the 

beta waveform is “smoothed out” with DBS treatment, differs between PD and isolated cervical 

dystonia patients, and predicts PD patient rigidity. Further, we utilize a simplified simulation of 

field potential data to show that altered waveform shape can arise via changes in the 

synchronization of synaptic currents, consistent with empirical reports (17, 18).  

 

Results 

We characterize the shape of beta waveforms by measuring the sharpness of the peaks 

and troughs (see SI Methods). Specifically, we quantify the symmetry of these waveforms by 

defining the extrema sharpness ratio (ESR). ESR is the ratio between the average peak 

sharpness and the average trough sharpness over all peaks and troughs in the 30-second 

recording. This ratio is fixed to be strictly greater than 1 such that an oscillation with high peak-

trough asymmetry will have a value higher than 1 regardless of whether the peak is sharper 

than the trough or vice versa (see SI Methods). 
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In intracranial electrocorticography recordings from arm area of M1, we show that 

waveform shape differs between PD and isolated cervical dystonia patients. We further show 

that DBS treatment of PD alters waveform shape. Using the covariation between two aspects of 

waveform shape, extrema sharpness and rise/decay steepness, we characterize the 

stereotypical waveform of M1 beta oscillations as a type of sawtooth. We compare measures of 

ESR and PAC across subjects to show that these measures are highly correlated and reflect the 

same aspects of the electrophysiological signal despite analyzing different domains (time and 

frequency, respectively). We summarize by presenting a computational model in which 

increased synchrony of synaptic events biases both oscillatory waveform shape and PAC.  

 

Waveform shape of M1 beta oscillation changes in PD. We apply the ESR measure to 

characterize the waveform shape of M1 beta oscillations in two patient groups: PD and cervical 

dystonia. ESR is greater in PD compared to cervical dystonia (Fig. 1A, Mann-Whitney U test, 

U30 = 48, p = 0.021), meaning that M1 beta oscillations in PD are more asymmetric in regards to 

the sharpness of the peaks and troughs. Additionally, DBS treatment decreases ESR in PD 

patients (Fig. 1B-D, paired t-test, t22 = 2.6, p = 0.016), so that the ESR is closer to that in the 

cervical dystonia patients. Furthermore, PD patients’ clinical rigidity scores pre-DBS positively 

correlate with ESR (Fig. 1E, Spearman r = 0.59; n = 23; p = 0.006). Similar relationships 

between PD and waveform shape were observed for a second measure of waveform shape, the 

rise-decay steepness ratio (see SI Methods, Fig. S1A-C). Thus, there is a characteristic 

difference in the shape of beta oscillations in untreated PD patients compared to cervical 

dystonia patients or PD patients treated with DBS. 

It is important to note that ESR can be changed by increases and/or decreases in the 

sharpness of one or both extrema. We find that M1 beta oscillation extrema are sharper in PD 

compared to cervical dystonia (Fig. S2A; Mann-Whitney U test, U62 = 171, p = 0.0003). 

Additionally, DBS trends toward flattening sharp extrema as opposed to sharpening flat extrema 

(Fig. S2B; paired t-test, t45 = 1.8, p = 0.071). 

 

 
Fig. 1. Waveform shape of M1 beta oscillation changes in PD. (A) ESR is higher in PD patients 

compared to dystonia patients. (B,C) Distributions of peak and trough sharpness before (B) and 

during (C) DBS for an exemplar patient. Note that there is greater overlap between these 
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distributions with DBS on. (D) ESR decreases in PD patients with DBS application. Diagonal 

line represents unity. (E) Clinical rigidity scores are positively correlated with ESR in PD patients 

pre-DBS. Each dot represents 1 patient in panels A, D, and E. * indicates p < 0.05. 

 

M1 beta waveform is a characteristic sawtooth. The sharpness ratio between peaks and 

troughs was compared to the steepness ratio between rises and decays, across subjects. We 

report a strong correlation between these measures (Fig. 2A, r = 0.85, p < 10-23). That is, 

patients whose peaks are sharper relative to their troughs also have rise phases that are 

relatively steeper than their decay phases (Fig. 2B, top right). In contrast, patients whose 

troughs are sharper than their peaks have decay phases that are steeper than their rise phases 

(Fig. 2B, bottom left).  Furthermore, these waveforms are the kind expected if the LFP was 

heavily influenced by synchronous synaptic potentials (see Fig. 4A, simulated data), i.e., it is 

similar to the rise-and-decay profile of individual postsynaptic potentials. This waveform shape 

is consistent with the dark gray, but not the light gray, sawtooth shapes in Fig. 2B. 

 

 
Fig. 2. M1 beta oscillations have a characteristic sawtooth shape. (A) Positive correlation 

between the relative sharpness of a patient’s oscillatory peaks and the relative steepness of a 

patient’s voltage rises. Each marker represents one 30-second recording from a PD or dystonia 

patient (see legend). (B) Schematic voltage traces corresponding to each quadrant of (A). M1 

beta falls in the gray quadrants (quadrants I and III) of this two-dimensional space. 

 

Waveform shape of beta oscillations underlies PAC. M1 beta-high gamma PAC is increased 

in PD patients relative to epilepsy and cervical dystonia patients (3) and decreases with DBS 

application (Fig. 3A) (4). Additionally, we note in untreated PD patients that high gamma 

amplitude is specifically coupled to the peaks and troughs of the beta oscillations, as opposed to 

non-extrema phases of the beta cycle (Fig. S3). 

Because sharp transients in the local field potential are known to yield PAC (15, 16), we 

correlated ESR and PAC across subjects. We find that ESR is strongly correlated with PAC 

across PD patients (Fig. 3B; r = 0.96; p < 10-12). This is because beta sharpness and apparent 

high gamma amplitude are related to the same features of the electrophysiological signal, 

shown by the strong correlation between peak sharpness and its instantaneous high gamma 

amplitude in an example patient (Fig. 3C, pre DBS; r = 0.94; p < 10-291). This holds true for both 
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peaks and troughs of all PD patients (Fig. S4A,B). Furthermore, high gamma amplitude is time-

locked to sharp extrema, but not flat extrema, shown in the same example patient (Fig. 3D; Fig. 

S5 for all patients). Similar results were observed when comparing PAC to the rise-decay 

steepness ratio (Fig. S1D,E and Fig. S4C,D). While the analysis in Fig. 3B was calculated using 

pre-DBS recordings, similar relationships were observed in recordings during and after DBS as 

well as in patients with cervical dystonia (Fig. S6). 

 

 
Fig. 3. Extrema sharpness of beta oscillations underlies PAC. (A) Example patient showing a 

decrease in beta-high gamma PAC with DBS application, as described previously (4). (B) 

Strong correlation between the magnitude of beta-high gamma PAC and ESR. A value of 0 

represents equal sharpness between peaks and troughs. Each dot represents one patient. (C) 

Positive correlation between the sharpness of a peak and the high gamma amplitude at that 

time. Each dot represents one peak in the 30-second recording of the exemplar PD patient in 

panel A, pre-DBS. (D) High gamma amplitude time-locked to oscillatory peaks in the 30-second 

recording of the same exemplar PD patient pre-DBS. Maximal high gamma was observed at the 

peak of the oscillation (i.e., PAC). This effect was observed when analyzing all oscillations 

(black). However, it was strongest when restricting analysis to the 50% of cycles with sharpest 

peaks (blue), and was not observed for the 50% of cycles with flattest peaks (red). Solid lines 

denote mean and dashed lines denote SEM. 

 

Furthermore, ESR was calculated on data that was low-pass filtered at 50 Hz, removing 

the high gamma component used to calculate PAC. Despite negligible high gamma amplitude 

being present in the filtered signal on which ESR was calculated, ESR is still correlated with 
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PAC (r = 0.69, p < 0.001), showing that this correlation is not an artifact of the presence of high 

gamma (Fig. S7). 

Because ESR is calculated using the raw electrophysiological signal of each extremum 

and 2 samples (sampled at 1 kHz) around it, 90% of the variance is captured by only using 

about 12% of the data. However, ESR is not the only dimension of shape that correlates with 

M1 PAC, as other features of the waveform will ultimately determine the results of sinusoidal 

decomposition (such as RDSR). ESR and RDSR both individually correlate with PAC after 

holding the other metric constant (partial correlations, ESR: r = 0.71, p < 0.001; RDSR: r = 0.46, 

p = 0.028) and together explain 95% of the variance in PAC of PD patients pre-DBS. 

In summary, the time-domain shape of a low frequency oscillatory waveform can 

manifest as PAC (Fig. 4A-C). While high gamma amplitude has been shown to correlate with 

local population spiking activity (18, 19), the magnitude of these “true” high gamma changes are 

low, on the order of a few microvolts (Fig. 4D,E). In contrast, apparent high gamma resulting 

from sharp time-domain deflections is an order of magnitude stronger--nearly 100 microvolts in 

some cases (Fig. 4B). 

 

 
Fig. 4. Nonsinusoidal waveforms produce PAC. (A) Exemplar unfiltered beta oscillation 

recorded from a PD patient pre-DBS (black), contrasted with a sinusoid of comparable 

frequency (gray). (B) Overlay of an exemplar raw voltage recording from a PD patient pre-DBS 

(black) and its high gamma component (red). The thick red line is the black trace band-pass 

filtered in the high gamma range (50-200 Hz), and the thin red lines show the analytic amplitude 

of this component. Note the black and red traces are on the same voltage scale, showing that 

high gamma is much larger in amplitude than normally associated with high gamma that arises 
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from total population spike rate (18, 19). (C) Phase-amplitude coupling comodulogram of the 30-

second recording from the PD patient pre-DBS shown partially in panels A & B. (D) Simulated 

canonical beta-high gamma phase-amplitude coupling in which the high gamma oscillation has 

greater amplitude around the peak of the beta oscillation. (E) Comodulogram of the simulated 

30-second signal shown partially in panel D. Note its similarity to the comodulogram in panel C 

despite the different appearance between the signals in the time domain (panels B, D). 

 

 

Relationship between beta power and waveform shape. The power in a frequency band is a 

commonly reported measure that may change with disease state and may covary with other 

metrics. We quantified the effect of DBS on beta and high gamma power. Across all patients, 

there is a trend towards DBS decreasing power in both beta (Fig. S8A; paired t-test; p = 0.11) 

and high gamma (Fig. S8B; paired t-test, p = 0.076) bands. Furthermore, the beta power 

change with DBS is positively correlated with the ESR change across patients (Fig. S8C; r = 

0.57; p = 0.004). As expected, a positive correlation was also observed between beta power 

and PAC (Fig. S8D; r = 0.48; p = 0.022). However, although beta power positively correlates 

with both ESR and PAC, ESR is still correlated with PAC after holding beta power constant 

(partial correlation, ESR: r = 0.89, p < 10-7). 

 

Sharp oscillations are generated by synchronous synaptic currents in a computational 

model. We simulated LFPs in attempt to relate our measure of oscillation shape to the 

underlying physiology. Simulated neurons randomly generated synaptic events following a time-

varying rate (see SI Methods). By adjusting the mapping between simulated beta phase and 

synaptic event rate, we manipulated the rhythmic synchrony of synaptic events (see SI 

Methods). Synchronous synaptic events yield sharper local field potentials compared to non-

synchronous currents (Fig. 5A). When observing several periods of fluctuations in synaptic 

activity, increased synaptic synchrony at a beta rhythm causes sharper oscillatory beta 

waveforms in the LFP (Fig. 5B). High synaptic synchrony yields both increased ESR (Fig. 5C) 

and beta-high gamma PAC (Fig. 5D). Therefore, high synaptic synchrony produces simulated 

M1 field potential recordings similar to those of PD patients without treatment, and low synaptic 

synchrony produces local field potentials more similar to cervical dystonia patients or PD 

patients with DBS treatment. 
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Fig. 5. Synchrony of synaptic currents affects oscillation shape in a simulated neuron 

population. (A) Top: In a regime of high synaptic synchrony across cells in the raster plot, 

postsynaptic currents (PSCs) summate in order to generate a sharp deflection in the local field 

potential (LFP). Bottom: This deflection is flatter when synaptic currents are less synchronous. 

(B) Simulated LFPs from neural populations that have rhythmic activity at a beta frequency. 

Highly synchronous activity yields sharper beta oscillations (top) compared to lower synchrony 

(bottom). (C) Distributions of peak and trough sharpness for the simulated LFPs in panel B. 

Note the greater overlap between extrema sharpness distributions in the lower synchrony 

condition. (D) Coupling between beta phase and high gamma amplitude for the simulated LFPs 

in panel B. Note that coupling is greater in the simulated LFP with high synaptic synchrony. 

 

Discussion 

It has been hypothesized that the key mechanism by which DBS reduces PD-related 

movement symptoms is by the decorrelation of the excessively synchronized neural activity in 

the basal ganglia (11, 20–22), consistent with the previously reported PAC decrease with DBS 

treatment (4, 5). The present work offers new insight into the biophysical interpretation of PAC, 

as arising from a decrease in the synchrony of synaptic currents in M1, which are likely a mix of 

both afferent and local events. Similar to previous interpretations of therapeutic reduction in 

PAC (4, 5), decreased synaptic synchrony would give top-down, executive input from the 

prefrontal cortex increased efficacy in biasing M1 spiking. As such, DBS acts to “free up” 

communication channels into M1, channels that were previously dominated by the pathological 

oversynchronization of synaptic inputs. Given how potent synchronous activity can be in driving 

downstream population spiking (23–25), we suggest that excessive synchrony in presynaptic 

inputs to M1 may be key to understanding the biophysical measurements related to excessive 

cortical PAC. Of note, we have argued that current DBS treatment could potentially be improved 

by applying feedback from motor cortical activity (4). Detection of a sharp waveform in the motor 

cortical field potential as a trigger for adaptive stimulation, would be both computationally 

simpler than calculating PAC and a more direct measure of the pathological biomarker. 

Our work demonstrates that PAC, as an analytic measure, is sensitive to two different 

but related physiological phenomenon. First, beta-high gamma PAC has been interpreted as a 

true coupling between a low frequency oscillation and a distinct physiological process that 

generates amplitude at high frequencies (local spiking). Here we show that PAC may also be 
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generated from synaptic synchrony that generates a sharp low-frequency oscillation. From this 

perspective, it is clear that PAC as an analytic measure is not specific to one unique 

physiological phenomenon. This is critical, as PAC has been hypothesized to represent effective 

neural communications mediated by cross-frequency coupling between brain regions (8, 11, 12, 

26) and is usually interpreted within the two-process framework, rather than the one-process 

alternative offered here (3, 4, 8, 12–14). In the past, increases in PAC have been associated 

with improved multi-item working memory (27), learning (10), attention (28), decision making 

(29), and cognitive control (8, 30). We have shown that excessive PAC in PD is generated by a 

single slow oscillatory waveform of variable shape, and offer the possibility that previous work 

showing PAC changes during normal cognition might also be driven by changes in synaptic 

input structure as well. 

We hypothesize that the shape of neural oscillations carries information about the 

underlying neural activity. For example, the asymmetry of the hippocampal theta oscillation and 

cortical slow oscillations match the asymmetry of the firing rate histograms in their respective 

areas (31, 32). Because of the noticeable asymmetry, strategies have been developed to aid in 

the analysis of nonsinusoidal oscillations. For instance, theta oscillatory phase has been 

computed using features of the raw voltage (32–34). Additionally, empirical mode 

decomposition has been used to extract rhythmic components for phase-amplitude coupling 

instead of a Fourier decomposition (35). However, until now, techniques that characterize the 

shape of oscillatory waveforms are lacking. 

Insight into the meaning of an oscillatory waveform is aided by recognizing that the LFP 

is predominantly composed of the spatiotemporal summation of synaptic potentials (36–40). 

Because synaptic potentials are both excitatory and inhibitory, the significance of an 

extracellular voltage deflection is not obvious, but nonetheless reflects fluctuations in the relative 

excitability of the local population. For example, a sharp decrease in the extracellular voltage 

could indicate synchronous activation of presynaptic glutamatergic projections to the recorded 

region. Alternatively, this voltage change could also be generated by a sudden cessation of 

local inhibition. Both of these changes, and other possibilities, could be supported or rejected by 

experiments with simultaneous measurement of additional signals, such as local spiking or 

presynaptic activity.  

Oscillatory activity is abundant in electrophysiological recordings across many species, 

brain regions, and spatial scales (41–44), with canonical frequency bands (delta, theta, alpha, 

beta, gamma) often said to associate with (or even drive) specific behaviors and functions. 

Thus, the prospect that nonsinusoidal features of those oscillations carry critical physiological 

information provides a new framework for linking physiology with network dynamics and 

processes. For example, two studies have shown that the asymmetry of hippocampal theta 

oscillations changes with the type of movement in mice (45, 46). 

In summary, we have shown that the shape of beta oscillations in field potentials 

measured from the arm-related area of M1 is changed by DBS and differs between PD patients 

and patients with isolated cervical dystonia and normal arm function. Further, ESR (and 

presumably, therefore, synaptic input synchrony) is positively correlated with a clinical measure 

of rigidity in PD. Using a computational model, we showed that the beta waveform shape is 
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consistent with highly synchronous synaptic inputs and underlies the previously reported beta-

high gamma PAC. We argue that both spectral and temporal analyses may be necessary to 

extract, and interpret, information in electrophysiological signals. 

 

Methods 

Methods for collection of this data were previously reported (3, 4) and further details are 

available in the SI Methods. Briefly, intracranial recordings were collected from 23 PD patients 

with DBS on and off and 9 dystonia patients. PD patients were selected to have mild to 

moderate bradykinesia without a prominent tremor. A six-contact electrode strip was placed on 

the cortical surface through the burr hole used for DBS. A bipolar configuration was used for 

referencing. The electrode over M1 was localized with computed tomography and evoked 

somatosensory potentials. Data were downsampled to 1 kHz. 

Prior to characterizing oscillation shape, peaks and troughs were identified in the raw 

time series. Sharpness of each extrema was estimated by averaging the voltage difference 

between the extrema and the samples 5ms before and after the extrema. Extrema sharpness 

ratio (ESR) was calculated as the ratio between the average peak and trough sharpness in the 

recording, and the ratio was fixed to be greater than 1. Rise and decay steepness were 

quantified as the steepest voltage change in 1 sample (millisecond) between each peak and 

trough. Rise-decay steepness ratio (RDSR) was the ratio between the average rise steepness 

and decay steepness throughout a recording. 

Phase-amplitude coupling was calculated using the normalized modulation index metric 

(47). Oscillatory phase was estimated by the angle of the Hilbert transform of the signal band-

pass filtered in the beta range (13-30Hz). Amplitude was similarly calculated by the magnitude 

of the Hilbert transform of the high gamma (50-200Hz) band-pass filtered signal. 

Unless indicated otherwise, all correlations are Pearson and all tests are two-tailed. 
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