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The relative importance of each problem is influenced by its severity. A 
high density of heterozygous sites makes genome assembly very chal-
lenging [see e.g. (Zhang et al., 2012; Nystedt et al., 2013)] and de novo 
assembly algorithms specifically designed for moderate-to-high levels of 
heterozygosity (Vinson et al., 2005; Donmez and Brudno, 2011; Kajitani 
et al., 2014) still cannot match the performance achieved in assemblies 
of homozygous strains, especially at the contig assembly level. There-
fore, genome project teams often strive to reduce or even completely 
eliminate heterozygosity, either by using inbred laboratory strains [e.g. 
the C. elegans genome project (C. elegans Sequencing Consortium, 
1998) and D. melanogaster genome project (Adams et al., 2000)], or by 
obtaining a homozygous form of the organism by other laboratory tech-
niques [e.g. the potato genome (Potato Genome Sequencing Consortium 
et al., 2011)]. Using these approaches to reducing heterozygosity may be 
time consuming and sometimes not feasible, for example if the organism 
in question is resistant to inbreeding due to strong inbreeding depression 
(Charlesworth and Willis, 2009), or if the generation time is too long or 
the organism unsuitable for inbreeding in the laboratory. With ongoing 
projects to provide high quality genome assemblies for 10,000 vertebrate 
species (Genome 10K Community of Scientists, 2009), 5,000 arthropod 
species (i5K Consortium, 2013), and 7,000 (mainly marine) invertebrates 
(GIGA Community of Scientists et al., 2014), there is a pressing need for 
new approaches to reducing heterozygosity for genome assembly. 
Genotyped individuals with familial relatedness and especially parents-
child trios are commonly used for haplotype estimation (also known as 
‘phasing’) in population genomics studies (B. L. Browning and S. R. 
Browning, 2009; O'Connell et al., 2014). However, familial relatedness 
has to our knowledge never been used in the context of haplotype phas-
ing during genome assembly, perhaps due to the computational complex-
ity of this task. In this paper we take advantage of the phasing infor-
mation available in one generation pedigrees comprising mother, father 
and one offspring.  Such a trio of samples is often available or feasible to 
generate for species where long term inbreeding is not practical. We 
describe three efficient algorithms to facilitate haplotype phasing and 
assembly of highly heterozygous genomes. The algorithms, jointly re-
ferred to as trio-sga, are based around queries over an FM-index: a 
compressed index of all the reads (Ferragina and Manzini, 2000; Simp-
son and Durbin, 2010) and form an extension of the sga genome assem-
bler (Simpson and Durbin, 2012). We demonstrate the performance of 
trio-sga by assembling a ‘simulated trio’ composed of reads from 
four haploid strains of Schizosaccharomyces pombe, and by assembling 
three highly heterozygous Heliconius butterfly genomes. 

2 Methods 
The way trio-sga algorithms fit into and extend the standard sga 
pipeline is depicted in Figure 1 (it also suggests how they could be used 
with or incorporated into other existing assembly software). The input 
into the trio-sga pipeline are three separate sets of DNA reads: reads 
from the mother, reads from the father, and reads from their offspring. 
During a typical workflow we build separate FM-indices for the three 
sets of reads. The aim is to assemble the reads from the offspring, taking 
advantage of haplotype phase information provided by data from the 
parents. If haplotype phase can be resolved at all heterozygous sites, the 
final products of our workflow are two separate assemblies of the off-
spring’s genome: an assembly of the haplotypes inherited from the 
mother (maternal) and an assembly of the haplotypes inherited from the 
father (paternal).  
The first trio-sga algorithm, implemented in trio-sga cor-
rectTrio, uses trio information to improve the reliability of read error 

correction. Error correction used by sga and many other genome as-
semblers [see e.g. (R. R. Li et al., 2010)] is based on k-mer frequencies - 
the number of occurrences of a sequences of length k in the overall da-
taset. This approach relies on the fact that the frequency distributions of 
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Fig. 1: A diagram of a typical workflow showing how trio-sga algorithms fit into 
and extend the sga assembly pipeline. The main data flow is indicated by thick arrows. 
Thin arrows indicate inputs that are used to inform data processing algorithms but do not 
themselves form a part of the output.  

Fig. 2: Trio aware error correction and read filtering/phasing. (A) The distribution of 
31-mer counts in simulated 100bp error-free reads with 30X genome coverage of scaffold 1 
of the H. melpomene assembly. (B) The same distribution is in (A) but reads were simulat-
ed with an Illumina HiSeq 2000 error profile, as implemented in the ART read simulator 
(Huang et al., 2012).  There are now many more 31-mers with low occurrences (<4); these 
are mainly errors, but there is a ‘grey zone’ (arrow), with 31-mers occurring 2-4 times 
being a mixture of correct and error-containing sequences. (C) An example region of the 
genome with four segregating sites. The offspring inherited a haplotype with four derived 
alleles (denoted as 1) from the father and a haplotype with four ancestral alleles from the 
mother. Reads (or read pairs) from the offspring that contain the first or the second segre-
gating site and the derived allele can be phased and confidently assigned for paternal 
haplotype assembly (as indicated by red colour). Similarly, reads from DNA containing the 
second or the third segregating site and the ancestral allele can be phased and confidently 
assigned for maternal haplotype assembly (indicated by green colour). The remaining reads 
(grey) are assigned to both assemblies.   
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Using trios to assemble heterozygous genomes 

correct and error-containing k-mers differ: the number of occurrences of 
error-containing k-mers is generally lower than the number of occurrenc-
es of k-mers that do not contain errors (Figure 2A,B). In practice, an 
occurrence threshold is set to distinguish between correct and error-
containing k-mers. However, in most data sets (depending on the error 
rate) there is a ‘grey zone’ where the two distributions overlap (Figure 
2B): low k-mer occurrences of correct sequence are possible due to low 
coverage and/or non-random sampling and high k-mer occurrences of 
error-containing k-mers, for example due to repeated (or systematic) 
errors. Using data from the parents helps to distinguish between error-
containing and correct sequences within the grey zone and to prevent 
under-correcting (accepting as correct reads that contain errors) and 
over-correcting (‘fixing’ reads that are in fact correct). For example, if a 
k-mer fails the threshold in the offspring, but is present above threshold 
in one or both of the parents, it is unlikely to be an error and correction is 
not attempted.  
The second trio-sga algorithm, implemented in the --phase option 
of trio-sga correctTrio, filters the set of reads sequenced from 
the offspring in order to reduce heterozygosity. A conceptual overview 
of this algorithm is in Figure 2C. Reads are assumed to be error-free at 
this stage and to carry consistent phase information. Every k-mer of 
every read in the offspring is checked for phase-informative variants by 
counting the number of its occurrences in reads from each of the parents. 
Reads (or read-pairs) that carry k-mers present only in the mother are 
assigned to the maternal assembly and reads that carry k-mers present 
only in the father are assigned to the paternal assembly. Reads that carry 
k-mers present in both parents are assigned to both datasets.  
The third algorithm has been designed to ‘fill’ regions of low coverage in 
the offspring by bringing in reads sequenced from the parents’ DNA, 
thus using the parents’ datasets to ‘assemble through’ these regions. In 
this way, the algorithm reduces the sequencing depth requirements and  
the costs of the genome assembly project. The algorithm works by 
checking every k-mer of every read in the father for consistency with the 
reads assigned for the offspring’s paternal haplotype assembly; all the 
consistent reads are then “brought in” to fill any coverage gaps. Reads 
from the mother are used in the same way for the maternal haplotype 
assembly. 
The ‘simulated trio’ was obtained by combining publicly available 
paired-end 100bp Illumina reads from four strains of S. pombe (Jeffares 
et al., 2015), as outlined in Figure 3. Briefly, each haploid yeast strain is 
treated as a parental haplotype: random subsets of reads from two strains 
were mixed together to represent each ‘parent’. The ‘offspring’ then 
inherited a separate random subset of reads from one strain from each 
‘parent’ (recombination was not simulated, but would have negligible 
effect on trio-sga performance). The random sampling of reads was 
tuned to obtain 40X coverage per individual (i.e. 40X ‘father’, 40X 

‘mother’, and 40X ‘offspring’). The specific read sets used are available 
from the European Nucleotide Archive (ENA) (Study: ERP000180; 
Accessions: ERS070898, ERS070920,  ERS070926, ERS070966). 
We generated new Illumina reads from parent-offspring trios of Heli-
conius melpomene, Heliconius cydno, and a laboratory cross between a 
H. melpomene father and H. cydno mother. Genomic libraries were pre-
pared according to Illumina TruSeq HT protocol and sequenced using 
Illumina HiSeq v4 reagents to obtain 125bp paired-end reads with mean 
insert size of 300-500bp. All nine samples were multiplexed together and 
three lanes were sequenced, yielding ~124 billion base-pairs, corre-
sponding to ~46X average genome coverage per individual (range ~40-
50X). The raw read data are available from ENA (Study: ERP009507; 
Accessions: ERR926555-ERR926581). 
The standard sga assemblies described in this manuscript were generat-
ed using the workflow from (Simpson and Durbin, 2012) and trio-
sga assemblies using the workflow shown in Figure 1, with default 
parameters except the following: 1) -k 41 was used for error correction 
in Heliconius assemblies; 2) -r 10 was used for the sga assemble sub-
program. The contig assemblies (output of sga assemble) were attempted 
with minimum overlap required between reads set to 65, 70, 75, and 
85bp in yeast; and 70, 80, 90, 95, 100, 105, and 110bp in Heliconius. 
Then we choose the contig assembly with the highest N50 statistic. To 
obtain scaffolds we aligned the paired-end reads used for the trio assem-
bly to the contigs (excluding contigs ≤200bp) using bwa mem 
v0.7.10 (H. Li, 2013), and we required evidence from at least five 
pairs of reads before joining two contigs (-n 5 parameter to the sga-
bam2de.pl script). Finally, reads were re-mapped to the complete 
scaffold assembly (excluding scaffolds ≤500bp) and the proportion of 
properly-paired reads (a measure of assembly quality) obtained with 
samtools flagstat v1.3 (H. Li, 2011). 

3 Algorithms 
The basic building block of all three algorithms is a simple query over an 
FM-index: counting the number of occurrences of a given k-mer and of 
its reverse complement in a read set. In what follows, k-mer occurrences 
in reads from the mother’s DNA are denoted CM(k), occurrences in reads 
from the father are denoted CF(k), and from the offspring CO(k).  

Algorithm 1: Trio-aware error correction: deciding whether to attempt correcting

a k-mer

Data: FM-indices of mother, father, o�spring reads; reads from the o�spring

Result: Corrected o�spring reads

1 // Initialise occurrence thresholds for k -mers in offspring, mother, and

father FM-Indices

Init: set thresholds tO, tM , tF ;

2 // Initialise indicator variables for ensuring haplotype phase consistency of

corrected reads

Init: set mc=FALSE; set fc=FALSE;

3 foreach (read R from the o�spring) do

4 foreach (k-mer k in R) do

5 if (CF (k) < tF and CM (k) < tM ) then increase tO;

6 // Test the offspring threshold

7 if (CO(k) > tO) then

8 next; // Do not correct and move on to the next k -mer

9 else

10 // This k -mer failed offspring threshold - test it in the parents

11 if ((mc == fc) or (mc==TRUE and fc==FALSE)) then

12 if (CM (k) > tM ) then set mc.temp=TRUE;

13 end

14 if ((mc== fc) or (mc==FALSE and fc==TRUE)) then

15 if (CF (k) > tF ) then set fc.temp=TRUE;

16 end

17 if (mc.temp==TRUE or fc.temp==TRUE) then

18 // Passed k -mer count threshold in the parental reads

19 set mc = mc.temp; set fc = fc.temp;

20 next; // Do not correct and move on to the next k -mer

21 end

22 end

23 // Call the correction algorithm (not shown)

24 correction(R,k);

25 end

26 end

Line 5: if a k-mer found in the o�spring does not occur (above threshold) in either parent, it is

likely to be an error (or a de-novo mutation, but these are exceedingly rare compared with errors).

Therefore, we increase the o�spring k-mer occurrence threshold for this k-mer.
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Fig. 3: Yeast ‘simulated trio’ design. Reads from four haploid strains were used to 
represent the four ‘parental haplotypes’. The reads from strains JB853 and JB759 were 
combined to form the dataset from the ‘father’, and reads from strains JB859 and JB915 
were combined to represent the ‘mother’. Non-overlapping random subsets of reads from 
strains JB759 and JB915 were then selected to form the ‘offspring’. 
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Algorithm 1 outlines how parents’ data are used in the decision on 
whether or not to attempt correction on a k-mer in the offspring. The 
correction algorithm itself is not shown as it is identical to the correction 
algorithm used by sga (Simpson and Durbin, 2012). 
Algorithm 2 describes how parents’ data are used to reduce heterozy-
gosity in the reads from the offspring by partitioning them into a mater-
nal and paternal data sets.  

Algorithm 3 outlines how reads from the parents are checked for con-
sistency with the reads assigned for the offspring’s paternal haplotype 
assembly. 

4 Results and discussion 
The performance of read filtering/phasing in reducing heterozygosity in 
the read sets is summarized in Figure 4. The estimated frequency of 
heterozygous sites in the ‘simulated yeast diploid’ offspring was 1 in 262 
sites before and 1 in 569 sites after applying the trio-sga filtering (a 
reduction of 54%). In Heliconius butterfly trios, estimated heterozygosity 
decreased from 1 in 64 to 1 in 1371 sites (95.3% reduction) in H. mel-
pomene; from 1 in 51 to 1 in 1098 sites in H. cydno (95.4% reduction); 
and from 1 in 34 to 1 in 1604 in the H. cydno x H. melpomene cross 
(97.9% reduction). The frequencies were estimated using the sga-
preqc program (Simpson, 2014). Heterozygosity value for the haploid 
yeast strain (JB759) represents the misclassification rate (1 in 3043) 
observed in sga preqc estimates, resulting from mistaking error or repeat 
branches for heterozygous loci. 
The results suggest that the higher the heterozygosity the better the 
trio-sga filtering works: high heterozygosity allows the algorithm to 
perform well because the majority of read pairs carry at least one and 
often multiple sites informative about their haplotype phase. Therefore, 
the algorithm eliminates over 95% of heterozygosity in the read sets in 
the Heliconius trios, and the most striking improvement can be seen in 
the Heliconius cross. Still, it is also clear that the algorithm can substan-

tially reduce heterozygosity even when the initial levels are moderate, as 
seen in the simulated yeast trio.  

To assess the performance of the complete workflow we carried out full 
assemblies of all four trio datasets, as well as standard sga assemblies of 
the four offspring, and an assembly of one haploid S. pombe strain 
(JB759). Key statistics for all datasets are compared in Table 1. It is clear 
from the results that heterozygosity in the reads has substantial effect on 
the contiguity of assemblies, both at the contig and at the scaffold level.  
Applying trio-sga algorithms to the yeast ‘simulated trio’, where the 
offspring has heterozygosity of approximately 0.004 (1/262), improves 
the N50 measurement of contiguity by 69.3% at the contig level, and by 
130% at the scaffold level. These are considerable improvements. To 
provide additional context for these numbers, the statistics for the yeast 
haploid assembly illustrate the further increases in contiguity that could 
be attained if all remaining heterozygous sites would be removed. 
Normal assemblies of the highly heterozygous Heliconius genomes were 
very challenging for sga. Contig and scaffold N50 statistics are barely 
above 1kb and 2-3kb respectively. Moreover, the total length of these 
assemblies is  much greater than the 292Mb flow cytometry genome size 
estimate for H. melpomene (Jiggins et al., 2005), suggesting that in many 
cases two copies of a single genomic region have been retained. In con-
trast, trio assemblies have contig N50 between 7.5 and 11.2kb, scaffold 
N50 between 19.4 and 29.5kb, and total assembly lengths reflecting 
expected genome sizes. It is interesting to note that the most contiguous 
trio assemblies were for the Heliconius cross, again highlighting that 
trio-sga performance actually improves as heterozygosity in the 
initial dataset increases.  

Fig. 4: Read-filtering/phasing performance. The frequencies of heterozygous sites were 
estimated before trio-sga filtering in the offspring and after trio-sga filtering in 
the reads assigned for paternal haplotype assembly.  
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Algorithm 3: Check for consistency between error-corrected reads from the

mother and error-corrected reads from the o�spring’s maternal haplotype or reads

from the father and the paternal haplotype.

Data: FM-indices of error-corrected reads from one parent and the corresponding haplotype in

the o�spring

Result: Reads from the parent that are consistent with the o�spring read set and can be used

to bridge coverage gaps

1 foreach (read R from the parent) do

2 consistent=TRUE;

3 foreach (k-mer k in R) do

4 if (CO(k) == 0) then

5 consistent=FALSE; break;

6 end

7 end

8 if (consistent) then mark R as consistent with the o�spring;

9 end

55

Algorithm 2: Filtering the set of reads sequenced from the o�spring in order to

reduce heterozygosity (assuming error-free reads)

Data: FM-indices of mother and father reads; reads from the o�spring

Result: Two partially overlapping sets of o�spring reads for paternal and maternal haplotype

assembly

1 foreach (read R from the o�spring) do

2 set inMother=TRUE; set inFather=TRUE;

3 foreach (k-mer k in R) do

4 if (CM (k) == 0) then

5 inMother=FALSE;

6 end

7 if (CF (k) == 0) then

8 inFather=FALSE;

9 end

10 end

11 if (inMother==TRUE) then assign R to maternal assembly read set;

12 if (inFather==TRUE) then assign R to paternal assembly read set;

13 end
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In all cases, the trio-sga assemblies have the higher proportion of 
reads-pairs that map back to the scaffolds as ‘properly paired’ (i.e. map 
to the same scaffold, are correctly oriented, and their separation is within 
5 standard deviations from the mean), illustrating that the improvements 
in contiguity are not simply at the expense of assembly errors. 
 
Table 1: Assembly statistics for all datasets. Statistics for trio-sga 
refer to paternal haplotype assemblies. Contigs and scaffolds shorter than 
500bp were excluded. All reads were re-mapped to the final scaffolds. 
Reads are properly paired if both map to the same scaffold, are correctly 
oriented, and their separation is within 5 standard deviations from the 
mean (i.e. the "proper pair" flag bit is set in the SAM file). 

 Yeast 
Haploid 

Yeast  
simulations Heliconius assemblies 

Strain/  
species JB759 JB759 

JB915 
H. 

melpomene 
H. 

cydno Cross 

Assembly sga sga trio sga trio sga trio sga trio 
Heterozy-
gosity 0 1/262 1/569 1/64 1/1371 1/51 1/1098 1/34 1/1604 

Contig N50 
(kb) 20.0 7.5 12.7 1.3 7.6 1.0 8.7 1.2 11.3 

Scaffold 
N50 (kb) 40.9 12.0 27.6 2.8 19.4 2.3 23.6 3.3 29.5 

Total length 
(Mb) 11.26 12.15 11.95 394 273 405 267 453 260 

Reads re-
mapped   
(% of total) 

88.60 84.95 85.24 96.6 97.32 95.7 96.79 96.19 98.11 

Properly 
paired (% of 
mapped) 

95.82 95.68 97.14 68.3 80.53 65.7 79.72 69.76 84.75 

 
The distributions of scaffold lengths (Figure 5) provide a detailed depic-
tion of contiguity of all the genome assemblies described in this manu-
script. They reveal that the increases in N50 delivered by trio-sga are 
due to many improvements all across the scaffold length spectrum, rather 
than being due to a small number of long scaffolds. 

 
We note that further resolution of heterozygous sites and improvements 
in assembly contiguity may be achievable. The current trio-sga 

algorithms are able to use only a subset of the haplotype phase infor-
mation present in the trio data. The additional cases, where the offspring 
and only one of the parents are heterozygous (loci 1 and 3 in Figure 2C) 
require identifying that the two variants are allelic.  This may be identifi-
able in the assembly graph during the contig building process (i.e. at the 
stage corresponding to the sga assemble algorithm; Figure 1), but 
this is related to identifying whether branches correspond to repeats or 
heterozygous sites in the core assembly software, which is not the sub-
ject of this paper. 
The ability of sga to scale to large genomes was demonstrated previous-
ly (Simpson and Durbin, 2012), and since has been substantially en-
hanced by further improvements in the speed and memory efficiency of 
FM-index construction algorithms (Bauer et al., 2013); Heng Li’s im-
plementation of the index construction has been used for the assemblies 
presented here (from github.com/lh3/ropebwt; available through 
sga index -a ropebwt). 
The trio-sga subprogram that integrates the error-correction and 
phasing algorithms requires the forward FM-indices of all three members 
of the trio to be loaded into memory. Thus its memory requirement is 
approximately three times higher than required for standard sga read 
error-correction (an increase from 175MB to 503MB for yeast; and from 
4.2GB to 12GB in H. melpomene). This step represents the highest point 
in terms of memory requirements. The CPU time required is also approx-
imately three to four times higher (an increase from 3374 CPU sec. to 
9441 CPU sec. in yeast; and from 55 CPU hours to 214 CPU hours in H. 
melpomene); however it can be run multithreaded on a single machine 
and further parallelized (for large gigabase scale genomes) by splitting 
the reads to be corrected and phased across multiple compute nodes. The 
subprogram for adding parents’ reads to the offspring assembly (trio-
sga filter-parents) requires one third less memory and one third 
less CPU time. 
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Fig. 5: Scaffold length distributions. (A) The yeast assemblies, with scaffolds binned in 
5kb intervals. (B) The six Heliconius assemblies (three sga and three with trio-sga), 
with scaffolds binned in 1kb intervals. 
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