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Abstract

The cost-effectiveness of sequencing pools of individuals (Pool-Seq) provides the basis for the
popularity and wide-spread use of this method for many research questions, ranging from
unravelling the genetic basis of complex traits to the clonal evolution of cancer cells. Because
the accuracy of Pool-Seq could be affected by many potential sources of error, several studies
determined, for example, the influence of the sequencing technology, the library preparation
protocol, and mapping parameters. Nevertheless, the impact of the mapping tools has not
yet been evaluated. Using simulated and real Pool-Seq data, we demonstrate a substantial
impact of the mapping tools leading to characteristic false positives in genome-wide scans.
The problem of false positives was particularly pronounced when data with different read
lengths and insert sizes were compared. Out of 14 evaluated algorithms novoalign, bwa mem
and clc4 are most suitable for mapping Pool-Seq data. Nevertheless, no single algorithm is
sufficient for avoiding all false positives. We show that the intersection of the results of two
mapping algorithms provides a simple, yet effective strategy to eliminate false positives. We
propose that the implementation of a consistent Pool-seq bioinformatics pipeline building
on the recommendations of this study can substantially increase the reliability of Pool-Seq
results, in particular when libraries generated with different protocols are being compared.
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Introduction

Sequencing pools of individuals (Pool-Seq) is a cost efficient approach for generating genome-
wide polymorphism data, which is enjoying increasing popularity [reviewed in Schlotterer
et al. (2014)]. Pool-Seq was for example used to unravel the genetic basis of complex traits
(Bastide et al., 2013; Cheeseman et al., 2015), identify loci contributing to local adaptation
(Lamichhaney et al., 2012; Turner et al., 2010), trace beneficial loci during experimental
evolution (Lang et al., 2013; Orozco-terWengel et al., 2012; Tobler et al., 2013), identify
positively selected loci in populations (Bergland et al., 2014; Kofler et al., 2012; Nolte and
Schlétterer, 2008), find genes selected during domestication (Axelsson et al., 2013; Rubin
et al., 2010), study the invasion of transposable elements (Kofler et al., 2015a), investigate
clonal evolution in cancer (Ding et al., 2012) and to identify causative mutations in forward
genetic screens (Schneeberger et al., 2009). With this rapid gain in popularity it is important
to ensure a reliable analysis of Pool-Seq data. Several studies investigated various aspects
that potentially affect the accuracy of Pool-Seq, including the sequencing platform (Rellstab
et al., 2013), the reference genome (Nevado et al., 2014), the parameters used for aligning
the reads (Kofler et al., 2011a), the sequencing depth (Ferretti et al., 2013; Kofler and
Schlétterer, 2014), the pool size (Futschik and Schlotterer, 2010; Gautier et al., 2013) and
the library preparation protocol (Kofler et al., 2015b).

However, until now the impact of the mapping algorithm used for aligning Pool-Seq data
has not been studied in sufficient detail. Here, we show that the mapping algorithm can
have a profound effect leading to erroneous signals of allele frequency differences between
libraries. We systematically compared the performance of 14 different alignment algorithms
using both simulated and real Pool-Seq data. Of the tested algorithms clc4, novoalign and
bwa mem consistently produced the most reliable results with Pool-Seq data. Nevertheless,
no single alignment algorithm avoids all artefacts, but by intersecting the results of two
alignment tools, the vast majority of artifactual outliers can be avoided.

1 Results

Genome wide polymorphism scans with Pool-Seq data are becoming increasingly used in
population genomic research. Typically, these studies use genome-wide Pool-Seq data to
identify marked outlier loci in pairwise comparisons between population samples. For ex-
ample, loci contributing to local adaptation are identified by significantly different allele
frequencies between populations (Lamichhaney et al., 2012; Turner et al., 2010). This focus
on outlier loci makes genome-wide scans susceptible to technical problems that could gener-
ate outlier artefacts. We found that the mapping algorithms for aligning Pool-Seq data may
be an important source of outlier artefacts (fig. 1). Comparing allele frequencies between
two Pool-Seq libraries prepared from identical genomic DNA, but with different insert size
and read length, we found a substantial number of outlier loci, despite no differences between
the libraries are expected (fig. 1A,B).
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Figure 1: Manhattan plots indicating the significance of allele frequency differences between
Pool-Seq libraries when the same genomic DNA is sequenced. Two Illumina paired-end se-
quencing libraries with different read length and insert sizes were prepared from a pool of 250
D. simulans individuals. Reads were mapped to the reference genome and the significance
of differences in allele frequencies between the two libraries were computed (Fisher’s exact
test). Despite no significant allele frequency differences are expected we found pronounced
outlier peaks using bwa aln (A) or novoalign(g) (B) for mapping the reads. Importantly, out-
lier peaks found with these two alignment algorithms are at different genomic sites. Hence,
intersecting the results of these two algorithms by plotting the lowest obtained p-value at
each site removes the vast majority of outlier peaks (C).
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Figure 2: Overview of simulated Pool-Seq data sets. Based on a 2 Mbp region of D.
melanogaster chromosome 2R, we simulated a pair of sequences with one sequence hav-
ing a SNP (red) every 100bp (A) and a pair of sequences with one sequence having, in
addition to the SNPs, an indel (blue) with random position and length between adjacent
SNPs (B). Using these sequences as templates we simulated uniformly distributed paired
ends (grey; C) resulting in SNPs with known positions and frequency (0.5).
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To overcome this problem we set out to identify alignment algorithms that are most suit-
able for genome-wide outlier scans using Pool-Seq data. We tested seven semi-global align-
ment algorithms, where the entire read is required to match [bowtie2(g), bwa aln, clcd(g),
mrfast, ngm(g), novoalign(g), segemehl], and seven local alignment algorithms, where only
a part of the read needs to match [bwa sw, bwa mem, cled(1), gsnap, ngm(l), novoalign(l);
for an overview see table 6]. (Alkan et al., 2010; CLC bio, 2015; Hoffmann et al., 2009;
Langmead and Salzberg, 2012; Li and Durbin, 2009, 2010; Novocraft, 2014; Sedlazeck et al.,
2013; Wu and Nacu, 2010). With several tools, like ngm or bowtie2, supporting both semi-
global and local alignments, we indicate the pertinent algorithm in brackets [e.g.: ngm(g):
semi-global alignment, ngm(1): local alignment].

We first tested the overall performance of the alignment algorithm using simulated data
sets. We generated template sequences with SNPs and indels at known positions and then
simulated uniformly distributed paired ends from these templates such that true SNPs are
spaced exactly 100bp and have a population frequency of 0.5 (fig. 2). Note that indels are
in linkage disequilibrium with SNPs to identify biased allele frequency estimates resulting
from mapping of reads with indels.

We evaluated the mapping algorithms with three different paired end data sets: i) a data
set representing optimal conditions (2x100bp paired ends; insert size 100 £ Obp; error rate of
0%; no indels; fig. 2A), ii) a data set with indels and variation of the distance between paired
ends (2x100bp paired ends; insert size 100 £ 40bp; error rate of 0%; indels; fig. 2B) and a
dataset with indels and a high error rate (polymorphism) of 5% (2x100bp paired ends with
an insert size of 1004+0bp; error rate of 5%; indels; fig. 2B). For all data sets a coverage of 200
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Table 1: Suitability of mapping algorithms for performing genome wide polymorphism scans
with Pool-Seq data. Ideally, a mapping algorithm should enable to identify all true positive
SNPs (TP; 19.999 were simulated) and to estimate the allele frequencies accurately (us
average frequency of the reference allele; all SNPs were simulated with f = 0.5) while
avoiding the identification of false positive SNPs (FP) and extreme outlier SNPs, with highly
inaccurate allele frequency estimates (OL; f > 0.9 or f < 0.1). We tested the algorithm
with three different data sets. For each benchmark the three best performing (green) and
the three worst performing (red) algorithm were marked. The overall suitability of each
mapping algorithm was determined (count top - count worst; top > 2; worst < —2) and
algorithms were marked accordingly. False positive SNPs were not used as benchmark for
the data with the high error rate. best case: 2x100bp paired ends with an insert size of
100+0bp, indel - insert size: 2x100bp paired ends with an insert size of 100+40bp and indels
between the SNPs, indel - error rate: 2x100bp paired ends with an insert size of 1004+0bp,
indels between the SNPs and an error rate of 5%.

indel - error rate
TP FP  yuy  OL
423k
487k 0.583 189
16655 1527k 0.504 142
14920 661k [07781 1032
N97350 802k 0.521 87
16482 1506k | 0.507 148
19987 1957k 0.640
11193 855k  0.534 97

best case indel - insert size
TP FP oy OL | TP FP iy OL
12649 0 0.556 367 | 12561
15822 5 0.501 1 15978
0.504 2 16787

algorithm

bwa aln
cled(g)

0.495 10
0.501 1

novoalign(g)

bowtie2(1)

bwa bwasw 13807 1101k 219
bwa mem 14451 1313k

cle4 (1) 16606 1514k 0.516 155
gsnap 17267 1491k 0.548 221
ngm(l) 775k 0.526 85
novoalign(1) 16396 1483k 0.527 168
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per site was targeted (/2 million paired ends per data set). We evaluated the performance
of the mapping algorithms based on four criteria: the number of true positive SNPs, the
number of false positive SNPs, the average frequency of the reference allele (should be 0.5)
and the number of extreme outlier loci with highly inaccurate allele frequency estimates
(f >09or f <0.1). These criteria could, for example, be important in genome-wide scans
to detect signatures of selection with Pool-Seq data, where a reliable identification of regions
having low polymorphism, a hallmark of positive selection, requires precise identification of
the SNPs and accurate estimates of allele frequencies.

We compared the performance of the mapping algorithms with and without filtering
for quality criteria, such as paired end reads and mapping quality [> 20; a low mapping
quality suggest that the read is ambiguously mapped (Li et al., 2008)] and found that
filtering consistently leads to reduced numbers of false positive SNPs and more accurate
allele frequency estimates (supplementary table 1). This observation is in agreement with
previous work showing that quality filtering can reduce the number of false positive SNPs
(Li et al., 2008). We note, however, that quality filtering also leads to fewer true positive
SNPs (supplementary table 1).

Quality filtering also affected the coverage distribution. Fewer sites had a higher coverage
than simulated in filtered data (supplementary figure 1), which is likely due to smaller num-
bers of ambiguously mapped reads that stochastically accumulate in some genomic regions.
For mrfast quality filtering resulted in a severe shift of the coverage distribution, halving the
average coverage (supplementary figure 1). The distribution of mapping qualities differed
between mapping algorithms (supplementary fig. 2) which is likely due to distinct algorithms
for computing mapping qualities. Since the accuracy of allele frequency estimates was sub-
stantially better for filtered data sets, we rely on quality filtered reads for the remaining
manuscript. Summarizing the results for all three simulated data sets we found that clc4(g),
novoalign(g), bwa bwasw, clc4(l), gsnap and novoalign(l) showed the best performance while
bowtie2(g), mrfast, ngm(g) and segemehl showed the worst (table 1; for results with un-
filtered data see supplementary table 2). The average reference allele frequency of most
alignment algorithms was above 0.5 indicating a bias towards the reference allele [see also
Degner et al. (2009); Kofler et al. (2011a)]. After quality filtering mrfast had a substantial
bias against the reference allele (supplementary table 2).

Next we compared allele frequency estimates between samples, an approach that is typ-
ically used to identify loci responsible for local adaption. We investigated the sensitivity of
the alignment algorithm to i) differences of the inner distance between paired ends (inner
distances 100 £ 20bp vs. 300 &+ 60bp) ii) differences in read length (read length 100bp vs.
50bp) and iii) differences in the error rates (error rates 1% vs. 5%) (table 1). Uniformly
distributed paired ends were simulated from the template sequences having SNPs and indels
(fig. 2B). Allele frequency differences between samples were measured using Fgr. Values of
Fsr range from 0 to 1, where 0 indicates no differentiation between samples (populations)
and 1 indicates complete differentiation (fixation for alternative alleles) (Hartl and Clark,
1997). As all paired ends have a uniform genomic distribution and were derived from the
same template sequences only small allele frequency differences are expected between sam-
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Table 2: Comparison of allele frequency differences between simulated Pool-Seq data sets
with different mapping algorithms. We simulated different paired end Pool-Seq libraries,
mapped the reads and compared the allele frequencies between the libraries using Fgr. With
this procedure we evaluated the sensitivity of the alignment algorithm to differences in the
distance between paired ends (id), differences in the read length (rl) and differences in the
error rates (e). As all libraries were derived from identical template sequences (templates
with SNPs and indels) no significant allele frequency differences were expected (Fgr = 0). We
estimated the number of true positive SNPs for which allele frequencies could be compared
(TP) and the lowest Fgp-values in the 0.1% and 10% quantiles with the most differentiated
SNPs. For each benchmark we highlighted the three best (green) and three worst (red)
performing algorithm. The overall suitability of each mapping algorithm was determined
(count top - count worst; top > 3; worst < —3) and algorithms were marked accordingly.
1d100, r1100, e1%: 2x100bp paired ends, insert size 100420bp, error rate 1%; id300: 2x100bp
paired ends, insert size 300 & 60bp, error rate 1%; rl50: 2x50bp paired ends, insert size
100 £ 20bp, error rate 1%; e5%: 2x100bp paired ends, insert size 100 & 20bp, error rate 5%
id100 vs. id300 r1100 vs. rl50 el% vs. eb%

algorithm | TP 10% 0.1% | TP  10% 0.1% |TP  10% 0.1%
bowtie2(g) | 12468 [00211 0.358 | 12474 0.027 0.351 | 11778 0.476
bwa aln 14128 0.008 0.334 | 14106 0.014 0.279 | 14860 1 0.486
cled(g) 12415 0.006 0.286 | 11067 ' 0.008 0.201 | 12664 0.004 0.115
11704 - 0.603

0.143 0.030 0.017 0.175

novoalign(g) | 16093 0.004 0.289 | 15263 0.007 0.232 | 16415 0.003 0.081
segemehl 14097 0.005 0.223 | 13394 0.010 0.216 | 11550 0.011 0.136

11158 11280 0.039 0.301 0.024 [01668%
13694  0.016 11433 02627004565 13661 0.020 0.215
bwa mem | 15990 0.005 0.290 | 15104 0.007 0.156 | 16288 0.004 0.075
cled(1) 12415 0.006 0.286 | 11067 0.008 0.201 | 12664 0.004 0.115
gsnap 16363 0.007 0.231 0.385 | 13615 0.044 0.372

ngm(l) 0.006 @ 0.142 0.453 0.018 0.167
novoalign(l) | 16057 0.005 0.279 0.243 | 16381 0.003 0.081
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Table 3: Comparison of allele frequency differences between real Pool-Seq data sets with
different mapping algorithms. We compared allele frequencies between two paired end li-
braries with different read length and insert size that were prepared from the same genomic
DNA (pooled D. simulans flies). We determined the number of SNPs for which allele fre-
quencies could be compared (¢) and the lowest Fgp-values in different quantiles with the
most differentiated SNPs. For each benchmark the three top (green) and three worst (red)
performing algorithms are highlighted. The overall suitability of each mapping algorithm
was determined (count top - count worst; top > 2; worst < —2) and algorithms were marked
accordingly. The number of SNPs (c¢) was not used as a benchmark as the true SNPs are
not known. mrfast generated an invalid output file with these data (an uniform read length
was reported despite these reads having varying read lengths).

algorithm 10% 1%  0.10% 0.01% 0.001%

0.274 0.429 0.651
5030k 0.064 0.137 0.253 0.437 0.660
6610k 0.064 0.139 0.265 0.464 0.692
na na na na na na
8427k FOMO68Y 0.142 0.263 0.447  0.685
4964k 0.057 0.125 0.228 0.373 0.578

bwa aln
cled(g)

ngm(g)
novoalign(g)

bowtie2(1)
bwa bwasw

bwa mem
cled(1)

4745k 0.062 0.133
4531k FOM068Y 0.148 0.266 0.415  0.590
4786k 0.061 0.132 0.248  0.409  0.607
4714k 0.064 0.143 0.275 0.464  0.670
4897k
5050k 0.064 0.143

4387k 0.060 0.132 0.238 0.387  0.570

novoalign(1)

ples. A perfect alignment algorithms would detect all positive SNPs (TP = 19.999) and
yield a low Fgr for all SNPs (Fst = 0). Based on the simulated data clc4(g), novoalign(g),
bwa mem, clc4(l) and novoalign(l) showed the best performance whereas mrfast, ngm(g),
bowtie2(l) and bwa bwasw performed worst (table 1; for allele frequency differences with false
positive SNPs see supplementary table 3). We noted substantial allele frequency differences
when the same data were mapped as paired-end and as single-end reads and then compared
against each other (supplementary table 4). ngm(g) and ngm(l) were most suitable for such
comparisons between paired and single end reads (supplementary table 4).

Simulated data may not capture all the properties of real data such as reads having
different lengths (after trimming), variable base qualities along reads and biases in sequencing
errors. Therefore we also evaluated the performance of different alignment algorithms based
on Fgr between samples using real data.

We used two libraries with different read length and insert size prepared from the same
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Table 4: Comparision of alignment algorithms for Pool-Seq data: summary across data
sets. Tables shows an overview of the results of the previous evaluations: overall suitability
(poly.: table 1), allele frequency differences using simulated data (Fsp-sim.: table 1) and
allele frequency differences using real data (Fgr-real: table 3). The overall suitability of each
mapping algorithm was determined (count top - count worst; top > 2; worst < —2) and
algorithms were marked accordingly.

algorithm poly.  Fgr-
sim.

bwa aln
cled(g)

novoalign(g)

bowtie2(1)
bwa bwasw

bwa mem

cle4(1)

gsnap
ngm(1)

novoalign(1)

genomic DNA (library 1: 2x76bp paired ends, median insert size = 232bp; library 2: 2x120bp
paired ends, median insert size = 396; both prepared from pooled D. simulans flies; see Mate-
rial and Methods), trimmed low quality regions from the 3’-ends of reads and compared allele
frequency differences between the samples using Fsr. As both libraries were prepared from
the same genomic DNA only small allele frequency differences were expected between the
samples (Fgr = 0). Novoalign(g), bwa mem, and novoalign(l) showed the best performance
while cle(g), mrfast, segemehl, gsnap and ngm(1) performed worst (table 3).

In summary, when comparing the results of the previous evaluations, we conclude that
cled(g), novoalign(g), bwa mem, clc4(1) and novoalign(l) are the most suitable alignment al-
gorithm for Pool-Seq data whereas bowtie2(g), mrfast, ngm(g), segemehl, bowtie2(1), ngm(l)
did not perform as well (table 4).

Despite novoalign(g) being one of the most suitable algorithms for Pool-Seq data, a sub-
stantial number of artifactual outlier peaks can still be found when comparing the allele
frequency between the D. simulans libraries (fig. 1). The comparison of different mappers
indicated that outlier artefacts are frequently specific to the alignment algorithm (Fig. 1;
supplementary fig. 3, 4). We reasoned therefore that an intersection of two mappers, record-
ing for every SNP only the least significant result found by any mapper, could overcome this
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Table 5: Reduction of mapping artefacts by the intersection of mapping algorithms. Two Illu-
mina paired end data sets with different insert sizes and read length were derived from pooled
genomic DNA (natural D. simulans population) and mapped to the reference genome. Allele
frequency differences between the libraries were computed using Fisher’s exact test [-log(p-
value) = fet-value]. To test which combination of alignment algorithms most efficiently
reduces outlier peaks we intersected all pairwise combinations of alignment algorithms, i.e.
we use SNPs identified with both algorithms and use the lowest fet-value found with any of
the two algorithms. Below the diagonal we report the number of SNPs (in million) common
to both algorithms. For comparision, the number of SNPs identified with a single mapping
algorithm are shown next to the list of mappers on the left side. Above the diagonal we
report the lowest fet-value among the 0.001% most differentiated SNPs (around 40 SNPs).
For comparision, the corresponding fet-values obtained with a single mapping algorithm are
shown next to the list of mappers on the upper side. We marked the five best combinations
yielding the least pronounced outlier loci (green).
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bowtie2(g) 4.91 6.63 5.79 5.38 6.05 6.65 6.20 5.34 6.51 5.34 5.64 5.02 5.51

bwa aln 5.03 4.27 6.09 549 6.78 5.95 6.06 5.92 731 594 573 5.63 6.47

cled(g) 6.61 4.10 4.27 9.07 7.81 7.12 5.52 5.38 7.89 968 7.39 5.72 7.76

ngm(g) 8.43 4.18 4.29 5.94 5.63 6.27 5.15 5.18 548 6.11 596 9.14 5.33

novoalign(g) 4.96 | 4.19 4.51 4.21 4.27 935 6.54 5.45 12.68 850 8.62 5.42 13.68

segemehl 4.87 4.05 3.91 397 4.12 3.92 8.26 5.49 936 7.71 7.62 5.46 7.72

bowtie2(1) 4.75 4.09 4.45 4.17 421 4.49 3.85 5.37 6.54 5.61 841 5.28 6.79

bwa bwasw 4.53 4.07 4.23 3.96 4.01 4.32 3.81 4.33 6.29 6.05 5.38 5.15 5.56

bwa mem 4.79 4.18 4.45 4.14 4.19 4.68 390 4.46 4.36 9.33 6.52 5.47 12.06

cled(l) 4.71 4.01 4.32 4.35 4.20 1.48 3.80 4.37 4.21 4.28 5.63 6.67 7.91

gsnap 4.9 4.12 4.38 4.15 4.20 4.47 390 4.47 4.36 4.44 4.34 5.76 6.94

ngm(l) 5.05 4.15 4.45 4.40 4.60 4.45 396 4.51 4.32 4.40 4.54 4.48 5.17
novoalign(l) 4.39 | 3.84 4.12 3.88 3.85 4.35 3.62 4.20 4.13 4.28 4.07 4.19 4.13

10
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problem. Intersecting the results of bwa and novoalign (fig. 1A B), the number of outlier
peaks could be substantially reduced (fig. 1C). We also tested whether intersecting the re-
sults of different mappers preserves the targets of selection using data from an experimental
evolution study for C-virus resistance in D. melanogaster (Martins et al., 2014) and found
that the most differentiated loci identified by Martins et al. (2014) were retained (supple-
mentary fig. 5). Hence, intersecting the results of different mappers is a viable strategy for
minimizing the number of artefacts while preserving the targets of selection. To identify
the most suitable combination of mapping algorithms we used the data from the pooled D.
simulans flies, computed all pairwise intersections of the algorithms and benchmarked them
using the number of SNPs and the 0.001% quantile of most differentiated SNPs (table 5).
ngm(l) combined with bowtie2(g) yielded the least pronounced outlier peaks with about 4.15
million shared SNPs [table 5; for Manhattan plots see supplementary fig. 6]. We note, how-
ever, that the best combination of alignment algorithms depends on the threshold—with the
0.01% quantile novoalign(l) and bowtie2(g) are the best combination (supplementary table
5; supplementary fig. 8). Interestingly, combining the two algorithm that were individually
the most suitable for Pool-Seq data, novoalign(g) and bwa mem (table 4), did not lead to
a marked reduction of outlier peaks (table 5); supplementary fig. 7). We hypothesize that
this could be due to a high similarity of the alignment algorithms.

2 Discussion

Here, we performed a comprehensive analysis of different alignment algorithms for Pool-
Seq data. The evaluation of alignment algorithms is complicated by several issues. First,
the mapping quality is computed differently between algorithms (supplementary fig. 2).
Thus, the fraction of reads filtered by requiring a certain minimum quality (we used 20)
varies among the alignment tools. The fraction of filtered reads will affect both the number
of identified true positive SNPs and the accuracy of the allele frequency estimates: more
mapped reads result in a higher number of true SNPs but also the number of ambiguously
mapped reads is increased, which distorts the allele frequency estimates. The tradeoff be-
tween optimizing the recovery of true SNPs and accuracy of the allele frequency estimates is
particularly pronounced for segemehl: no reads could be quality filtered since all reads have
a mapping quality of 255, resulting in the highest number of true positive SNPs but poor
allele frequency estimates (table 1). Despite this complication, we considered quality filter-
ing of reads essential as this substantially improves allele frequency estimates from Pool-Seq
data (for unfiltered results see supplementary table 2). Interestingly, the best performing
algorithm (e.g. novoalign and clc) identified the highest number of true positive SNPs and
yielded the most accurate allele frequency estimates (table 1), which suggests that the supe-
rior performance of these tools is robust with respect to the tradeoff introduced by quality
filtering.

The choice of alignment parameters is a challenge for the comparison of different mapping
algorithms. Whenever feasible, we used default parameters and only modified them when
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we considered it necessary to ensure an unbiased comparision (e.g. when the error rate
exceeded the number of allowed mismatches or when the insert size was larger than the
maximum insert size; see Material and Methods). We note, however, that the performance
of each of these algorithms may be improved by fine-tuning the parameters. For example, the
performance of bwa aln was substantially improved by using parameters optimized for Pool-
Seq data Kofler et al. (2011a) (supplementary table 6). While the optimization of mapping
parameters for all 14 alogrithms is clearly beyond the scope of this manuscript, we made
all data, including the simulated ones, publicly available to allow testing the performance of
different mappers and parameters with these data sets.

Out of the 14 algorithms tested clc4(g), novoalign(g), bwa mem, clc4(1l) and novoalign(1)
are the most suitable ones for Pool-Seq data. The superior performance of novoalign is in
agreement with previous work which found that novoalign yields highly accurate alignments
and SNP calls (Bao et al., 2014; Li and Homer, 2010; Nielsen et al., 2011).

The most striking influence of different alignment algorithms was noted for experimental
data differing in insert size and read length. Comparing different libraries from the same
genomic DNA | we identified substantial outliers, some of them clustering in peaks which
indicate allele frequency differences at multiple neighbouring sites. Since such peaks are
a typical signal in genome-wide outlier scans, such as Pool-GWAS or E&R studies, these
artefacts may lead to false conclusions. Similar artefacts were also seen when the data
were mapped as single reads (supplementary fig. 9), suggesting that this is not an artefact
of paired end mapping. Assuming that true allele frequency differences between samples
should be identified with most alignment tools, whereas artefacts should only be found with
a few algorithms, we propose intersecting multiple alignment algorithms. We noticed a clear
improvement when intersecting two alignment algorithms but, depending on the evaluation
criteria, different pairs of algorithms perform best. These results are consistent with other
studies, which also found that the combination of mapping algorithms and/or variant calling
pipelines may yield superior results (Bao et al., 2014; Field et al., 2015; O’'Rawe et al., 2013).

Our approach to intersect algorithms is based on the least significant allele frequency
differences between two samples. It is straight forward to extend this approach to studies
that rely on multiple samples, such as replicated Pool-GWAS experiments or E&R. studies
(for example see supplementary fig. 5), provided that it is feasible to collapse allele frequency
differences between multiple samples into a single representative measure [e.g. p-value from
a cmh-test (Orozco-terWengel et al., 2012)]. In this case again the least significant value
found by any mapper may be used. However, this strategy cannot be applied to Pool-Seq
data from single populations (e.g. Asgharian et al., 2015; Boitard et al., 2013; Nolte et al.,
2012). One possibility to avoid mapping artefacts for single population Pool-Seq data may be
to filter SNPs with incongruent allele frequency estimates among multiple mappers. Given
that most artefacts were observed when libraries with different insert sizes and read lengths
were compared (fig. 2 vs. supplementary fig. 10), we recommend using a single consistent
sequencing strategy for all Pool-Seq libraries, when ever possible. We additionally propose to
use a single consistent mapping pipeline for all Pool-Seq data, as mixing samples aligned with
different tools, algorithms, parameters or even versions of the same tool, leads to elevated
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levels of outlier peaks (supplementary table 6).

3 Material and Methods

3.1 Alignment algorithms

We tested seven semi-global alignment algorithms, where the entire read is required to match,
and seven local alignment algorithms, where only a part of the read needs to match (table
6). For tools that support semi-global as well as local alignments we evaluated the suitability
of both algorithms (table 6). We also included gsnap (Wu and Nacu, 2010) into our study,
despite this tool was designed for aligning RNA-Seq data (i.e. alignments with large gaps to
allow for spliced introns). We also aimed to include gem (Marco-Sola et al., 2012), batalign
(Lim et al., 2015), stampy (Lunter and Goodson, 2011) and soap2 (Li et al., 2009b) into
our study but were not able to run these tools on our computational infrastructure (Mac
Pro; batalign: did not respond, gem: compilation failed, stampy: compilation failed due to
missing files, soap2: segmentation fault while indexing the reference genome). If possible
we used default parameters for all tools and only deviated from these settings when deemed
necessary to ensure an unbiased comparison of the alignment algorithms (table 6). With
Bowtie2 we set the maximum fragment length of paired ends (-X) to 1500. For bwa we
used version 0.7.4 for the mem and bwasw algorithm and version 0.6.2 for the aln algorithm.
This was necessary as bwa aln 0.7.4 reports a segmentation fault when aligning some data
sets (e.g. the D. simulans libraries) whereas the mem algorithm was not available for bwa
version 0.6.2. For cle4 we interleaved the sequences of the two fastq files (-i), activated
the paired end mode (-p), set the orientation of the paired ends to forward followed by
backward (fb) and measured the distance between paired ends from start-to-start (ss). As
the performance of clcd is highly sensitive to the provided minimum distance (min) and
maximum distance (max) between paired ends we provided the most suitable setting for each
alignment (simulated data, read length 50 and inner distance 100: min = 160 max = 240,
read length 100 and inner distance 100: min = 260 max = 340, read length 100 and inner
distance 300: min = 380 maxr = 620; D. simulans libraries, read length 76: min = 176
mazr = 280, read length 120: min = 270 max = 390). For mrfast we used paired end
mapping (-pe), provided a minimum fragment size of 10 (—min), a maximum fragment size
of 400 (-max; for the simulated data with a inner distance of 300, —max 700 was used), a
maximum number of mismatches of 6 (-e) and required that only the best position of a read
should be reported (~best). We specified bam as output format (-b) for ngm and performed
a sensitive search (—sensitive; the default is unclear). For novoalign we provided sam as
output (-o SAM), set the quality encoding of fastq files to sanger (-o STDFQ), required that
a random position is reported for ambiguously mapped reads (-r Random) and provided
suitable estimates for the insert size (mean) and the standard deviation of the insert size
(sd) (-1 mean sd; simulated data: mean = 350 sd = 50; D. simulans libraries, read length
76: mean = 228 sd = 52, read length 120: mean = 396 sd = 110). For segemehl we set the
maximum insert size to 1500 (-I). For gsnap we used sam as output format (-A sam). Only
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for the D. simulans libraries we set the maximum number of allowed mismatches to 1 (-m
1) as gsnap encountered an error using these data and default settings (Problem sequence;
we iteratively removed 5 problem sequences but still encountered the error).

Table 6: Overview of the mapping algorithms used in this work. Parameters used for selecting
semi-global (g) or local(l) alignments are shown in bold; * see text for more details

Mapper Version Parameter Reference
bowtie2(g) 2.2.6 —end-to-end —X 1500 (Langmead and Salzberg, 2012)
bwa aln 0.6.2 (Li and Durbin, 2009)
cled(g) 4.4.2.133896  -a global -i -p fb ss min*, maz* (CLC bio, 2015)

global mrfast 2.6.1.0 —pe —min 10 —max 400* —best -e 6 (Alkan et al., 2010)
ngm(g) 0.4.13 —end-to-end -b —sensitive (Sedlazeck et al., 2013)
novoalign(g)  3.03.2 -0 FullNW -i mean*, sd* -F STDFQ -o SAM -r Ran-  (Novocraft, 2014)

dom

segemehl 0.2.0-418 -1 1500 (Hoffmann et al., 2009)
bowtie2(1) 2.2.6 —local —-X 1500 (Langmead and Salzberg, 2012)
bwa sw 0.74 (Li and Durbin, 2010)
bwa mem 0.7.4 (Li and Durbin, 2009)

local cled(l) 4.4.2.133896 -a local -i -p b ss mun*, maz* (CLC bio, 2015)
gsnap 2015-11-20 -A sam (-m 1)* (Wu and Nacu, 2010)
ngm(1) 0.4.13 —local -b —sensitive (Sedlazeck et al., 2013)
novoalign(l)  3.03.2 -1 mean*, sd* -F STDFQ -o SAM -r Random (Novocraft, 2014)

3.2 Data sets

We tested the performance of the different alignment algorithms using simulated data and
real data.

Simulated paired end data were generated for populations having SNPs with known
positions and allele frequencies. This was accomplished in four steps. We first obtained the D.
melanogaster reference chromosome 2R (r6.03; http://flybase.org/), removed all characters
other than A|T,C or G and extracted the first 2Mbp. This small subsequence (the chassis)
acted as basis for introducing variants. Second, we generated two modified versions of the
chassis: i) we introduced a SNP with a random, not-reference allele all 100bp into the chassis
(=-chassis with SNPs) and ii) we introduced an indel, at a random position with a random
Poisson distributed length (A = 1; zero length indels were discarded and Poisson sampling
was repeated; insertions had a random sequence), between all pairs of adjacent SNPs into
the chassis with SNPs (=-chassis with SNPs and indels). Third, we generated two sequences
serving as templates for simulating paired ends: one consisting of the chassis and the chassis
with SNPs (fig. 2A), and another one consisting of the chassis and the chassis with SNPs and
indels (fig. 2B). Finally, uniformly distributed paired end reads (equal 5’ distance between
consecutive paired ends; uniform base quality of 40) were simulated from these template
sequences (fig. 2C). Note that SNPs identified from these data have known positions (each
100bp) and known allele frequencies (f = 0.5). Paired end reads were simulated with
SimulaTE (https://sourceforge.net/projects/simulates/; Pandey et al. in preparation) and
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the number of reads was selected such that a genomic coverage of 200 resulted (generate-
reads_paired-end-uniformdistribution.py; ~ 2 million paired ends for a read length of 100 and
4 million for a read length of 50).

We tested the performance of the different alignment algorithms for real data using paired
end reads from a D. simulans population that was collected in 2008 in Northern Portugal
(Pévoa de Varzim; collected by P. Orozco-terWengel). We established 250 isofemale lines
from the population, used one female from each isofemale line and extracted genomic DNA
from the pooled flies as described before (Orozco-terWengel et al., 2012). From this DNA we
generated two Illumina sequencing libraries. The first was prepared using the Paired-End
DNA Sample Preparation Kit (Illumina, San Diego, CA, USA) following fragmentation of the
DNA using a nebulizer and size selection using an agarose gel. The library was sequenced
on two lanes of an Illumina GAIlx, resulting in 14.3 and 24.7 million 2x76bp paired end
reads after trimming [median insert size 232bp; standard deviation of the insert size 25bp;
estimated with Picard v1.128 (http://picard.sourceforge.net) after mapping the reads with
bwa aln (0.6.2) (Li and Durbin, 2009)].

The second library was prepared with barcoded adapters using a protocol based on the
NEBNext®DNA Library Prep Master Mix Set reagents (E6040L) following shearing pooled
genomic DNA with a Covaris S2 device (Covaris, Inc. Woburn, MA, USA) and size selection
with AMPureXP beads (Beckman Coulter, CA, USA). The library was sequenced on one
lane of an Illumina HiSeq 2500 using 2x120bp reads (median insert size 396bp; standard
deviation of the insert size 110bp; 84.5 million paired end reads after trimming).

The quality encoding of all reads was converted to Sanger (offset=33) and low quality
regions of reads were trimmed with ReadTools (https://github.com/magicDGS/ReadTools
—disable-zipped-output —minimum-length 50 —no-5p-trim —quality-threshold 18; per default
the quality is converted to Sanger encoding). ReadTools provides a fast implementation of
the trimming algorithm described in Kofler et al. (2011a).

We tested whether intersecting of mappers preserves the targets of selection using the
data published by Martins et al. (2014). We obtained Illumina paired end data (2 x
100bp) for four populations infected with C-virus for 20 generations (VirSys; accession num-
bers ERS409784-ERS409787) and for four control populations (ContSys; accession numbers
ERS409780-ERS409783).

3.3 Data analysis

The simulated reads were mapped to the chassis (see above), the D. simulans libraries were
mapped to the reference genome of strain M252 (Palmieri et al., 2015) (v1.1; we included
the sequences of Lactobacillus brevis, Acetobacter pasteurianus and two Wolbachia strains;
GenBank accession numbers CP000416.1, AP011170.1, AE017196.1, CP001391.1) and the
data from Martins et al. (2014) were mapped to the reference genome of D. melanogaster
(v6.03; we again included the sequences of Lactobacillus brevis, Acetobacter pasteurianus and
two Wolbachia strains). If not mentioned otherwise, mapped reads were filtered for mapping
quality (-q 20) and proper pairs (-f 0x002 -F 0x004 -F 0x008; except for the analysis of
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single end reads) with samtools (v1.2) (Li et al., 2009a). Mapped reads were converted to
mpileup files with samtools (v1.2) and the parameters -B -Q 0. SNPs were called using a
minimum allele count of 2. The number of true SNPs (every 100th position), the number
of false SNPs (not at every 100th position), the frequency of the reference allele (only for
true positive SNPs) and the number of extreme outlier SNPs (where the estimated allele
frequency deviates by more than 0.4 from the true frequency 0.5) were computed using cus-
tom Python scripts (snp-caller.py, stat-snp.py). For computing allele frequency differences
between samples, mpileup files were created with samtools (v1.2; -B -Q 0), the mpileup files
were converted to sync files with PoPoolation2 [revision 196; mpileup2sync.jar —fastq-type
sanger; the minimum quality (—min-qual) was set to 0 for simulated reads and to 20 for
D. simulans libraries; (Kofler et al., 2011b)], and Fsr or Fisher exact test p-values (-logl0
transformed) were computed with PoPoolation2 (revision 196; fst-sliding.pl —min-count 2
—min-coverage 10 —max-coverage 500 —window-size 1 —step-size 1 —suppress-noninformative
—pool-size 400 —min-covered-fraction 1.0; fisher-test.pl -min-count 2 —min-coverage 10 —-max-
coverage 500 —window-size 1 —step-size 1 —min-covered-fraction 1.0). The outlier quantiles
of Fsr and p-values (Fisher exact test; -log10(p-values)] were calculated with Python scripts
(fst-fractionwise.py).

Differentiation between evolved and control populations for the data from Martins et al.
(2014) was assessed with the Cochran-Mantel-Haenszel test (CMH) implemented in PoPoola-
tion2 (Kofler et al., 2011b) (parameters: —min-count 2 —-min-coverage 10 —max-coverage 500).

Aligned reads were visually inspected using IGV (Thorvaldsdéttir et al., 2012) and sta-
tistical analyses was performed using the R programming language (R Core Team, 2012).

3.4 Data availability

The short reads have been made available at the European Nucleotide Archive (ENA; http://
www.ebi.ac.uk/ena; PRJEB13602) and the scripts used in this work as well as the simulated
reads are available at Dryad (http://datadryad.org/)
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