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Could a neuroscientist understand a microprocessor?

drites may be crucial to computation [49].

Our behavioral mechanisms are entirely passive
as both the transistor based simulator is too slow
to play the game for any reasonable duration and
the hardware for game input/output has yet to be
reconstructed. Even if we could “play” the game,
the dimensionality of the input space would consist
at best of a few digital switches and a simple joy-
stick. One is reminded of the reaching tasks which
dominate a large fraction of movement research.
Tasks that isolate one kind of computation would be
needed so that interference studies would be really
interpretable.

If we had a way of hypothesizing the right struc-
ture, then it would be reasonably easy to test. In-
deed, there are a number of large scale theories of
the brain [50, 5, 51]. However, the set of potential
models of the brain is unbelievably large. Our data
about the brain from all the experiments so far, is
very limited and based on the techniques that we
reviewed above. As such, it would be quite impres-
sive if any of these high level models would actually
match the human brain to a reasonable degree. Still,
they provide beautiful inspiration for a lot of ongo-
ing neuroscience research and are starting to exhibit
some human-like behaviors[50]. If the brain is actu-
ally simple, then a human can guess a model, and
through hypothesis generation and falsification we
may eventually obtain that model. If the brain is not
actually simple, then this approach may not ever
converge.

The analytic tools we have adopted are in many
ways “classic”, and are taught to graduate students
in neuroinformatics courses. Recent progress in
methods for dimensionality reduction, subspace
identification, time-series analysis, and tools for
building rich probabilistic models may provide
some additional insight, assuming the challenges of
scale can be overcome. Culturally, applying these
methods to real data, and rewarding those who inno-
vate methodologically, may become more important.
We can look at the rise of bioinformatics as an inde-
pendent field with its own funding streams. Neu-
roscience needs strong neuroinformatics to make
sense of the emerging datasets. However, we can
not currently evaluate if better analysis techniques,
even with far more data, can figure out meaningful
models of the brain.

In the case of the processor, we really understand
how it works. We have a name for each of the mod-
ules on the chip and we know which area is covered
by each of them (fig 13a). Moreover, for each of
these modules we know how its outputs depend on
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Figure 13: Understanding the processor. (A) For the proces-
sor we know which part of the the chip is responsible for which
function. We know that these are meaningful because the de-
signers told us so. And for each of these modules we know how
the outputs depend on the inputs. (B) For the brain, it is harder
to be sure. The Felleman and vanEssen [52] Diagram shows
a flow chart and areas that are estimated based on anatomical
concerns. However, there is extensive debate about the ideal way
of dividing the brain into areas. Moreover, we currently have
little of an understanding how each area’s outputs depend on its
inputs.
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its inputs and many students of electrical engineer-
ing would know multiple ways of implementing the
same function. In the case of the brain, we also have
a way of dividing it into regions (fig[[3p). However,
we only use anatomy to divide into modules and
even among specialists there is a lot of disagreement
about the division. Most importantly though, we do
not generally know how the output relates to the
inputs. As we reviewed in this paper, we may even
want to be careful about the conclusions about the
modules that neuroscience has drawn so far, after
all, much of our insights come from small datasets,
with analysis methods that make questionable as-
sumptions.

There are other computing systems that scientists
are trying to reverse engineer. One particularly rele-
vant one are artificial neural networks. A plethora of
methods are being developed to ask how they work.
This includes ways of letting the networks paint im-
ages [53] and ways of plotting the optimal stimuli for
various areas [54]. While progress has been made
on understanding the mechanisms and architecture
for networks performing image classification, more
complex systems are still completely opaque [55].
Thus a true understanding even for these compara-
tively simple, human-engineered systems remains
elusive, and sometimes they can even surprise us by
having truly surprising properties [56]. The brain
is clearly far more complicated and our difficulty at
understanding deep learning may suggest that the
brain is hard to understand if it uses anything like
gradient descent on a cost function.

We also want to suggest that it may be an impor-
tant intermediate step for neuroscience to develop
methods that allow understanding a processor. Be-
cause they can be simulated in any computer and
arbitrarily perturbed, they are a great testbed to ask
how useful the methods are that we are using in
neuroscience on a daily basis. Scientific fields often
work well in situations where we can measure how
well a project is doing. In the case of processors
we know their function and we can know if our
algorithms discover it. Unless our methods can deal
with a simple processor, how could we expect it to
work on our own brain?

Netlist acquisition

All acquisition and development of the initial simu-
lation was performed in James [11]. 200° F sulfuric
acid was used to decap multiple 6502D ICs. Nikon
LV150n and Nikon Optiphot 220 light microscopes
were used to capture 72 tiled visible-light images

of the die, resulting in 342 Mpix of data. Computa-
tional methods and human manual annotation used
developed to reconstruct the metal, polysilicon, via,
and interconnect layers. 3510 active enhancement-
mode transistors were captured this way. The au-
thors inferred 1018 depletion-mode transistors (serv-
ing as pullups) from the circuit topology as they
were unable to capture the depletion mask layer.

Simulation and behaviors

An optimized C++ simulator was constructed to en-
able simulation at the rate of 1000 processor ticks per
wallclock second. We evaluated the four provided
ROMs (Donkey Kong, Space Invaders, Pitfall, and
Asteroids) ultimately choosing the first three as they
reliably drove the TIA and subsequently produced
image frames. 10 seconds of behavior were simu-
lated for each game, resulting in over 250 frames per
game.

Lesion studies

Whole-circuit simulation enables high-throughput
targeted manipulation of the underlying circuit. We
systematically perturb each transistor in the proces-
sor by forcing its input high, thus leaving it in an
“on” state. We measure the impact of a lesion by
whether or not the system advances far enough to
draw the first frame of the game. We identitifed 1560
transistors which were lethal across all games, 200
transistors which were lethal across two games, and
186 transistors which were lethal for a single game.
We plot those single-behavior lesion transistors by
game in figure [4}

Spiking

We chose to focus on transistor switching as this is
seemed the closest in spirit to discrete action poten-
tials of the sort readily available to neuroscientific
analysis. The alternative, performing analysis with
the signals on internal wires, would be analogous
to measuring transmembrane voltage. Rasters were
plotted from 10 example transistors which showed
sufficient variance in spiking rate.

Tuning curves

We compute luminance from the RGB output value
of the simulator for each output pixel to the TIA. We
then look at the transistor rasters and sum activity
for 100 previous timesteps and call this the “mean
rate”. For each transistor we then compute a tuning
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curve of mean rate versus luminance, normalized by
the frequency of occurrence of that luminance value.
Note that each game outputs only a small number of
discrete colors and thus discrete luminance values.
We used SI as it gave the most equal sampling of
luminance space. We then evaluate the degree of fit
to a unimodial Gaussian for each resulting tuning
curve and classify tuning curves by eye into simple
and complex responses, of which figure 4| contains
representative examples.

Spike-word analysis

For the SI behavior we took spiking activity from
the first 100ms of SI and performed spike word
analysis on a random subset of 64 transistors close
to the mean firing rate of all 3510.

Local Field Potential

To derive “local field potentials” we spatially in-
tegrate transistor switching over a region with a
Gaussian weighting of ¢ = 500um and low-pass
filter the result using a window with a width of 4
timesteps.

We compute periodograms using Welch’s method
with 256-sample long windows with no overlap and
a Hanning window.

Granger Causality

We adopt methods for assessing conditional Granger
causality as outlined in [57]]. We take the LFP gen-
erated using methods in section and create 100
1ms-long trials for each behavioral experiment. We
then compute the conditional Granger causality for
model orders ranging from 1 to 31. We compute
BIC for all behaviors and select a model order of 20
as this is where BIC plateaus.

Whole brain recording

The transistor switching state for the first 10° times-
tamps for each behavioral state is acquired, and
binned in 100-timestep increments. The activity of
each transistor is converted into a z-score by sub-
tracting mean and normalizing to unit variance.

Dimensionality Reduction

We perform dimensionality reduction on the first
100,000 timesteps of the 3510-element transistor state
vectors for each behavioral condition. We use non-
negative matrix factorization from Scikit-Learn [58]
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initialized via nonnegative double singular value de-
composition solved via coordinate descent, as is the
default. We use a latent dimensionality of 6 as it was
found by hand to provide the most interpretable re-
sults. When plotting, the intensity of each transistor
in a latent dimension is indicated by the saturation
and size of point.

To interpret the latent structure we first compute
the signed correlation between the latent dimension
and each of the 25 known signals. We show particu-
larly interpretable results.
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