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≈ 1.	 (5)	

This	condition	is	satisfied	in	a	band	of	width	2ε	centred	on	ξ!,! = ξ!,!,	where	ε	represents	the	
deviation	 from	 strict	 neutrality	 that	 is	 still	 sufficiently	 close	 for	 Equation	 (5	 to	 be	 sufficiently	
accurate.	

We	 can	 obtain	 a	 natural	 scale	 for	 ε	 by	 considering	 the	 concept	 of	 ‘free	 fitness’	Φ Ξ 	 of	 the	
protein	 equal	 to	Φ Ξ = 𝑚 Ξ + ! !

!!!
	 (42,	 43).	 Free	 fitness,	 analogous	 to	 its	 thermodynamic	

equivalent	 ‘free	energy’	where	𝑇	 is	 replaced	by	4𝑁!,	 encompasses	 the	 contributions	of	 both	
fitness	and	sequence	entropy	in	determining	the	distribution	of	states;	evolutionary	dynamics	
moves	towards	maximising	this	quantity.	Assuming	𝑆 Ξ = ln Ω! !!!! 	where	!!is	a	constant,	
and	noting	that	the	system	is	at	equilibrium	with	!!" !

!!
! !	when	!"#"!,	we	can	see	that	

!
!!!!!! !

!!
!!!

! !	 (6)	

Thus,	!	defines	the	rate	of	change	of	the	population-weighted	fitness	!!!! ! 	with	stability.	
Alternatively,	a	change	in	stability	of	!

!
	corresponds	to	a	unit	change	in	the	population-weighted	

fitness.	In	our	calculations,	we	equated	! ! !
!
;	the	estimation	of	!	is	described	below.	Note	that	

this	 calculation	 demonstrates	 that	 !	 is,	 surprisingly,	 independent	 of	 effective	 population	 size	
!!.	 This	 is	 a	 result	 of	 the	balance	between	 selection	 and	mutational	 drift	 at	 equilibrium;	 for	
fixed	effect	of	mutational	drift,	 the	degree	of	selection	 (!" !

!!
)	adjusts	 to	changes	 in	effective	

population	size	so	that	their	product	is	constant(34,	35).	

If	we	assume	that	!!!! !!!!! !!!! 	is	broader	than	!,	and	that	Equation	(5	is	satisfied,	Equation	(4	
becomes	
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where!! !!!! ! !!!! 	is	the	Dirac	delta	function.	
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For	highly	similar	amino	acids	 the	entire	distribution	of	ρ!,! ξ!,!, ξ!,! 	may	be	contained	 in	a	
region	significantly	narrower	than	the	neutral	zone,	resulting	in	an	overestimation		of	𝑄!,!→! >
υ!→!.	For	this	reason,	the	estimated	rate	was	capped	at	the	neutral	rate	υ!→!.	

Characterising	the	bath	state	distribution	

As	described	above,	we	assume	that	the	number	of	protein	sequences	with	a	given	value	of	Ξ	in	
the	 range	of	 interest	around	Ξ = Ξ	 is	 approximately	exponential	Ω(Ξ)~ 𝑒!!".	 To	estimate	γ,	
we	consider	the	distribution	of	changes	in	stability	resulting	from	random	mutations,	ρ!"# ΔΞ .	
The	average	change	in	stability	 ρ!"# ΔΞ 	is	negative	due	to	the	greater	number	of	sequences	
coding	for	proteins	with	lower	stability.	This	suggests	that	if	we	correct	for	the	dependence	of	Ω	
on	 Ξ	 by	 multiplying	 ρ!"# ΔΞ 	 by	 𝑒!"#,	 this	 bias	 would	 disappear.	 We	 adjusted	 γ	 so	 that	
ΔΞ𝑒!"# = 0	 where	 the	 average	 was	 over	 all	 possible	 mutations	 during	 the	 simulations,	
yielding	γ = 1.26	(kcal	mol-1)-1.		
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