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Abstract 

Pre-eclampsia (PE) is a complex, multi-system disorder that remains a leading cause of morbidity and 
mortality in pregnancy. Four main classes of dysregulation accompany PE, and are widely considered to 
contribute to its severity. These are abnormal trophoblast invasion of the placenta, anti-angiogenic 
responses, oxidative stress, and inflammation. What is lacking, however, is an explanation of how these 
themselves are caused. 

We here develop the unifying idea, and the considerable evidence for it, that the originating cause of PE 
(and of the four classes of dysregulation) is in fact microbial infection, that most such microbes are dormant 
and hence resist detection by conventional (replication-dependent) microbiology, and that by occasional 
resuscitation and growth it is they that are responsible for all the observable sequelae, including the 
continuing, chronic inflammation. In particular, bacterial products such as lipopolysaccharide (LPS), also 
known as endotoxin, are well known as highly inflammagenic and stimulate an innate (and possibly trained) 
immune response that exacerbates the inflammation further. The known need of microbes for free iron can 
explain the iron dysregulation that accompanies PE. We describe the main routes of infection (gut, oral, 
urinary tract infection) and the regularly observed presence of microbes in placental and other tissues in 
PE. Every known proteomic biomarker of “pre-eclampsia” that we assessed has in fact also been shown to 
be raised in response to infection.  An infectious component to PE fulfils the Bradford Hill criteria for 
ascribing a disease to an environmental cause, and suggests a number of treatments, some of which have 
in fact been shown to be successful. 

PE was classically referred to as endotoxaemia or toxaemia of pregnancy, and it is ironic that it seems that 
LPS and other microbial endotoxins really are involved. Overall, the recognition of an infectious component 
in the aetiology of PE mirrors that for ulcers and other diseases that were previously considered to lack 
one. 

  

 

 

  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2016. ; https://doi.org/10.1101/057356doi: bioRxiv preprint 

https://doi.org/10.1101/057356
http://creativecommons.org/licenses/by/4.0/


4 
 

 

 

 

Insight, innovation, integration 

Many descriptors of pre-eclampsia are widely accepted (e.g. abnormal trophoblast invasion, oxidative 
stress, inflammation and altered immune response, and anti-angiogenic responses). However, without 
knowing what causes them, they do not ‘explain’ the syndrome. The Biological Insight of this manuscript is 
that there is considerable evidence to the effect that each of these phenomena (hence PE) are caused by 
the resuscitation of dormant bacteria that shed (known and potent) inflammagens such as LPS, often as a 
consequence of iron availability. PE is thus seen as a milder form of sepsis. The Technological Innovations 
come from the use of molecular markers (of microbes and omics more generally, as well as novel markers 
of coagulopathies) to measure this. The Benefit of Integration comes from bringing together a huge 
number of disparate observations into a unifying theme.  
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Introduction 
Pre-eclampsia. Pre-eclampsia (PE) is a multi-system disorder of pregnancy, characterised and indeed 
defined by the presence of hypertension after 20 weeks’ gestation and before the onset of labour, or 
postpartum, with either proteinuria or any multisystem complication [1-8]. It is a common condition, 
affecting some 3-5% of nulliparous pregnant women [7; 9]and is characterised by high mortality levels [10-
13]. There is no known cure other than delivery, and consequently PE also causes significant perinatal 
morbidity and mortality secondary to iatrogenic prematurity. There are a variety of known risk factors 
(Table 1), that may be of use in predicting a greater likelihood of developing PE, albeit there are so many, 
with only very modest correlations, that early-stage (especially first-trimester) prediction of late-stage PE 
remains very difficult [7; 14; 15].  

It is striking that most of the ‘risk factors’ of Table 1 are in fact risk factors for multiple vascular or metabolic 
diseases, i.e. they merely pre-dispose the individual to a greater likelihood of manifesting the disease or 
syndrome (in this case PE). Indeed, some of them are diseases. This would be consistent with the well-
known comorbidities e.g. between PE and later cardiovascular disease (e.g. [16-26]), between PE and 
intracerebral haemorrhage during pregnancy (OR 10.39 [27]), and between PE and stroke post-partum [28; 
29]. The penultimate row of Table 1 lists a series of diseases that amount to comorbidities, although our 
interest was piqued by the observation that one third of patients with anti-phospholipid syndrome have PE, 
and infectious agents with known cross-reacting antigens are certainly one original (external) source of the 
triggers that cause the anti-phospholipid antibodies [30-33] (and see below). Similarly, in the case of 
urinary tract infection, the ‘risk’ factor is a genuine external trigger, a point (following the call [34] by 
Mignini and colleagues for systematic reviews) that we shall expand on considerably here.  

Table 1. Some known risk factors for pre-eclampsia (based in part on [2; 6; 35-37]). See also 
http://bestpractice.bmj.com/best-practice/monograph/326/diagnosis.html. Note that most of these are 
risk factors that might and do pre-dispose for other diseases (or are themselves diseases). 

Risk factor Comments Selected references 
Nulliparous women  Epidemiological observation; 

suggested biochemical 
explanations include soluble fms- 
like tyrosine kinase 1 (sFlt1): 
placental growth factor (PlGF) 
ratio 

[2; 38] 

Increased maternal age 
(especially >35 years) 

Epidemiological observation, 
though may be related to existing 
age-related disease 

[37; 39-42] 

History of pre-eclampsia in 
previous pregnancy 

Epidemiological observation, 
virtually akin to recurrence; 
among the strongest factors 

[35; 43] 

Multi-foetal gestation, i.e. twins, 
etc. 

Extra demands on mother’s 
circulation; larger placenta, 
danger of ischaemia? Relative risk 
~3.5x in nulliparous 

[44-46]  

Obesity (esp BMI >35)  Can affect BP directly, also via 
intra-abdominal pressure; 
diabetogenic and inflammatory; 
possible role for asymmetric 
dimethylarginine 

[47-50] 

Booking diastolic BP > 80 mm Hg An essential part of the later [36] 
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syndrome 
Booking proteinuria on at least 1 
occasion, or ≥ 0.3g/24h 

An essential part of the later 
syndrome 

[36] 

Family history of pre-eclampsia 
(mother or sister) 

2-5-fold increase in likelihood. 
Genetic factors are said to 
account for some 50% of the 
variance, though few properly 
controlled MZ/DZ twin studies 
exist; when done the heritability 
of PE can be lower to negligible 

[51-56] 

Pre-existing medical conditions, 
including chronic hypertension, 
diabetes mellitus, 
antiphospholipid syndrome, 
thrombophilia, autoimmune 
disease, renal disease, systemic 
lupus erythematosus, infertility  

These are mainly seen as (other) 
vascular diseases or 
comorbidities; however, anti-
phospholipid antibodies (Hughes’ 
syndrome) are of especial interest 
as they can have an infectious 
origin; 1/3 of women with them 
will develop PE, and they cause 
recurrent pregnancy loss. 

[5; 30; 31; 33; 57-64] 

Urinary tract infection An infectious origin for PE is the 
focus here, and not just from UTI 

[65-67] and see below 

 

In recent decades, intense investigation has led to the development of a two-stage aetiological model for 
pre-eclampsia, first proposed by Redman and colleagues [68], in which inadequate remodelling of the spiral 
arteries in early gestation results in poor placental development (stage one) and the resultant 
ischaemia/re-perfusion injury and oxidative stress eventually leads to maternal vascular endothelial cell 
dysfunction and the maternal manifestations of the disease (stage 2) [68-72]. However, many clinical 
inconsistencies challenge the simplicity of this model. For example, whilst the association between poor 
placentation and pre-eclampsia is well established, it is not specific. Poor placentation and foetal growth 
restriction (FGR) frequently present without maternal signs of pre-eclampsia. Moreover, FGR is not a 
consistent feature of pre-eclampsia. Whilst it is commonly seen in pre-eclampsia presenting at earlier 
gestations, in pre-eclampsia presenting at term, neonates are not growth restricted and may even be large 
for dates [73].  
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 Thus, the two-stage model has been further refined by Roberts and others [72; 74; 75] to take into account 
the heterogeneous nature of pre-eclampsia and the varying contribution from mother and infant to the 
disorder. We now appreciate that normal pregnancy is characterised by a low-grade systemic inflammatory 
response and specific metabolic changes, and that virtually all of the features of normal pregnancy are 
simply exaggerated in pre-eclampsia [76-78]. There is also widespread acceptance that maternal 
constitutional and environmental factors (such as obesity) can interact to modulate the risk of pre-
eclampsia. Thus, with profoundly reduced placental perfusion (or significant ‘placental loading’), the 
generation of Stage 2 may require very little contribution from the mother to provide sufficient stress to 
elicit the maternal syndrome. In this setting, almost any woman will develop pre-eclampsia. Conversely, the 
woman with extensive predisposing constitutional sensitivity could develop pre-eclampsia with very little 
reduced perfusion, or minimal ‘placental loading’. As with many complex disorders, multiple factors can 
affect disease development positively or negatively, with a convenient representation of the two main 
negative sources (foetal and maternal) being that of a see-saw [79], as in Fig 1. 

 

Whilst this explains the inconsistencies of the two-stage model, the precise mechanisms 1) underlying the 
initial poor placentation and 2) linking placental stress and the maternal syndrome have still not been fully 
elucidated.  

Much recent research in pre-eclampsia has focused on various angiogenic factors, including the pro-
angiogenic factors vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) and the 
two anti-angiogenic proteins, soluble endoglin (sEng) and soluble fms-like tyrosine kinase 1 (sFlt). Recent 
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data suggest that alterations in circulating angiogenic factors play a pathogenic role in pre-eclampsia. These 
angiogenic factors tightly regulate angiogenesis and are also essential for maintenance of normal vessel 
health. Consequently, the synthesis and action of these factors and their receptors in the uterine bed and 
placenta are essential for normal placental development and pregnancy [80; 81]. In pre-eclampsia, 
increased levels of the anti-angiogenic sFlt-1 and sEng trap circulating VEGF, PlGF and transforming growth 
factor β (TGFβ) respectively. A myriad of data supports the idea that circulating levels of these factors 
alone, or in combination, can be used to predict pre-eclampsia [82; 83] (and see below under PE 
biomarkers), but in line with the heterogeneous nature of pre-eclampsia, the data are somewhat 
inconsistent and their performance as biomarkers seems limited to disease with significant placental 
loading [7]. Therefore, angiogenic dysregulation would appear unlikely to be the sole link between the 
stressed placenta and endothelial dysfunction and the clinical manifestations of the disease.   

Notwithstanding these many inconsistencies, the central role of the placenta as a source of ‘toxin’, in a 
condition regarded, and indeed often named, as ‘toxaemia of pregnancy’ [84-86] cannot be refuted. The 
uncertainty regarding the nature of the toxin(s) continues, and other placental sources of endothelial 
dysfunction include syncytiotrophoblast basement membrane fragments (STBM) [87] and endothelial 
progenitor cells (EPC) [88]; an increase of reactive oxygen species over scavenging by anti-oxidants [89; 90] 
has also been promoted. 

The Bradford Hill criteria for causation of a disease Y by an environmental factor X [91] are as follows: 

 (1) strength of association between X and Y;  (2) consistency of association between X and Y; (3) specificity 
of association between X and Y; (4) experiments verify the relationship between X and Y; (5) modification of 
X alters the occurrence of Y; (6) biologically plausible cause and effect relationship. 

In general terms [92], if we see that two things (A and B) co-vary in different circumstances, we might infer 
that A causes B, that B causes A, or that something else (C) causes both B and A, whether in series or 
parallel. To disentangle temporal relations requires a longitudinal study. The job of the systems biologist 
doing systems medicine is to uncover the chief actors and the means by which they interact [93], in this 
way fulfilling the Bradford Hill postulates, a topic to which we shall return at the end. 

In infection microbiology, and long predating the Bradford Hill criteria, the essentially equivalent metrics 
are known (widely, but somewhat inaccurately [94]) as the Koch or Henle-Koch postulates (i.e. criteria). 
They involve assessing the correlation of a culturable organism with the presence of a disease, the cure of 
the disease (and its symptoms) upon removal of the organism, and the development of the disease with 
(re)inoculation of the organism. They are of great historical importance, but present us with three main 
difficulties here. The first is that we cannot apply the third of them to humans for obvious ethical reasons. 
The second (see also below) and related one is that we cannot usefully apply them in animal models 
because none of the existing models recapitulates human pre-eclampsia well. Finally, as widely recognised 
[94-101], they cannot be straightforwardly applied when dealing with dormant bacteria or bacteria that are 
otherwise refractory to culture. 
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Our solution to this is twofold: (i) we can assess the first two using molecular methods if culturing does not 
work, and (ii) we exploit the philosophy of science principle known as ‘coherence’ [102-106]. This states 
that if a series of ostensibly unrelated findings are brought together into a self-consistent narrative, that 
narrative is thereby strengthened. Our systems approach purposely represents a ‘coherence’ in the sense 
given. 

 

 Overall, known biochemical associations with PE come into four main categories, viz. abnormal trophoblast 
invasion, oxidative stress, inflammation and altered immune response, and anti-angiogenic responses (Fig 
2). Each of these can contribute directly to PE, and although they can interact with each other (black 
arrows), no external or causal source is apparent. Fig 2 has been redrawn from a very nice review by 
Pennington and colleagues [107], which indicates four main generally accepted ‘causes’ (or at least 
accompaniments) of PE as the four outer coloured circles. As illustrated with the black two-way arrows, 
many of these also interact with each other. What is missing, in a sense, is then what causes these causes, 
and that is the nub of our argument here. Since we now know (and describe below) that microbes can 
affect each of these four general mechanisms, we have added these routes to Fig 1 (using pink arrows) 
where dormant, resuscitating or growing microbes are known to contribute.  

In a similar vein, Magee and colleagues [108] have nicely set down their related analysis of the causes and 
consequences of PE, with a central focus (redrawn in Fig 3) on endothelial cell activation. While bearing 
much similarity in terms of overall content to the analysis of Pennington and colleagues [107], and ours 
above, it again lacks a microbial or infection component as a causative element, but importantly does note 
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that infection and/or inflammation can serve to lower the threshold for PE in cases of inadequate 
placentation. In our view microbes can also enter following normal placentation if their dormant 
microbiome begins to wake up and/or to shed inflammagens. 

 

Heritability. The question of the extent of heritability of PE (susceptibility) is of interest. Although this 
seems to vary widely in different studies (Table 1), a number of candidate gene studies [54; 109-112] imply 
that a susceptibility to PE is at least partly heritable, consistent with the variance in all the other ‘risk 
factors’ of Table 1 (and see [5]). As with all the other gene-association studies where phenotypic (‘lifestyle’) 
information is absent [113-115], it is not possible to ascribe the heritability to genetics alone, as opposed to 
an interaction of a genetic susceptibility (e.g. in the HLA system) with environmental factors [111], such as 
cytomegalovirus infection [116].  

Inflammation. Pre-eclampsia is accompanied by oxidative stress [117] and inflammation, and thus shares 
a set of observable properties with many other (and hence related) inflammatory diseases, be they vascular 
(e.g. atherosclerosis), neurodegenerative (e.g. Alzheimer’s, Parkinson’s), or ‘metabolic’ (type 1 and 2 
diabetes). It is thus at least plausible that they share some common aetiologies, as we argue here, and that 
knowledge of the aetiology of those diseases may give us useful clues for PE. 

As well as raised levels of inflammatory cytokines, that constitute virtually a circular definition of 
inflammation, we and others have noted that all of these diseases are accompanied by dysregulation of 
iron metabolism [79; 118; 119], hypercoagulability and hypofibrinolysis [120; 121], blood microparticles 
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[119], and changes in the morphology of fibrin fibres (e.g. [122-127]) and of erythrocytes (e.g. [120; 125-
130]). 

In addition, we and others have recognised the extensive evidence for the role of a dormant blood and/or 
tissue microbiome in these [131-136] and related [137-140] diseases, coupled in part to the shedding of 
highly inflammagenic bacterial components such as Gram-negative lipopolysaccharides (LPS) and their 
Gram-positive cell wall equivalents such as lipoteichoic acids [141]. (We shall often use the term ‘LPS’ as a 
‘shorthand’, to be illustrative of all of these kinds of highly inflammagenic molecules.) 

 

The purpose of the present review, outlined as a ‘mind map’ in Fig 4, is thus to summarise the detailed and 

specific lines of evidence suggesting a very important role of a dormant microbial component in the 
aetiology of pre-eclampsia (and see also [131]). To do this, we must start by rehearsing what is meant by 
microbial dormancy.  
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Bacterial viability. In microbiology, we usually consider microbes as being in one of three ‘physiological 
macrostates’ (Fig 5). The definition of a ‘viable’ bacterium is normally based on its ability to replicate, i.e. 
‘viability’ = culturability [142-144]. In this sense, classical microbiology has barely changed since the time of 
Robert Koch, with the presence of a ‘viable’ microorganism in a sample being assessed via its ability to form 
a visible colony on an agar plate containing suitable nutrients. However, it is well known, especially in 
environmental microbiology (‘the great plate count anomaly’ [145]), that only a small percentage of cells 
observable microscopically is typically culturable on agar plates. In principle this could be because they are 
or were ‘irreversibly’ non-culturable (operationally ‘dead’), or because our culture media either kill them 
[146] or such media lack nutrients or signalling molecules necessary for their regrowth [147; 148] from an 
otherwise dormant state [149; 150].  Those statements are true even for microbes that appear in culture 
collections and (whose growth requirements) would be regarded as ‘known’.  

 

However, it is common enough in clinical microbiology that we detect the existence or presence of ‘novel’ 
microbial pathogens with obscure growth requirements before we learn to culture them; this is precisely 
what happened in the case of Legionella pneumophila [151-154], Tropheryma whipplei (Whipple’s disease 
[155; 156]), and Coxiella burnetii (the causative agent of Q fever  [157; 158]). Even Helicobacter pylori was 
finally brought into culture on agar plates only because an unusually long Easter holiday break meant that 
the plates were incubated for an extended period of five days (rather than the normal two) before being 
thrown out [159; 160]! Consequently, there is ample precedent for the presence of ‘invisible’ microbes to 
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go unremarked before they are discovered as the true cause of a supposedly non-infectious disease, even 
when they are perfectly viable (culturable) according to standard analyses. 

Dormancy for a microbe is defined operationally as a state, commonly of low metabolic activity, in which 
the organism appears not to be viable in that it is unable to form a colony but where it is not dead in that it 
may revert to a state in which it can do so, via a process known as resuscitation [149; 150]. However, an 
important issue (and see above) is that dormant bacteria do not typically fulfil the Koch-Henle postulates 
[94; 96-98], and in order for them to do so it is necessary that they be grown or resuscitated. This is 
precisely what was famously done by Barry Marshall and Robin Warren when they showed that the 
supposedly non-infectious disease of gastric ulcers was in fact caused by a ‘novel’ organism called 
Helicobacter pylori [161; 162]. One of the present authors showed in laboratory cultures of actinobacteria 
that these too could enter a state of true dormancy [163; 164] (as is well known for Mycobacterium 
tuberculosis, e.g. [165-169]), and could be resuscitated by a secreted growth factor called Rpf [170-174]. 
This RPF family has a very highly conserved motif that is extremely immunogenic [175; 176], and it is 
presently under trials as a vaccine against M. bovis.  

Prevalence of dormant, persistent or latent bacteria in infection microbiology. It 
is worth stressing here that the presence of dormant or latent bacteria in infection microbiology is well 
established; one third of humans carry dormant Mycobacterium tuberculosis (e.g. [165; 177-180]), most 
without reactivation, while probably 50-100% are infected with H. pylori, most without getting ulcers or 
worse [181; 182]. As with the risk factors in Table 1, the organisms are merely or equivalently ‘risk factors’ 
for those infectious diseases and are effectively seen as causative only when the disease is actually 
manifest.  

In a similar vein, so-called persisters are phenotypic variants of infectious microbes that resist antibiotics 
and can effectively lie in hiding to resuscitate subsequently. This too is very well established (e.g. [132; 183-
196]). In many cases they can hide intracellularly [197], where antibiotics often penetrate poorly [198] 
because the necessary transporters [199-202] are absent. This effectively provides for reservoirs of 
reinfection, e.g. for Staphylococcus aureus [203], Bartonella spp [204] and – most pertinently here – for the 
Escherichia coli  involved in urinary tract (re)infection [205-208]. The same intracellular persistence is true 
for parasites such as Toxoplasma gondii [209].  

Thus, the main point of the extensive prevalence of microbial dormancy and persistence is that microbes 
can appear to be absent when they are in fact present at high concentrations. This is true not only in cases 
where infection is recognised as the cause of disease but, as we here argue, such microbes may be an 
important part of diseases presently thought to lack an infectious component.  

Iron and inflammation. It is well known that (with the possible exception of Borrelia [210; 211]) a lack of 
free iron normally limits microbial growth in vivo (e.g. [212-236]), and we have reviewed previously [79; 
118; 119] the very clear iron dysregulation accompanying pre-eclampsia (e.g. [84; 237-249]). 
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This has led to the recognition [121; 132; 134] that the source of the continuing inflammation might be 
iron-based resuscitation of dormant microbes that could release well-known and highly potent 
inflammagens such as lipopolysaccharide (LPS). Indeed, we have shown that absolutely tiny (highly 
substoichiometric) amounts of LPS can have a massive effect on the blood clotting process [250], 
potentially inducing β-amyloid formation directly [251; 252] (something, interestingly, that can be 
mimicked in liquid crystals [253; 254]). The overall series of interactions envisaged (see also [132]) is shown 
in Fig 6. 

  

Detecting dormant microbes. By definition, dormant bacteria escape detection by classical methods of 
assessing viability that involve replication on agar plates. Other growth-associated methods include 
measurements involving changes in turbidity [255], including an important but now rather uncommon 
technique referred to as the ‘most probable number’ (MPN). The MPN involves diluting samples serially 
and assessing by turbidity changes the presence of growth/no growth. Look-up tables based on Poisson 
statistics enable estimation of the number of cells or propagules that were present. A particular virtue is 
that they allow dormant and ‘initially viable’ cells to be discriminated via ‘dilution to extinction’ [164], 
thereby avoiding many artefacts [150]. As mentioned above, preincubation in a weak nutrient broth [164; 
256] was instrumental in allowing the discovery [170] of an autocrine ‘wake-up’ molecule necessary for the 
growth of many actinobacteria. 

Other more classical means of detecting microbes, but not whether they were culturable, involved 
microscopy [183; 257-260] or flow cytometry [261] with or without various stains that reflected the 
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presence or otherwise of an intact cell wall/membrane [163; 262-269]. These stains are sometimes referred 
to as ‘viability’ stains, but this is erroneous as they do not measure ‘culturability’. Readers may also come 
upon the term ‘viable-but-not-culturable’; however, since viable = culturable, this is an oxymoron that we 
suggest is best avoided [150]. Other methods involved measurement of microbial products, e.g. CO2 [270; 
271], or changes in the conductivity or impedance of the growth medium [255; 272-274]. 

Most importantly, however, dormant (as well as culturable) cells may be detected by molecular means, 
nowadays most commonly through PCR and/or sequencing of the DNA encoding their small subunit 
ribosomal RNA (colloquially ‘16S’) [275-289] or other suitable genes. It is clear that such methods will have 
a major role to play in detecting, identifying and quantifying the kinds of microbes that we argue lie at the 
heart of PE aetiology. 

A dormant blood microbiome. Of course actual bacteraemia, the presence of replicable bacteria in 
blood, is highly life-threatening [290], but – as emphasised – viability assays do not detect dormant 
bacteria. When molecular detection methods are applied to human blood, it turns out that blood does 
indeed harbour a great many dormant bacteria (e.g. [291-301]); they may also be detected 
ultramicroscopically (e.g. [132-134; 183; 259; 292; 302]) or by flow cytometry [303], and dormant blood 
and tissue microbes probably underpin a great many chronic, inflammatory diseases normally considered 
to lack a microbial component [132-134; 137-140; 183; 259; 260; 294; 304-313]. Multiple arguments serve 
to exclude ‘contaminants’ as the source of the bacterial DNA [134]: 1. There are significant differences 
between the blood microbiomes of individuals harbouring disease states and nominally healthy controls, 
despite the fact that samples are treated identically; 2. The morphological type of organism (e.g. coccus vs 
bacillus) seems to be characteristic of particular diseases; 3. In many cases relevant organisms lurk 
intracellularly, which is hard to explain by contamination; 4. There are just too many diseases where 
bacteria have been found to play a role in the pathogenesis, that all of them may be caused by 
contamination; 5. The actual numbers of cells involved seem far too great to be explicable by 
contamination; given that blood contains ~5.109 erythrocytes.mL-1, if there was just one bacterial cell per 
50,000 erythrocytes this will equate to 105 bacteria.mL-1. These are big numbers, and if the cells were 
culturable, that number of cells would be the same as that ordinarily defining bacteriuria. 

A recent study by Damgaard and colleagues [298] is of particular interest here. Recognising the strong 
mismatch between the likelihood of an infection post-transfusion (very high [298]) and the likelihood of 
detecting culturable microbes in blood bank units (negligible, ca 0.1%) [298; 314], Damgaard et al reasoned 
that our methods of detecting and culturing these microbes might be the problem. Certainly, taking cells 
from a cooled blood bag and placing them onto an agar plate at room temperature that is  directly exposed 
to atmospheric levels of gaseous O2 is a huge stress leading to the production of ‘reactive oxygen species’ 
[118; 315], that might plausibly kill any dormant, injured, or even viable microbes. Thus they incubated 
samples from blood on a rich medium (trypticase soy agar) for a full week, both aerobically and 
anaerobically. Subsequent PCR and sequencing allowed them to identify specific microbes in some 35-53% 
of the samples. Thus, very careful methods need to be deployed to help resuscitate bacteria from 
physiological states that normally resist culture, even when those bacteria are well-established species. This 
is very much beginning to happen in environmental microbiology (e.g. [147; 316-318]), and such organisms 
are rightly seen as important sources of novel bioactives [319; 320]. 

As reviewed previously [132-136], the chief sources of these blood microbes are the gut microbiome, the 
oral microbiome (periodontitis [321]), and via urinary tract infections. Consequently, if we are to argue that 
there is indeed a microbial component to pre-eclampsia, we should expect to see some literature evidence 
for it [66; 67; 131; 322-324]. In what follows we shall rehearse the fact that it is voluminous. 
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Direct evidence for a role of infectious agents in PE  

Although we recognise that many of the more molecular methods cannot distinguish culturable from 
dormant microbes, quite a number of studies have explicitly identified infection as a cause of PE (Table 2). 
The commonest microbe seems to be H. pylori; while it is most famously associated with gastric ulcers 
[161; 162; 325], there are many other extragastric manifestations (e.g. [326-334]). The Odds Ratio of no 
less than 26 in PE vs controls when the strains can produce CagA antigens is especially striking, not least 
because it provides a mechanistic link to poor trophoblast invasion via a mechanism involving host 
antibodies to CagA cross-reacting with trophoblasts [335; 336], and circulating [337] in microparticles [338] 
or endosomes  [339; 340]. 

 

Table 2. Many studies have identified a much greater prevalence of infectious agents in the blood or urine 
of those exhibiting PE than in matched controls 

Microbes Comments Reference 
   
Chlamydia pneumoniae IgG seroprevalence and gDNA 

associated with PE (p<0.0001) 
[341] 

 IgG (but not IgA or IgM) 
associated with PE, OR = 3.1. 

[342] 

 Significantly greater numbers 
with PE, and reversion under 
antichlamydial treatment 

[343] 

   
Chlamydia trachomatis Increased risk of PE, OR = 7.2 or 

1.6 based on serology 
[344; 345] 

   
Cytomegalovirus RR for PE 1.5 if infected with CMV [346] (see also [347]) 
   
Helicobacter pylori Seropositivity or DNA. OR=2.7, or 

26 if CagA seropositivity  
[335] and editorial [348] 

 IgG seropositivity 54%PE vs 21% 
controls 

[349] 

 Anti-CagA antibodies cross-react 
with trophoblasts and could 
inhibit placentation 

[350] 

 2.8x greater seropositivity in PE 
group 

[351] 

 OR=2.86 for seropositivity in PE, 
correlated with high 
malondialdehyde levels 

[352] 

 Wide-ranging review of many 
studies showing PE more 
prevalent after Hp infection 

[353] 

 Seropositivity PE:control = 
84%:32% (p<0.001) 

[354] 

 OR for seropositivity 1.83 
(p<0.001) 

[355] 

 Seropositivity PE:control 86%:43% [356] 
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(p<0.001) 
   
Human papillomavirus High-risk human papillomavirus 

(HR-HPV) presence implies an OR 
of 2.18 for PE.  

[357] 

   
Meta-analyses Incidence of PE 19% with 

asymptomatic bacteriuria, vs 3% 
(primigravid) or 6% (multigravid) 
controls (p<0.005) 

[358] 

 UTI more than twice as likely in 
severe preeclamptics than in 
controls 

[359] 

 OR of 1.6 for PE if UTI present [360] 
 Increased risk of PE OR 1.57 for 

UTI, 1.76 for periodontal disease 
[66] 

 Early application of antibiotics in 
infection reduced PE by 52% 

[322] 

 Any overt infection led to an RR of 
2 for PE 

[67] 

 UTI has OR of 3.2 for PE; OR = 4.3 
if in third trimester 

[361] 

 UTI has OR of 1.3 for 
mild/moderate and 1.8 for severe 
PE 

[362] 

 Increased risk of PE with UTI (OR 
1.22) or antibiotic prescription 
(OR 1.28) 

[363] 

 OR of 6.8 for symptomatic 
bacteriuria in PE vs controls 

[364] 

 OR 1.3-1.8 of mild or severe PE if 
exposed to UTI 

[365] 

 OR 1.4 for PE following UTI [366] 
 OR 1.3 for PE after UTI [367] 
 Meta-analyses showing 

associations between PD and PE 
[368-370] 

Plasmodium falciparum (malaria) Indications that infection with 
malaria is associated with PE 

[371] 

 1.5 RR for PE if malarial [372] 
 Seasonality: 5.4-fold increase in 

eclampsia during malaria season 
[373] 

 Pre-eclampsia was significantly 
associated with malaria infection 
during pregnancy (p<0-03) and 
69-7% of cases of pre-eclampsia 
with infected placenta might be 
attributable to malaria infection 

[374] 

 

In contrast to the situation in PE, albeit severe PE is associated with iatrogenic pre-term births, there is a 
widespread recognition (e.g. [375-402]) that infection is a common precursor to pre-term birth (PTB) in the 
absence of PE. The failure of antibiotics to help can be ascribed to their difficulty of penetrating to the 
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trophoblasts and placental regions. Unfortunately no proteomic biomarkers have yet been observed as 
predictive of PTB [403; 404]. In a similar vein, and if we are talking about a time of parturition that is very 
much more ‘preterm’, we are in the realm of miscarriages and spontaneous abortions and stillbirths, where 
infection again remains a major cause [405-408]. Here we note that early or pre-emptive antibiotic therapy 
has also proved of considerable value in improving outcomes after multiple spontaneous abortions [409]. 

Vaginal, placental and amniotic fluid microbiomes in PE 

It might be natural to assume that the placenta is a sterile organ, like blood is supposed to be.  However, 
various studies have shown the presence of microbes in tissues including the placenta [386; 395; 410-422], 
vagina [383; 423-429], uterus [387; 430; 431], amniotic fluid [422; 432-437], and follicular fluid [438; 439], 
and how these may vary significantly in PE (we do not discuss other pregnancy disorders such as small for 
gestational age (SGA) and intrauterine growth restriction (IUGR)). We list some of these in Table 3.  

Table 3. Evidence for microbes in placental tissues, including those with PE. 

Organisms Comments Reference 
   
Multiple, including Actinobacillus 
actinomycetemcomitans, 
Fusobacterium nucleatum. 

Many more in PE placentas 
relative to controls (p ≤ 0.0055) 

[440] 

Multiple Half of second-trimester 
pregnancies have culturable or 
PCR-detectable bacteria/ 
mycoplasmas 

[410] 

Multiple 38% of placental samples were 
positive for selected bacteria and 
viruses 

[441] 

Bifidobacterium spp. and 
Lactobacillus rhamnosus 

Bifidobacteria and L. rhamnosus 
(from gut) detected in 31/34 and 
33/34 placental samples 

[411] 

Multiple Detectable in 27% of all placentas 
and 54% of spontaneous preterm 
delivery 

[412] 

Multiple 16S/NGS, major review [395] 
Multiple From 16S and NGS analysis of 

placental tissue of 7 PE patients 
(12.5%) (controls all negative) 

[442] 

E. coli and L. monocytogenes When added ex vivo can migrate 
to extravillous trophoblasts 

[415] 

Multiple Review, with some focus on 
preterm birth 

[414] 

Multiple Overview, some focus on preterm                  
birth 

[416] 

Multiple Good recent overview, with 
possible implication of a 
physiological role 

[418] 

Multiple 320 placentas; changed 
microbiome as a function of 
excess gestational weight gain 

[419] 

Multiple One third of placentas from [420] 
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preterm births were culture-
positive 

Multiple Major differences in placental 
microbiome in preterm birth 

[421] 

Plasmodium falciparum (malaria) Increased likelihood of PE [372] 
Plasmodium falciparum (malaria) Reviews of placental malaria [443; 444] 
Porphyromonas gingivalis OR of PE = 6.3 if detected in 

umbilical cord 
[445] 

Porphyromonas gingivalis OR 7.59 in placental tissues with 
hypertensive disorders 

[446] 

Treponema denticola OR 9.39 in placental tissues with 
hypertensive disorders 

[446] 

Meta-analysis Widespread occurrence of 
microbes in female genital tract 
during pregnancy 

[400] 

 

Origins of a blood and tissue microbiome 

As assessed previously [132-134] over a large literature, the chief source of blood microbes is the gut [418], 
with another major entry point being via the oral microbiome (especially in periodontitis, see below). For 
rheumatoid arthritis [135; 447-449] and diseases of pregnancy, urinary tract infection (see below and Table 
TT) also provides a major source.  

Gut origins of blood microbes and LPS 

We have recently rehearsed these issues elsewhere [132-134], so a brief summary will suffice. Clearly the 
gut holds trillions of microbes, with many attendant varieties of LPS [450], so even low levels of 
translocation (e.g. [451-453]), typically via Peyer’s patches and M cells, provide a major source of the blood 
microbiome. This may be exacerbated by intra-abdominal hypertension that can indeed stimulate the 
translocation of LPS [454]. For reasons of space and scope, we do not discuss the origins and translocation 
of microbes in breast milk [455], nor the important question of the establishment of a well-functioning 
microbiome in the foetus and neonate [456], and the physiological role of the mother therein. 

Pre-eclampsia and periodontal disease 
One potential origin of microbes that might be involved in, or represent a major cause of, pre-eclampsia is 
the oral cavity, and in particular when there is oral disease (such as periodontitis and gum bleeding) that 
can allow microbes to enter the bloodstream. If this is a regular occurrence one would predict that PE 
would be much more prevalent in patients with pre-existing periodontitis (but cf. [457] for those in 
pregnancy) than in matched controls; this is indeed the case (Table 4). 

Table 4. Periodontal disease (PD) and pre-eclampsia 

Organisms Comments References 
   
Meta-analyses OR of PE increased 3.69-fold if PD 

before 32 weeks 
[458] 

 OR of 3 for the development of 
PEif ureaplasmas present at first 
antenatal visit 

[459] 
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 OR 5.56 for PD preceding PE [460] 
 OR 2.1 for preceding PE [461] 
 Extensive overview of role of oral 

health and periodontal disease in 
PE 

[462] 

 OR 3.71 for PE if history of 
periodontal treatment 

[463] 

 Excellent overview of likely 
relationship between PD and PE 

[464] 

 OR = 8.6 or 2.03 for PE if PD was 
present vs controls 

[465] 

 Strong association between PD 
and PE (P<0.01) 

[466] 

 Overview with many references [467] 
 OR for association between PD 

and PE = 3.73. No correlation with 
TNF-α or IL 

[468] 

 OR 2.46 PE:controls [469] 
 Excellent overviews, focussing on 

means of transport of microbes 
from mouth to reproductive 
tissue 

[470] (see also [471]) 

 Relationship between C-reactive 
protein, PE and severity of PD 

[472] 

 Adjusted PE RR 5.8 for Women 
with periodontal disease and CRP 
>75th percentile compared to 
women without periodontal 
disease  

[473] 

 PD prevalence 65.5% and 
significantly higher (P <0.0001) in 
females with hypertension (RR = 
1.5) 

[474] 

 Meta-analysis [475] 
 Periodontal bacteria ‘much more 

prevalent’ in PE than controls, but 
OR not given 

[476] 

 Overview, stressing role of LPS [477] 
 Overview and meta-analysis of 25 

studies 
[478] 

 OR 4.79-6.6 for PE is PD [479] 
   
Porphyromonas gingivalis Its LPS inhibits trophoblast 

invasion 
[480] 

 OR=3 overall [481] 
   
Not stated Significantly higher periodontal 

probing depth and clinical 
attachment level scores in the 
preeclamptic group compared 
with controls (2.98 vs 2.11 and 
3.33 vs 2.30, respectively). 

[482] 
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Urinary tract infections (UTI) 

A particular feature of UTIs is the frequency of reinfection [483-490].  This is because the organisms can 
effectively ‘hide’ in bladder epithelial cells as so-called ‘quiescent intracellular reservoirs’ [206; 487; 489; 
491-495] of (presumably) dormant cells that can resuscitate. This is why reinfection is often from the same 
strains that caused the original infection [496-500]. Other complications can include renal scarring [501]. 
Bacteriuria (often asymptomatic) is a frequent occurrence in pregnancy (e.g. [365; 367; 459; 502-508]), and 
the frequency of UTI as a source of microbes causing PE is clear from Table 2. 

From blood to and from the placenta; a role for microparticles 

We and others have noted the fact that many chronic, inflammatory disease are accompanied by the 
shedding of various antigens and other factors; typically they pass through the bloodstream as 
microparticles [119; 133; 509-514], sometimes known as endosomes [337; 339; 340; 510; 515] (and see 
later under miRNAs). Similarly, LPS is normally bound to proteins such as the LPS-binding protein and apoE 
(see [133]). 

Evidence from antibiotic therapies 

Antibiotic drug prescriptions may be seen as a proxy for maternal infection, so if dormant (and resuscitating 
and growing) bacteria are a major part of PE aetiology one might imagine an association between antibiotic 
prescriptions and PE.  According to an opposite argument, antibiotics and antibiotic prescriptions given for 
nominally unrelated infections (UTI, chest, etc, and in particular diseases requiring long-term anti-infective 
medication that might even last throughout a pregnancy) might have the beneficial side-effect of 
controlling the proliferation of dormant cells as they seek to resuscitate. There is indeed some good 
evidence for both of these, implying that it is necessary to look quite closely at the nature, timing and 
duration of the infections and of the anti-infective therapy relative to pregnancy. A summary is given in 
Table 5. A confounding factor can be that some (e.g. the antiretroviral) therapies are themselves quite toxic 
[516; 517]; while the OR for avoiding PE was 15.3 in one study of untreated HIV-infected individuals vs 
controls, implying (as is known) a strong involvement of the immune system in PE, the ‘advantage’ virtually 
disappeared upon triple-antiretroviral therapy [518]. Overall, it is hard to draw conclusions from 
antiretrovirals [519; 520]. However, we have included one HIV study in the Table. Despite a detailed survey, 
we found no reliable studies with diseases such as Lyme disease or tuberculosis, where treatment regimes 
are lengthy, that allowed a fair conclusion as to whether antibiotic treatment was protective against PE. 
However, we do highlight the absolutely stand-out study of Todros and colleagues [521], who noted that 
extended spiramycin treatment (of patients with Toxoplasma gondii) gave a greater than tenfold protection 
against PE, when the parasite alone had no effect [522]. This makes such an endeavour (assessing the utility 
of early or pre-emptive antibiotics in PE) potentially highly worthwhile. 

 

Table 5. Examples of decreased PE following antibiotic therapies given for various reasons 

Target organisms Comments Reference 
   
HIV OR of 0.65 for patients treated [523] 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2016. ; https://doi.org/10.1101/057356doi: bioRxiv preprint 

https://doi.org/10.1101/057356
http://creativecommons.org/licenses/by/4.0/


22 
 

with mono- or triple anti-
retroviral therapy 

 

   
Toxoplasma gondii Massive (OR=0.092) protection 

against PE in patients treated with 
spiramycin 

[521] 

   
Various organisms 52% decrease in PE following 10-

day antibiotic therapy  
[322] 

 

Role of LPS in PE 

It is exceptionally well known that LPS (sensu lato) is highly inflammagenic, and since one of us recently 
reviewed that literature in extenso [133] this is not directly rehearsed here. However, since we are arguing 
that it has a major role in PE naturally or in vivo, we do need to ask whether the literature is consistent with 
this more focussed question. The answer is, of course, a resounding ‘yes’. Notwithstanding that only 
primates, and really only humans, are afflicted by ‘genuine’ PE, so the genuine utility of rodent models is 
questionable [524], even if some can recapitulate elements of the disease [525; 526]. Hence, it is somewhat 
ironic that there are a number of animal models in which LPS (also known as ‘endotoxin’) is used 
experimentally to induce a condition resembling PE (e.g. [527-532], and see [533]). We merely argue that it 
is not a coincidence that exogenous administration of LPS has these effects, because we consider that it is 
in fact normally one of the main mediators of PE.   

The standard sequelae of LPS activation, e.g. TLR signalling and cytokine production, also occur in PE [534; 
535], bolstering the argument that this is precisely what is going on. In a similar vein, double stranded RNA-
mediated activation of TLR3 and TLR7/8 can play a key role in the development of PE [536-538]. What is 
new here is our recognition that LPS and other inflammagens (e.g. [539-541]) may continue to be produced 
and shed by dormant and resuscitating bacteria that are generally invisible to classical microbiology. 

Effects of LPS and other microbial antigens on disrupting trophoblast invasion 
and/or stimulating parturition 

As with other cases of cross-reactivity such as that of various antigens in Proteus spp that cause disease in 
rheumatoid arthritis [447-449], the assumption is that various microbial antigens can lead to the 
production of (auto-)antibodies that attack the host, in the present case of interest by stopping the 
placentation by trophoblasts. This is commonly  referred to as ‘molecular mimicry’ (e.g. [542-545]), and 
may extend between molecular classes e.g. peptide/carbohydrate [546; 547]. Table 6 shows some 
molecular examples where this has been demonstrated. 

Table 6. Molecular examples of bacterial antigens that can elicit antibodies that stop successful trophoblast 
implantation or stimulate parturition. 

Organism Antigen and comments Reference 
   
Gram-negatives LPS can stimulate parturition, via  

corticotropin-releasing hormone 
[548] 

Gram-negatives LPS can stimulate parturition, via  
MAPKinase 

[535] 
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Helicobacter pylori Anti-CagA antibodies cross-react 

with trophoblasts and could 
inhibit placentation 

[336; 350] 

   
   
Porphyromonas gingivalis LPS inhibits trophoblast invasion [480] 
   
Various Antiphospholipid antibodies (that 

can be induced by microbes, see 
above) 

[549-552] 

 

In many cases, the actual (and possibly microbial) antigens are unknown, and clearly the microbial 
elicitation of antibodies to anything that might contribute to PE points to multiple potential origins. To this 
end, we note that PE has also been associated with antibodies to angiotensin receptors [553-566], to 
smooth muscle [567; 568] (such blocking may be anti-inflammatory [569-571]), to adrenoceptors [572], to 
the M2 muscarinic receptor [573], and to Th17 [574](and see [575]). It is not unreasonable that epitope 
scanning of the antibody targets coupled to comparative sequence analysis of potential microbes might 
light up those responsible. In the case of Angiotensin II Type 1 Receptor Antibodies the epitope is 
considered [576] to be AFHYESQ, an epitope that also appears on parvovirus B19 capsid proteins; in the 
event, parvoviruses seem not to be the culprits here [577]. However, the role of these antibodies in 
activating the angiotensin receptor is also considered to underpin the lowering of the renin-angiotensin 
system that is commonly seen in PE [578-581], but which is typically raised during normal pregnancy. 

Th-17 is of especial interest here, since these are the helper T (Th)-cell subset that produce IL-17. IL-17 is 
probably best known for its role in inflammation and automimmunity [575; 582-586]. However, it also has 
an important role in induction of the protective immune response against extracellular bacteria or fungal 
pathogens at mucosal surfaces [584; 587-599]. Th17 cells seem to participate in successful pregnancy 
processes and can be lower in PE [600-602], though more studies show them as higher [575; 603-611] or 
unchanged [612; 613].  One interpretation, consistent with the present thesis, is that the antimicrobial 
effects of placental IL-17 relative to Treg cells are compromised during PE [575; 609; 614]. 

A note on the terminology of sepsis. As one may suppose from the name, sepsis (and the use of 
words like ‘antiseptic’) was originally taken to indicate the presence of culturable organisms in (or in a 
sample taken from) a host, e.g. as in bacteraemia. Recognising that it is the products of bacteria, especially 
cell wall components, that cause the cytokine storms that eventually lead to death from all kinds of 
infection [615-618], ‘sepsis’ nowadays has more come to indicate the latter, as a stage (in the case of 
established infection) on a road that leads to septic shock and (eventually) to death (with a shockingly high 
mortality, and many failures of initially promising treatments, e.g. [619; 620], and despite the clear utility of 
iron chelation [79; 118; 621; 622]). In most cases significant numbers of culturable microbes are either 
unmeasured or absent, and like most authors we shall use ‘sepsis’ to imply the results of an infection 
whether the organisms are detected or otherwise. Overall, it is possible to see the stages of PE as a milder 
form of the sepsis cascade on the left-hand side of Figure 7. Fig 7 compares the classical route of sepsis-
induced death with the milder versions that we see in PE; they are at least consistent with the idea that PE 
is strongly related to the more classical sepsis in degree rather than in kind. 
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Pre-eclampsia and neonatal sepsis. If PE is really based on infectious agents, it is reasonable 
that one might expect to see a greater incidence of neonatal sepsis (i.e. infection) following PE. While there 
are clearly other possible explanations (e.g. simply a weakened immune system, sometimes expressed as 
neutropaenia, after PE), there is certainly evidence that this is consistent with this suggestion [623-627]. 

PE biomarkers and infection. Because of the lengthy development of PE during pregnancy, there 
has long been a search for biomarkers (somewhat equivalent to the ‘risk factors’ discussed earlier) that 
might have predictive power, and some of these, at both metabolome [14; 628-635] and proteome [636-
638] level, are starting to come forward. The typical experimental design is a case-control, in which markers 
that are raised or lowered significantly relative to the age-matched controls are considered to be candidate 
markers of PE. However, just as noted with leukocyte markers [76] and PCOS [639], that does not mean 
that they might not also be markers for other things too, such as infection [640]! 

Thus, one prediction is that if dormant and resuscitating bacteria are responsible for PE then at least some 
of these biomarkers should also be (known to be) associated with infection. However, one obvious point 
is that the markers may appear only after infection, and this may itself be after the first trimester; clearly 
then these would not then be seen as ‘first-trimester’ biomarkers! There are many well-known 
inflammatory biomarkers that are part of the innate (and possibly trained [641]) immune response, such as 
the inflammatory cytokines CRP (cf. [642; 643]), IL-6 [644], IL-1β [645], TNFα [646], and macrophage 
migration inhibitory factor (MIF) [647], that are also all biomarkers of infection [648-652].  Certainly the fact 
that these increase in PE is consistent with a role for an infectious component. However, we shall mainly 
look at other biomarkers that are known to increase with PE, and see if they are also known to be 
biomarkers for (or at least changed in the presence of) infection (and see Th17/IL-17 above), and we next 
examine this. We shall see that pretty well every biomarker that is changed significantly in PE is also 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2016. ; https://doi.org/10.1101/057356doi: bioRxiv preprint 

https://doi.org/10.1101/057356
http://creativecommons.org/licenses/by/4.0/


25 
 

changed following infection, a series of findings that we consider adds very strong weight to our 
arguments. 

Proteomic and similar biomarkers – circulating and placental 

What is really needed is a full systems biology strategy (see e.g. [93; 653-655]) that brings together the 
actors that interact then parametrises the nature of those interactions in a suitable encoding (e.g. SBML 
[656]) that permits their modelling, at least as an ODE model using software such as CellDesigner [657], 
COPASI [658] or Cytoscape [659]. Thus, to take a small example, “agonistic autoantibodies against the 
angiotensin II type 1 receptor autoantibodies (AT1-AA) are described. They induce NADPH oxidase and the 
MAPK/ERK pathway leading to NF-κB and tissue factor activation. AT1-AA are detectable in animal models 
of PE and are responsible for elevation of soluble fms-related tyrosine kinase-1 (sFlt1) and soluble endoglin 
(sEng), oxidative stress, and endothelin-1, all of which are enhanced in pre-eclamptic women. AT1-AA can 
be detected in pregnancies with abnormal uterine perfusion” [565]. Many such players have been invoked, 
and we next list some. 

Activin A. Activin A is a member of the transforming growth factor (TGF)-β superfamily. Its levels are raised 
significantly in PE [112; 660]. However, activin A is also well-established as a biomarker of infection [661-
664]. 

Calretinin. In a proteomic study of pre-clamptic vs normal placentas [665], calretinin was one of the most 
differentially  upregulated proteins (P = 1.6.10-13 for preterm PE vs controls, P = 8.9.10-7 for term PE vs 
controls), and in a manner that correlated with the severity of disease. While calretinin (normally more 
expressed in neural tissue and mesotheliomas [666]) is not normally seen as a marker of infection, it is in 
fact raised significantly when Chlamydia pneumoniae infects human mesothelial cells [667]. 

Chemerin is a relatively recently discovered adipokine, whose level can increase dramatically in the first 
trimester of pre-eclamptic pregnancies [668], and beyond [669]. Its levels are related to the severity of the 
pre-eclampsia [670-672]. Specifically, an ROC curve [673] analysis showed that a serum chemerin level 
>183.5 ng.mL-1 predicted pre-eclampsia with 87.8% sensitivity and 75.7% specificity (AUC, 0.845; 95% CI, 
0.811–0.875) [668].  Papers showing that chemerin is also increased by infection (hence inflammation) 
include [674; 675]; it even has antibacterial properties [676; 677], and was protective in a skin model of 
infection [678; 679]. In a study of patients with sepsis [680], circulating chemerin was increased 1.69-fold 
compared with controls (p = 0.012), and was also protective as judged by survival. These seem like 
particularly potent argument for a role of chemerin as a marker of infection rather than of pre-eclampsia 
per se, and for the consequent fact that PE follows infection and not vice versa. 

Cystatin C. Not least because kidney function is impaired in PE, low MW proteins may serve as biomarkers 
for it. To this end, cystatin C (13 kDa) has been found to be raised significantly in PE [681-687]; it also 
contributed to the marker set in the SCOPE study [7; 15]. Notably, although it certainly can be raised during 
infection [688], it seems to be more of a marker of inflammation or kidney function [689; 690]. 

D-dimer. “D-dimer” is a term used to describe quite varying forms of fibrin degradation product(s) [691]. 
Given that PE is accompanied by coagulopathies, it is probably not surprising that D-dimer levels are raised 
in PE [692-696], though this is true for many conditions [697], and some of the assays would bear 
improvement [698; 699]. Needless to say, however, raised D-dimer levels are also a strong marker for 
infection [700; 701]. 
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