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Abstract

Polygenic scores (PGS) summarize the genetic contribution of a person’s genotype to a disease or

phenotype. They are useful in a wide variety of analyses of genetic data. Many possible ways of

calculating polygenic scores have been proposed, and recently there is much interest in methods that

incorporate information available in published summary statistics. As there is no inherent information

on linkage disequilibrium (LD) in summary statistics, a pertinent question is whether we can make use of

LD information available elsewhere to supplement such analyses. To answer this question we proposed

a method for constructing PGS using summary statistics and a reference panel in a penalized regression

framework, which we called lassosum. We also proposed a general method for choosing the value of the

tuning parameter in the absence of validation data. Our simulation results suggested that lassosum is

faster and more robust than other similar methods in most scenarios. We also found that accounting

for LD with a reference panel is beneficial only when the signals from the data are strong. In the

presence of summary statistics from a large number of SNPs, clumping may both enhance or decrease

the performance of standard PGS, although its effects on lassosum is attenuated. lassosum combined

with pre-filtering by clumping appears to be a robust and reliable option for calculating predictive PGS.
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Introduction

A vast number of twin studies as well as recent genome-wide association studies have demonstrated that

a large proportion of the variance in liability to common diseases and human traits is due to genetic

differences between individuals (Polderman et al., 2015; Yang et al., 2011; Bulik-Sullivan et al., 2015).

These studies have also made clear that only a very small proportion of the total genetic contribution

can be unambiguously attributed to variation in particular loci of the genome. The vast majority

of such genetic contribution is thus spread across the huge landscape of the genome, with many loci

each contributing a small, almost undetectable effect on the phenotypes (Dudbridge, 2013, 2016). One

important source of evidence towards this conclusion is from studies that examined the association of

polygenic predictors of diseases/traits, where it is repeatedly found that SNPs that are not themselves

significantly associated with the phenotypes can, by being aggregated as a score, be very significantly

associated with the phenotypes, even in totally unrelated samples (Agerbo et al., 2015; Byrne et al.,

2014; Evans et al., 2009; Wei et al., 2009; Purcell et al., 2009; Ripke et al., 2013; Speliotes et al., 2010;

Machiela et al., 2011; Stahl et al., 2012; Martin et al., 2015; Chang et al., 2015). A particular remarkable

demonstration is that persons with such polygenic scores for schizophrenia at the top 10 percentile of

the population can be at more than 10 times the risk of having the disease than those at the bottom 10

percentile (Ripke et al., 2014; Agerbo et al., 2015), raising hope that one day a person’s risk for many

common disease can be accurately assessed simply by the examination of one’s genome.

Thus, there is considerable interest in the calculation of such polygenic scores (PGS) in GWAS and

Genome-wide meta-analyses, where they are also known as risk scores (Ripke et al., 2013; Domingue

et al., 2014), polygenic risk scores (e.g. Euesden et al., 2015; Byrne et al., 2014; Agerbo et al., 2015;

Dudbridge, 2013), and allelic scores (Burgess and Thompson, 2013; Evans et al., 2013). In a typical

application, a unique PGS is assigned to each individual based on the person’s genotype. The score

summarizes the genetic contribution to a particular disease or phenotype for that indivdiual given his/her

genotype. They are then used for testing of complex genetic contribution due to multiple loci or even

the entire genome, or the examination of genetic correlation, or be used as a covariate for the adjustment

of genetic effects in a multiple regression model (Wray et al., 2014).

From a statistical perspective, polygenic scores are weighted sums of the genotypes of a set of SNPs.
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In most applications of PGS, the weights are usually the SNPs’ individual regression coefficients with the

phenotype (e.g. Purcell et al., 2009; Wray et al., 2014; Euesden et al., 2015). A critical issue is the total

number of SNPs that should be included in the PGS. Although it is usually advisable to use a liberal

p-value cutoff in the selection of SNPs to be included, the optimal p-value cutoff is generally unknown

(Wray et al., 2014). As a result, in many studies, PGS are constructed using a number of thresholds

(Purcell et al., 2009; Ripke et al., 2014; Byrne et al., 2014; Martin et al., 2015; Chang et al., 2015), and

there is at least one piece of software developed to facilitate this (Euesden et al., 2015). Generally, we

focus on the p-value threshold that achieves the highest correlation/association with the phenotypes in

a validation dataset that contains a measure of the phenotype under study. This approach, however,

becomes less useful if the phenotype is not available in the target dataset. Recently, Mak et al. (2016)

sought to overcome this problem by downweighting the usual weights by the SNPs’ local true discovery

rate, where the additional downweighting or shrinkage factor can be estimated using a data-driven

approach. They showed that this leads to comparable predictive performance with the best p-value

threshold.

Another issue with this standard approach to PGS calculation is that there is no account taken of

the fact that SNPs are in linkage equilibrium (LD) with each other. If SNPs of a particular locus which

are in high LD with one another are all included in the score, the contribution to the PGS due to that

locus will be exaggerated in the score. For this reason, it is often recommended that SNPs be pruned

before the application of PG scoring, such that highly correlated SNPs within a locus will have one or

more removed (Purcell et al., 2009). Such an approach, however, may well reduce the predictive power

of the PGS, as SNPs that are most predictive of the phenotype may be pruned away. A more recent

suggestion is that of clumping, which selectively removes less significantly related SNPs to reduce LD

(Wray et al., 2014).

In principle, various machine learning methods or Bayesian methods can be applied in the construc-

tion of PGS, as they have been applied in the estimation of breeding values in animal studies (Meuwissen

et al., 2001; Abraham et al., 2013; Szymczak et al., 2009; Habier et al., 2011; Pirinen et al., 2013; Erbe

et al., 2012; Ogutu et al., 2012; Zhou et al., 2013). These methods do not require the assumption of

SNP independence or near independence, and have been shown to perform better than simple PGS in
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simulation settings. However, their disadvantage is that they cannot be applied to summary statistics.

Researchers without access to large datasets are thus unable to take advantage of the power offered by

these studies or meta-analyses. A recent development in this direction is Vilhjálmsson et al. (2015).

The authors proposed an approximate Bayesian method known as LDpred that calculates PGS based

on summary statistics, using LD information from a reference panel. Such a development is particularly

welcome due to the ready availability of summary statistics from many consortia, often calculated from

tens to hundreds of thousands of individuals.

Although Vilhjálmsson et al. (2015) demonstrated superior performance of their approach over other

simpler methods such as clumping and p-value thresholding through their simulations, a number of

issues remain. For example, to what extent is the performance dependent on the choice of the reference

panel? The authors recommended the use of a reference panel that is at least 1,000 in sample size,

and in their simulations mainly used the validation dataset as the reference panel. Ideally the reference

panel from which LD information is derived should share the same ancestry as the data that gave

rise to the summary statistics. It is unclear what the consequences are if a reference panel which is

not representative of the original population was used instead. Furthermore, the use of Markov Chain

Monte Carlo in LDpred means that there is always the possibility of non-convergence in the estimates.

With this in mind, we developed an alternative approach that calculates PGS using summary statis-

tics data, that also takes into account of LD through the use of reference panels. Based on the widely

used LASSO and elastic net regression (Tibshirani, 1996; Zou and Hastie, 2005), the method is compu-

tationally elegant and fast. In our simulations, we demonstrated that it has good performance even with

small reference panels. As such, we can use as reference panels data from such publicly available dataset

as the 1000 Genome project, which contains genomic information for many sub-populations across the

globe (1000 Genomes Project Consortium, 2015). As with any machine learning approach, a major

challenge is in the choice of the tuning parameter. This is particularly difficult when we do not have raw

data and hence cannot perform cross-validation. Here, we offer a solution that can potentially be applied

more generally. The approach is presented in the methods section and we assessed its performance by

simulation studies. Insights gained from the simulations are discussed.
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Material and methods

The LASSO problem in terms of summary statistics

Given a linear regression problem

y = Xβ + ε (1)

where X denotes an n-by-p data matrix, and y a vector of observed outcomes, the LASSO is a popular

method for deriving estimates of β and predictors of (future observations of) y, especially in the case

where p (the number of predictors/columns in X) is large and when it is reasonable to assume that

many β are zero. LASSO obtains estimates of β (weights in the linear combination of X) given y and

X by minimizing the objective function

f(β) = (y −Xβ)T (y −Xβ) + 2λ||β||1 (2)

= yTy + βTXTXβ − 2βTXTy + 2λ||β||1 (3)

where ||β||1 =
∑

i |βi| denote the L1 norm of β, for a particular fixed value of λ. In general, depending

on λ, a proportion of the βi are given the estimate of 0. It is also a specific instance of penalized

regression where the usual least square formulation of the linear regression problem is augmented by

a penalty, in this case 2λ||β||1. LASSO lends itself to being used for estimation of β in the event

where only summary statistics are available, because if X represent standardized genotype data and y

standardized phenotype, divided by
√
n, then equation (3) can be written as:

f(β) = yTy + βTRβ − 2βTr + 2λ||β||1 (4)

where r = XTy represents the SNP-wise correlation between the SNPs and the phenotype, and R =

XTX is the LD matrix, a matrix of correlations between SNPs. As we can obtain estimates of r from

summary statistics databases that are publicly available for major diseases/phenotypes (e.g. schizophre-

nia, depression, bipolar disorders from the Psychiatric Genomics Consortium (http://www.med.unc.edu/pgc),

height, BMI from the GIANT consortium (https://www.broadinstitute.org/collaboration/giant/index.php/GIANT consortium),
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and other phenotypes on GWAS Central (http://help.gwascentral.org/)), and estimates of LD (R)

from publicly available genotype such as the 1000 Genome database (1000 Genomes Project Consortium,

2015), equation (4) suggests a method for deriving PGS weights as estimates of β by minimizing f(β).

An issue that surfaces when we substituteR and r with the estimates derived from publicly available

data is that the genotype X used to estimate R and r will in general be different. In particular, it

will be more appropriate to write R = XT
rXr to indicate that the genotype used to derive estimates of

LD (Xr) will not in general be the same as the genotype that gave rise to the correlations r. Writing

equation (4) as

f(β) = yTy + βTXT
rXrβ − 2βTXTy + 2λ||β||1, (5)

however, would imply that (5) is no longer a LASSO problem, because it is no longer a penalized least

squares problem. A minimum to (5) can still be sought, although the solutions would often be unstable

and non-unique, since yTy − βTXT
rXrβ − 2βTXTy will not generally have a finite minimum.

A natural solution to this problem is to regularize equation (5). In particular, if we replace XT
rXr

with Rs = (1− s)XT
rXr + sI, for some 0 < s < 1, then

f(β) = yTy + βTRsβ − 2βTr + 2λ||β||1, (6)

will be a proper LASSO problem.

Proof. First, we note that Rs is necessarily positive definite for s > 0. This means that there always

exists X and y such that

XTX = Rs, XTy = r (7)

Substituting (7) into (6), we see that (6) can be written in a form such as (2) and is therefore a LASSO

problem.

Expanding (6) into

f(β) = yTy + (1− s)βTXT
rXrβ − 2βTr + sβTβ + 2λ||β||1, (8)

we note that (8) encompasses a number of submodels as special cases. For example, when s = 1,
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estimates of β will be equivalent to applying soft-thresholding to the univariate correlation summary

statistics r (Zou and Hastie, 2005). In particular,

β̂s=1
i = sign(ri)max(|ri| − λ, 0) (9)

This is similar to applying a subset selection to the summary statistics based on p-values, since there

is a monotonic relationship between univariate p-values and unsigned correlation coefficients. Another

feature is that when λ = 0, the problem is similar to applying ridge regression to estimate β, except for

a constant scaling value. In most cases, the scale of a PGS is irrelevant, since it is almost never directly

used in genomic risk prediction without appropriate scaling (e.g., in So et al., 2011). For a particular

choice of s, therefore, equation (8) results in genomic BLUP (Best Linear Unbiased Predictors) (de

Los Campos et al., 2013). When λ = 0 and s = 1, the estimated PGS becomes equivalent to simply

using the entire set of correlation estimates without shrinkage or subset selection. The flexibility of (8)

allows us to examine the effect of modeling LD in estimating weights for PGS through simple simulation

studies. In particular, it allows us to examine whether it is always a good idea to take into account of

LD information through the use of substitute datasets, as will be demonstrated in our simulations.

Finally, we note that (8) is simply an elastic net problem (Zou and Hastie, 2005), and thus can be

solved using fast coordinate descent algorithms (Friedman et al., 2010) for many values of λ at a time. An

R package that carries out the estimation of β is made available at https://github.com/tshmak/lassosum.

We made special effort to allow estimation to be done directly on PLINK (Chang et al., 2015) .bed

files, eliminating the need to load large genotype matrices into R.

Selection of tuning parameters

As with standard LASSO/elastic net problems, in any application, λ and s need to be chosen. In the

situation where we have the raw genotype data, these parameters can be selected by cross-validation,

although other theoretical approaches are available (Tibshirani, 1996; Efron, 2004; Zou et al., 2007).

Without the raw genotype data, however, the task is considerably more difficult. Concerning s, a

possible solution is to employ the method of Schäfer and Strimmer (2005), developed for choosing an
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optimal shrinkage paramater in the estimation of a covariance matrix. Other more complicated schemes

are also possible (Wen and Stephens, 2010), although not pursued in this study.

For the choice of λ, we first note that in the presence of a validation dataset, we can choose λ

by maximizing the correlation of the PGS (estimated using different values of λs) with the validation

phenotype data, just as it has been done in the choice of a p-value cutoff points in standard PGS

calculations (Wray et al., 2014; Euesden et al., 2015). In the absence of a validation dataset, we can

simulate this procedure in the following manner, which we refer to as pseudovalidation in this paper.

First, note that the correlation between a PGS(λ) ≡ X̃β̂λ and the phenotype ỹ in a new “test” dataset

with standardized genotype X̃ is

Corr(PGS(λ), ỹ) =
βTλX̃

T
P ỹ√

βTλX̃
T
PX̃βλỹ

TP ỹ

(10)

where P = I − 11T/n is the mean-centering matrix.

In the absence of validation data, ỹ is unavailable. Our solution is to substitute r̂ for X̃
T
P ỹ, where

r̂ is a shrunken estimate of the r, the observed correlation coefficient vector. Since X̃
T
P ỹ can be

interpreted as a correlation coefficient only if X̃ is a standardized genotype matrix and ỹ standardized

phenotype, we replace X̃ with its standardized version, X̃0, and discard the constant ỹTP ỹ term, so

as to maximize the function

f(λ) =
βTλ r̂√

βTλX̃
T

0 X̃0βλ

(11)

over λ. Here, following Mak et al. (2016), we calculated

r̂i = ri(1− fdri) (12)

where fdri is the local false discovery rate of SNP i. While Mak et al. (2016) estimated fdri using

maximum likelihood and a non-parametric kernel density estimator, we found that Strimmer (2008)

provided a fast, non-parametric estimator for fdri which is constrained to be monotonic decreasing with

|ri|, and it is this approach that we have implmented in the simulations.
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Some notes on application

In most applications, phenotypes will be binary rather than continuous. Although the theory of this

method has been developed with the continuous phenotype in mind, we suggest that when the phenotype

is binary, pseudo-correlation estimates r̃i be derived by converting p-values to correlation, using the

monotonic relationship between t-statistics and correlations:

r̃i =
ti√

n− 1 + t2i
(13)

In our simulations this resulted in almost identical estimates as using actual (Pearson’s product moment)

correlations (Figure S1).

Another issue is that in the theory given above, we assume that X and y have been standardized

such that r represent the correlation coefficients between the genotype and the phenotype. We note that

such standardization can be justified by the fact that the LASSO is often performed on standardized

variables (Li et al., 2012; Hastie et al., 2009; Yi et al., 2014). However, when it comes to the construction

of PGS, we ought to use unstandardized coefficients as weights. To convert standardized coefficients to

unstandardized ones, we can simply use the formula

βunstandardized
i = ri

sd(y)

sd(X i)
(14)

where sd(y) and sd(X i) are the standard deviations for the phenotype and SNP i.

A third issue concerns the difference between the SNPs with summary statistics and the SNPs that

are included in the reference panel. Often the reference panel may not contain all SNPs with summary

statistics. Equivalently, there may be no variation within the panel for some SNPs. In LDpred, these

SNPs are discarded by default. However, we think that this is not necessary, as it may result in the

removal of SNPs that are predictive of the disease/phenotype. An intuitive approach to dealing with

these SNPs is that we treat them as if they were all mutually independent and apply soft-thresholding

as in (9). Equivalently, we let Xri for these SNPs to be a vector of zero, and we augment equation (8)
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by a term (1− s)βT0 β0,

f(β) = yTy + (1− s)βTXT
rXrβ − 2βTr + sβTβ + (1− s)βT0 β0 + 2λ||β||1, (15)

where β0 denotes the sub-vector of β whose sd(X i) = 0, such that the total ridge penalty for these

parameters is 1.

A fourth issue concerns the application of pseudovalidation to clumped data. We proposed above

that r̂ be estimated using (12) and that the local false discovery rates be estimated using the procedure

of Strimmer (2008). An important point is that the method assumes that a sizeable proportion of the

r are in fact null. Under clumping, this may not necessarily be the case, and we therefore suggest

estimating fdri and hence ri before applying clumping.

Simulation studies

We performed a number of simulation studies to assess the performance of our proposed method, which

we will refer to as lassosum. In our first simulation study, we made use of the Welcome Trust Case

Control Consortium (WTCCC) Phase 1 data for seven diseases. We filtered variants and participants

using the following QC criteria: genotype rate > 0.99, Minor Allele Frequency > 0.01, Missing genotype

per individual < 0.01, SNP rsID included in the 1000 Genome project (Phase 3, release May 2013)

genotype data, with matching reference and alternative alleles, on top of the QC done by the original

researchers (Wellcome Trust Case Control Consortium, 2007). This resulted in 358,179 SNPs and 15,603

individuals, of which 2,859 were controls. For each of the diseases, there were 1,699-1,902 cases. We

randomly chose 1,200 cases and 10,000 controls to form the training set (sampling from all non-cases for

that disease rather than just the 2,859 controls), and obtained summary statistics (p-values and signs of

log odds ratio) by carrying out SNP-wise logistic regression of the genotype with the phenotype for each

of the diseases. We randomly chose 200 cases and 1,000 controls from the remaining individuals as the

validation sample. We only used this sample to select the best λ to use in lassosum. We assessed the

predictive performance of lassosum using the Area Under the Curve (AUC) based on another random

sample of 200 cases and 1,000 controls from the remaining individuals, which formed the test dataset.
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We obtained results using five different reference panels: (a) the validation dataset, (b) the Great Britain

(GBR) subsample in the 1000 Genome project (n = 91), (c) the European (EUR) subsample in the

1000 Genome Project (n = 503), (d) the East Asian (EAS) subsample in the 1000 Genome Project

(n = 503), and (e) the original training dataset (n = 11, 200).

In addition to simulations using the seven diseases, we also used a simulated continuous phenotype

(y) from the standard linear model

y = Xβ + ε (16)

where X is the genotype matrix taken from a sample of 5,600 or 11,200 individuals. In this scenario,

1,000, 5,000, or 25,000 of the 358,179 βi were given a value randomly sampled from an Exponential

distribution, and the heritability of the phenotype (V̂ar(Xβ)/(Var(εi) + V̂ar(Xβ)) was constrained to

be 0.5. As in the previous simulations, we reserved 1,200 individuals for the validation sample and

another 1,200 for the test sample. Predictive performance was assessed by the correlation of the PGS

with the true predictor, i.e. Cor(X̃β̂, X̃β), where X̃ denotes the testing genotype matrix.

We compared our method to LDpred (Vilhjálmsson et al., 2015), a recently developed method which

also calculates PGS using summary statistics and a reference panel. LDpred requires a number of

parameters as input, including the SNP heritability of the dataset, the size of the “window” around

each SNP where LD is calculated, and the a prior proportion of causal SNPs (P (Causal)). The first of

these can be estimated using LD score regression (Bulik-Sullivan et al., 2015) and this was implemented

in the LDpred software. For the second, we followed the recommended practice of using p/3000 SNPs

on either side of each SNP in calculating the LD information, where p is the total number of SNPs.

For the proportion of causal SNPs, we followed Vilhjálmsson et al. (2015) in using the following values:

0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, and used validation data or our pseudovalidation strategy to select

the best proportion of causal SNPs. We note that when P (Causal) = 1, the procedure is equivalent

to ridge regression using a tuning parameter, except for the windowing strategy employed in LDpred’s

computation.

All of the above simulations were repeated four times, except the benchmarking with LDpred, for

which we report average prediction performance over 10 repetitions of the simulations.

Because summary statistics are often calculated from large sample sizes and for a large number of
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SNPs, we also attempted to carry out simulations using a larger dataset. In particular, we wanted

to see whether clumping is an efficient strategy for data reduction, as methods such as LDpred and

lassosum run quite slowly with a large number of SNPs. However, as we did not have access to raw

data of this magnitude, we generated our own simulated data, using the summary statistics available

from the GIANT consortium for height as a base (Lango Allen et al., 2010). This dataset contained

summary statistics for around 2.5 million SNPs. First, we identified SNPs from the summary statistics

that were common with those in the 1000 Genome dataset. We then used Hapgen2 (Su et al., 2011)

to generate genotypes, using the CEU (Utah residents with Northern and Western European ancestry)

population of the 1000 Genome data as a base. We used two methods for simulating the phenotype.

In the first method, 10,000 SNPs were chosen at random among all SNPs, and were assigned effect

sizes (βi) drawn from an exponential distribution. In the second method, we took into account that

causal SNPs were likely clustered together and sampled 10,000 causal SNPs in proportion to their local

True Discovery Rate (TDR), or 1 minus the local False Discovery Rate, where the local FDR for each

SNP was calculated using the method of Strimmer (2008). Because highly significant SNPs were often

clustered together (due to LD), in this simulation scheme causal SNPs were clustered. The effect sizes

(βi) of the causal SNPs also followed the exponential distribution. The total heritability of the simulated

data was constrained to be 0.45, in agreement with the SNP heritability estimated from Yang et al.

(2010). Another sample of 1,000 genotypes were simulated in Hapgen2 to form the validation sample,

and another 1,000 as the testing sample. We obtained SNP-wise correlation and p-values by linear

regression. We applied the clumping algorithm of PLINK 1.9 (Chang et al., 2015) to reduce the number

of SNPs. Briefly, the clumping algorithm works by first identifying the most signficantly related SNPs,

and then deleting SNPs around them that are correlated with them by more than a particular level of

r2 within a particular window. The algorithm finishes when all SNPs are “clumped” into one of these

groups represented by a SNP. In our simulations, we set the window size to be 250 kilobases, and the r2

thresholds to be one of 0.2, 0.5, and 0.8. Because of the time and memory required for this simulation,

we were only able to repeat the simulation twice.

In all of the above analyses, we carried out estimation by chromosome.
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Results

Although simulations were repeated four times for the WTCCC data and twice for the large simulated

data, here we present results from only one of the simulations to simplify presentation and also because

results were very similar across repeats. We verified that the observations drawn were consistent across

the repeats of the simulations. First, we examined the behaviour of lassosum given different shrinkage

parameters with respect to the WTCCC data. Figure 1 presents the results for the 7 diseases of the

WTCCC in one of our simulations, using the validation dataset for the reference panel. First, we may

note that since ridge regression corresponds to the scenario where λ = 0 in lassosum, it is no surprise

that the ridge regression prediction performance was very similar to that of lassosum when λ was set to

0.001, close to 0. Indeed we may regard the ridge regression results as the asymptotic result of lassosum

as λ → 0. Focusing on the ridge regression results, it is surprising to see that for every disease setting

s less than 1 often reduced its predictive power. Ridge regression itself did not appear to be useful in

improving PGS prediction, at least for this WTCCC dataset.
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Figure 1: The performance of lassosum using WTCCC genotype and phenotypes, using the validation dataset
for the reference panel. BD: Bipolar Disorder, CAD: Coronary Artery Disease, CD: Crohn’s disease, HT:
Hypertension, RA: Rheumatoid Arthritis, T1D: Type 1 diabetes, T2D: Type 2 diabetes, SS: The method of
Schäfer and Strimmer (2005). Triangles are the λ value selected using a validation dataset. Circles are values
selected using the pseudovalidation strategy proposed in this paper.
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However, as λ increased, the usefulness of setting s less than 1 was made manifest for some of the

diseases. In particular, for RA and T1D, the best predictive performance was achieved using a λ of

around 0.02 to 0.03, and s of 0.5. Using the values of s chosen by the method of Schäfer and Strimmer

(2005), which were around 0.44 to 0.80 for these two diseases, also led to similar performance. For the

other diseases, however, the value of lassosum over simple soft-thresholding (i.e. setting s = 1) was not

evident. For BD, CAD, T2D, and HT, in particular, the best predictive performance was often achieved

by setting s = 1 and λ to 0, which is equivalent to the simple PGS strategy using all available SNPs

without shrinkage.

An important contribution of this paper is the pseudovalidation strategy, developed for choosing

a suitable value of λ in the absence of a suitable phenotype in the validation dataset. It can also be

observed that this strategy compared well with using a validation dataset with phenotype and in most

cases it was possible to have a value of λ chosen that is close to the optimal. This was especially the

case for the diseases RA and T1D, whose signals were strong.

In Figure S2, we present the results using the simulated phenotypes rather than the real phenotypes.

Here, we see that when the number of causal SNPs was 1,000, the pattern of the results was similar

to what we observed for T1D, i.e., that accounting for LD by setting s to less than 1 improved the

prediction of the PGS. When the number of causal SNPs was 25,000, the effect of accounting for LD

was less apparent, similar to what we observed for BD, CAD, T2D, and HT. The more causal SNPs

there were, the smaller the average effect sizes, and the smaller the signal to noise ratio. Likewise, the

larger the sample size, the signal to noise ratio improved, and accounting for LD through setting s to

less than one was more useful for the larger sample size of 11,200 than for the smaller sample size of

5,600.

Next, we examined the effect of using different reference panels in prediction. The results using real

phenotypes in WTCCC are presented in Figure 2. For all diseases apart from T1D there did not appear

to be a consistent pattern in terms of the maximum achievable AUC and the AUC using validation and

pseudovalidation. Sometimes using the “wrong” reference panel of EAS (East Asian) led to the best

prediction. For T1D however, the results using the EAS was noticeably worse than using the other panels,

in terms of the maximum achievable AUC and the AUC attained using validation or pseudovalidation.
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This is not surprising given that the WTCCC data was made up of British subjects, and the EAS

subset of the 1000 Genome project is from East Asia. On the other hand, the use of the European

(EUR) and the Great Britain (GBR) subset both resulted in maximum AUC that is comparable with

that obtained using the WTCCC data as reference panel. In general, the use of the original dataset

(black line) and the validation dataset (red line) for the reference panel led to very similar predictive

performance. Interestingly, the use of the original and the validation dataset as reference panel resulted

in a greater difference in predictive power over different values of λ than the use of other reference

panels. In particular, for ridge regression, using these reference panels was often worse than the use of

other reference panels. Thus it appears the penalty of not using the “correct” λ is higher when using

the validation dataset as the reference panel.
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Figure 2: lassosum using different reference panels. BD: Bipolar Disorder, CAD: Coronary Artery Disease, CD:
Crohn’s disease, HT: Hypertension, RA: Rheumatoid Arthritis, T1D: Type 1 diabetes, T2D: Type 2 diabetes.
Original: The original dataset that produced the summary statistic; Validation: The validation dataset, which is
a sample of 1,200 from the WTCCC data; GBR: The Great Britain subset in the 1000 Genome data; EUR: The
European subset in the 1000 Genome data; EAS: The East Asian subset in the 1000 Genome data. Triangles are
the λ value selected using a validation dataset. Circles are values selected using the pseudovalidation strategy
proposed in this paper.
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The results for the same comparisons using simulated phenotypes are presented in Figure S3. Here,

the pattern of the results is by and large similar, although the disadvantage of using the EAS subset of

the 1000 Genome data as reference panel was less apparent than for T1D above. This was likely because

the causal loci were not as clustered together in these simulations, and the choice of reference panel thus

had a smaller effect on the predictive power of the PGS.

Next, we benchmarked the performance of lassosum to LDpred, a recently proposed PGS method

using summary statistics that also accounts for LD (Vilhjálmsson et al., 2015). The results are displayed

in Figure S4 for the WTCCC simulations using real phenotypes, and in Figure 3 using simulated

phenotypes. For lassosum, we used the method of Schäfer and Strimmer (2005) to select the shrinkage

parameter. For most of the diseases in the WTCCC dataset, the performance of LDpred, lassosum,

and simple soft-thresholding (setting s = 1 in lassosum) was similar, except for T1D, where lassosum

was superior. For the simulated phenotypes, when the number of causal SNPs was 1,000 and the sample

size was 11,200, the performance of LDpred and lassosum was similar, and both were superior to soft

thresholding. However, when the sample size was halved, the performance of LDpred was drastically

reduced. Halving the sample size did not affect lassosum in the same way. When the number of causal

SNPs was 25,000, and the sample size was 11,200, all methods performed similarly.

Finally we examined the performance of lassosum in a large simulated dataset made to have p

values distributions that resembled what we observed from the GIANT consortium height GWAS. In

Figure S5, we present the qq-plots of the simulated data versus the actual qq-plot generated from the

GIANT height summary statistics p-values. When the causal SNPs were randomly drawn across the

genome, and when 50,000 samples were simulated, the qq-plot closely resembled that from the GIANT

data. Although the GIANT height summary data were derived from around 130,000 participants, we

found that we could not increase the sample size further and not drastically decrease the observed p-

values. This is likely because the summary statistics from the GIANT consortium were not derived from

a simple regression, as our simulated p-values were, but from a genome-wide meta-analysis, and also

because genomic inflation control was applied to the summary statistics. When the causal SNPs were

sampled in proportion to their true discovery rate, the qq-plot also showed a much greater departure

from the null.
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Figure 3: Comparison of lassosum with soft thresholding and LDpred using simu-
lated phenotypes. Mean performance averaged over 10 repetitions. The shrinkage
parameter of lassosum was chosen by the method of Schäfer and Strimmer (2005).
Error bars represent 95% confidence intervals.
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The main aim of this simulation was to examine the performance of lassosum when applied to a

large number of SNPs, in this case around 2.5 million, and to see whether pre-filtering by clumping can

be an effective method in reducing the number of SNPs in the analysis. In Figure 4, we present the

results from this simulation. Although we also assessed the performance of LDpred in this scenario, for

reasons unknown to us, LDpred performed rather poorly and we do not show its results here.
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Figure 4: Behaviour of lassosum in large simulation dataset as assessed by the correlation with the true
predictor in the test dataset. SS: The method of Schäfer and Strimmer (2005). Triangles are the λ value
selected using a validation dataset. Circles are values selected using the pseudovalidation strategy proposed in
this paper.
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First, it can be observed that when the causal SNPs were randomly chosen from the summary

statistics loci, and when s was set to 1 (i.e. when LD was not accounted for), clumping was clearly

beneficial in increasing the predictive power of the PGS. Interestingly, this benefit remained even when

LD was accounted for using lassosum by setting s to less than 1, albeit to a lesser extent. When the

causal loci were assigned in a clustered manner, and when s was set to 1, clumping in fact reduced the

predictive power of the PGS. However, lassosum was able to more than compensate for this deficiency.

The reduction in predictive power was less when s was set to less than 1. When s was set to 0.5 or set

using the method of Schäfer and Strimmer (2005) (SS), there was some irregularity in the performance of

the PGS when no clumping was applied. We were uncertain of the reason for this, but the high density

of the SNPs and the high levels of correlations observed likely played a role. Moreover, we observed

that pseudovalidation failed to select a value of λ close to the best possible in this scenario also when

s was less than 1. When s was set to 0.5, the maximum predictive power of the PGS stayed roughly

the same across all clumping levels, and was clearly superior to s = 0.9 or s set using SS. Nonetheless,

pseudovalidation was not as effective in selecting the best possible λ for this level of s.

Discussion

In this paper, we have proposed the calculation of Polygenic Scores using a penalized regression approach

using summary statistics and examined its performance in simulation experiments. Our proposed ap-

proach, lassosum, in general appeared to have a more consistent level of predictive performance than

the recently proposed LDpred across a wide variety of simulation settings. This was somewhat surprising

to us, as LDpred demonstrated a clear advantage over approaches such as clumping and thresholding

in their paper, whereas this was not always clear in our simulations. We think this is due to the smaller

sample sizes used in our simulations, both in generating the summary statistics, and in the reference

panel. In any case, our results suggest that lassosum can be applied using reference panel of size 1,000

or even less, such as those available from the 1000 Genome consortium for specific populations. Indeed

the fact that lassosum works with reference panels of small sample sizes suggests that it will be useful

even when working with raw data, since one can readily speed up LASSO or elastic net estimation

by selecting a random subset of the data as reference panel if the number of sample is huge, as our
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simulations showed that this does not appear to greatly reduce the predictive power of the resulting

PGS.

Moreover, in most cases, the proposed method of pseudovalidation was found to have performance

that is almost as good as having validation data for selecting the appropriate λ. We have not examined

the issue of selecting the best s to use, although it appears that usually the choice of s has relatively

little influence on the performance of the PGS, with s ranging from 0.5 to 0.9 often resulting in similar

levels of predictive power. In theory, pseudovalidation can be applied in the selection of s also, although

we did not examine this option in details. The method of Schäfer and Strimmer (2005) may be used

if an automatic choice is desired, although our simulations using the large simulated dataset suggested

that this does not guarantee an optimal choice in terms of predictive power.

Our simulations also suggested that lassosum is not necessarily the best method for calculating PGS

in all situations. In particular, when the amount of information available in the summary statistics is

not great, it appears that often using coefficients from SNPs, without any adjustment for LD, may be

the best option. However, even in these scenarios, lassosum did not appear to be too far behind than

the best option.

Using a reference panel from a population with a totally different ancestry is likely to impair its

performance if the SNP signals are strong and correlated. Otherwise, it appears that the choice of

reference panel may not drastically affect the performance of lassosum.

In the presence of a large number of SNPs, our simulations suggested that clumping can be applied

for the pre-filtering of the SNPs. Indeed it seemed necessary if we were to use pseudovalidation to

select λ. When causal SNPs are in high LD with one another, clumping may impair the performance

of the standard PGS. However, using lassosum, this impairment can be avoided or at least reduced.

Combining a moderate degree of clumping (e.g. with r2 = 0.5) with a moderate degree of shrinkage

(e.g. with s = 0.5) in lassosum appeared to be a robust choice when dealing with a large number of

SNPs.

Some limitations of the present study are worth bearing in mind when considering these results.

Real life application of PGS is complicated by the fact that summary statistics may be confounded by

population stratification as well as between-population heterogeneity, especially when they are derived
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from genome-wide meta-analyses. These complications have not been considered in this paper. In the

design of our simulations, we chose to ignore these factors in order that we can understand the behaviour

of lassosum better. In particular, we have made use of homogenous or nearly homogenous populations

in our simulations. One potential problem in using meta-analytic summary statistics is that the original

data that generated the summary statistics is an amalgam of datasets across the world, with adjustment

for population stratification, and thus there is probably no one single homogenous dataset that is ideal

as the reference panel. Further research is needed to clarify what the best strategy is in this situation.

Another important issue concerns the relative merit of estimating PGS using summary statistics

data versus using the target dataset alone. When phenotype information is available in the target

dataset, conceivably PGS can be applied using the many Bayesian and penalized regression methods

that are available (Szymczak et al., 2009; Habier et al., 2011; Zhou et al., 2013; Abraham et al., 2013).

Summary statistics from large consortia are supposed to add power to the analyses. However, due

to possible between-population differences, summary statistics also contain noise. It is thus not at all

certain whether the added information available from the summary statistics can improve the accuracy

of the PGS compared to information available from the target population alone.

Finally, in the interest of directing future research in this area, we would like to mention other areas

of research that may potentially be merged to improve PGS calculations. Schork et al. (2013) showed

that different areas of the genomes have different false discovery rate, and therefore different likelihood of

being causally associated with a phenotype. Annotation information of the genome can thus potentially

be used to improve the predictive power of PGS. Likewise, the fact that many phenotypes have common

genetic determinants (pleiotropy) could potentially be exploited to improve PGS. A recent proposal in

this direction was given in Li et al. (2014). A proposal to combine both annotation information and

pleotropy for prioritizing GWAS results is given by Chung et al. (2014). There are therefore many

potential areas of research in PGS methodology, and we hope that the proposed method in this paper

will play a critical role in future developments.

25

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2016. ; https://doi.org/10.1101/058214doi: bioRxiv preprint 

https://doi.org/10.1101/058214
http://creativecommons.org/licenses/by-nd/4.0/


Supplemental Data description

Figure S1 Comparison of PGS constructed using true correlations and pseudocorrelations in the

WTCCC dataset

Figure S2 The performance of lassosum using WTCCC genotype and simulated phenotypes

Figure S3 lassosum using different reference panels with simulated phenotypes

Figure S4 Comparison of lassosum with soft thresholding and LDpred

Figure S5 qq-plot for large simulation study
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Schäfer J and Strimmer K (2005). A shrinkage approach to large-scale covariance matrix estimation

and implications for functional genomics. Statistical applications in genetics and molecular biology, 4,

Article32

Schork AJ, Thompson WK, Pham P, Torkamani A, Roddey JC, Sullivan PF, Kelsoe JR, O’Donovan

MC, Furberg H, Schork NJ et al. (2013). All SNPs are not created equal: genome-wide association

studies reveal a consistent pattern of enrichment among functionally annotated SNPs. PLoS genetics,

9(4), e1003449

So HC, Kwan JSH, Cherny SS, and Sham PC (2011). Risk prediction of complex diseases from family

history and known susceptibility loci, with applications for cancer screening. American journal of

human genetics, 88(5), 548–65

Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, Allen HL, Lindgren CM,

Luan J, Magi R et al. (2010). Association analyses of 249,796 individuals reveal 18 new loci associated

with body mass index. Nat Genet, 42(11), 937–948

Stahl EA, Wegmann D, Trynka G, Gutierrez-Achury J, Do R, Voight BF, Kraft P, Chen R, Kallberg HJ,

Kurreeman FAS et al. (2012). Bayesian inference analyses of the polygenic architecture of rheumatoid

arthritis. Nature genetics, 44(5), 483–9

Strimmer K (2008). A unified approach to false discovery rate estimation. BMC Bioinformatics, 9(1),

303

Su Z, Marchini J, and Donnelly P (2011). HAPGEN2: simulation of multiple disease SNPs. Bioinfor-

matics (Oxford, England), 27(16), 2304–5

30

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2016. ; https://doi.org/10.1101/058214doi: bioRxiv preprint 

https://doi.org/10.1101/058214
http://creativecommons.org/licenses/by-nd/4.0/
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