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Abstract. Gene set enrichment analysis is a widely used tool for analyz-
ing gene expression data. However, current implementations are slow due
to a large number of required samples for the analysis to have a good sta-
tistical power. In this paper we present a novel algorithm, that efficiently
reuses one sample multiple times and thus speeds up the analysis. We
show that it is possible to make hundreds of thousands permutations in a
few minutes, which leads to very accurate p-values. This, in turn, allows
applying standard FDR correction procedures, which are more accurate
than the ones currently used. The method is implemented in a form of an
R package and is freely available at https://github.com/ctlab/fgsea.
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1 Introduction

Gene set enrichment analysis is a very widely used method for analyzing gene
expression data. It allows to select from an a priori defined list of gene sets
those which have non-random behavior in a considered experiment. Compared
to a similar method of calculating Fisher p-values of overlap statistic it does
not require an arbitrary thresholding. This also allows the method to identify
pathways that contain many co-regulated genes but with small individual effects.

The method has a major drawback of being relatively slow. Because analyti-
cal from of the null distribution for the used gene set enrichment statistic is not
known, empirical null distribution has to be calculated. That can be done in a
straightforward manner by sampling random gene sets. However, a big number
of gene sets are usually tested simultaneously. This leads to a requirement of
a large number of samples for the test to have a good statistical power after a
correction for multiple testing.

In the original paper [3] Subramanian et al. developed an ad-hoc method for
multiple testing correction. However, the developed method is approximate for
the commonly used parameters and it is unclear how accurate it is.

Here we present a fast gene set enrichment analysis (FGSEA) method which
is much faster than the original method [3] in finding nominal p-values. The
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method is based on an algorithm to calculate cumulative gene set enrichment
statistic values, which allows to rapidly calculate multiple sample statistic values
from a single sample. Ability to get accurate nominal p-values achieved by the
method in a reasonable time leads to using well-developed general methods for
multiple testing correction such as Bonferroni or Benjamini-Hochberg.

The rest of the paper is structured as follows. First, in section 2 we formally
define gene set enrichment statistic and introduce related definitions. In section 3
we explain the idea of the algorithm on a simple mean statistic. Then, in sec-
tion 4 we show how GSEA statistic can be interpreted geometrically and present
the algorithm for fast computation of cumulative values that follows from such
interpretation. Finally, in section 5 we show how the algorithm works in practice
and how it is compared to the reference implementation.

2 Definitions

The preranked gene set enrichment analysis takes as input two objects: an array
of gene statistic values S and a list of query gene sets P . The goal of the analysis
is to determine which of the gene sets from P has a non-random behavior.

The gene statistic array S of the size |S| = N for each gene i, 1 ≤ i ≤ N ,
contains a value Si ∈ R that characterises the gene behavior in a considered
process. Commonly, if Si > 0 the expression of gene i goes up in a treatment
compared to control and Si < 0 means that the expression goes down. Absolute
value |Si| represents a magnitude of the change. Array S is sorted in a decreasing
order: Si > Sj for i < j. The value of N in practice is about 10000–20000.

The list of gene sets P of length |P | = m usually contains groups of genes
that are commonly regulated in some biological process. In this paper we assume
that all gene sets p ∈ P have a size upper bound of K ≈ 500 genes: |p| ≤ K,
∀p ∈ P .

To quantify a co-regulation of genes in a gene set p Subramanian et al.
introduced a gene set enrichment score function sr(p) that uses gene rankings
(values of S). The more positive is the value of sr(p) the more enriched the gene
set is in positively-regulated genes g with Sg > 0, accordingly, negative sr(p)
corresponds to enrichment of negatively regulated genes.

Value of sr(p) can be calculated as follows. Let k = |p|, NS = Σi∈p|Si|. Let
also ES be an array specified by the following formula:

ESi =


0 if i = 0,

ESi−1 + 1
NS |Si| if 1 ≤ i ≤ N and i ∈ p,

ESi−1 − 1
N−k if 1 ≤ i ≤ N and i 6∈ p.

The value of sr(p) corresponds to the largest by absolute value entry of ES:

sr(p) = ESi∗ , where i∗ = arg max
i

|ESi|.

For each p ∈ P we need to find the enrichment statistic value and to calculate
a p-value of this not to be random. To calculate a p-value for gene set p we can
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obtain an empirical null distribution by sampling n random gene sets of the same
size as p.

Such straightforward implementation takes Θ(mnK logK) time. For each of
m gene sets we need to perform n permutations for all of which we need to
calculate enrichment statistic value, that can be done in Θ(K logK) time.

3 Cumulative statistic calculation for mean statistic

Let first describe the idea of the proposed algorithm on a simple statistic of
mean rank sm:

sm(p) =
1

|p|
Σi∈pSi.

The idea of the algorithm is to reuse sampling for different query gene sets.
This can be done due to the fact that for an estimation of null distributions
samples have to be independent only for a specific gene set size. Samples can be
dependent between different sizes.

Instead of generating nm independent random gene set for each permutation
and each gene set we will generate only n radom gene sets of size K. Let πi be
an i-th random gene set of size K. From that gene set we can generate gene sets
for a all the query pathways Pj by using its prefix: πi,j = πi[1..|Pj |].

The next step is to calculate enrichment scores for all generated gene sets
πi,j . Instead of calculating enrichment scores separately for each gene set we will
calculate simultaneously scores for all πi,j for a fixed i. Using a simple procedure
it can be done in Θ(K) time.

Let us find enrichment scores for all prefixes of πi. This can be done by
element-wise dividing of cumulative sums array by the length of the correspond-
ing prefix:

sm(πi[1..k]) =
1

k
Σi∈πi[1..k]Si.

Selecting only the required prefixes takes an additional Θ(m) time.
The described procedure allows to find p-values for all query gene sets in

Θ(n(K+m)) time. This is about min(K,m) times faster than the straightforward
procedure.

4 Cumulative statistic calculation for GSEA statistic

For the GSEA statistic we use the similar idea: we will also be sampling only
gene sets of size K and from that sample will calculate statistic values for all
the other sizes. However, calculation of the cumulative statistic values for the
subsamples is more complex in this case.

In this section we only be considering positive mode of enrichment statistic
s+r . It can be defined as follows:

s+r (p) = ESi+ , where i+ = arg max
i

ESi.
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Calculation of s−r (p) = ESi− for i− = arg mini ESi is very similar. From these two
values it easy to find value of sr(p), which is equal to s+r (p) if |s+r (p)| > |s−r (p)|
or s−r (p) otherwise.

4.1 Geometric interpretation of GSEA statistic

It is helpful to look at GSEA statistic from a geometric point of view. Let us
consider N + 1 points (Fig. 1) with coordinates (xi, yi) for 0 ≤ i ≤ N such that:

(x0, y0) = (0, 0), (1)

xi = xi−1 + [i 6∈ p], ∀i ∈ 1..N, (2)

yi = yi−1 + [i ∈ P ] · |Si| ∀i ∈ 1..N. (3)

0

100

200

300

400

0 2500 5000 7500 10000 12500
rank

st
at

Fig. 1. A graph that corresponds to a calculation of GSEA statistic. Each breakpoint
on a graph corresponds to a gene present in the pathway. Dotted line cross at a point
which is the farthest up from a diagonal (dashed line). This point correspond to gene
i+, where the maximal value of ESi is reached

The calculation of s+r corresponds to finding the point farthest up from a
diagonal ((x0, y0), (xN , yN )). Indeed, it is easy to see that xN = N −|p| = N −k
and yN = Σj∈p|Sj | = NS, while the individual enrichment scores ESi can be
calculated as ESi = 1

NS yi −
1

N−kxi. Value of ESi is proportional to the directed
distance from the line going through (x0, y0) and (xN , yN ) to the point (xi, yi).

Let us fix a sample π of length K. To efficiently calculate cumulative values
s+r (π[1..k]) for k ≤ K we need a fast method of updating the farthest point
when a new gene is added. In that case we can add genes from π one by one and
calculate values s+r (π[1..k]) from the corresponding maximal distances.
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Because we are calculating values for π[1..k] for k ≤ K we know in advance
which K genes will be added. This allows us to consider K + 1 points instead of
N + 1 for each iteration k. Let array o contains order of genes in π, that is πo1
is minimal among π, πo2 is second minimal and so on. The coordinates can be
calclated as follows:

(xk0 , y
k
0 ) = (0, 0), (4)

xki = xki−1 + πoi − πoi−1
− [oi ≤ k] , ∀i ∈ 1..K, (5)

yki = yki−1 + [oi ≤ k] · |Si|, ∀i ∈ 1..K, (6)

where we set πo0 to be zero.
It can be shown that finding the farthest up point among (4)–(6) is equivalent

to finding the farthest up point among (1)–(3) with (xki , y
k
i ) being equal to

(xπoi
, yπoi

) calculated for p = π[1..k].
Consider xπoi

− xπoi−1
. By the definition of x it is equal to:

xπoi
− xπoi−1

=

πoi∑
i=1

[i 6∈ π[1..k]]−
πoi−1∑
i=1

[i 6∈ π[1..k]] =

πoi∑
i=πoi−1

+1

[i 6∈ π[1..k]] =

πoi − πoi−1 −
πoi∑

i=πoi−1
+1

[i ∈ π[1..k]].

By the definition of o, in the interval [πoi−1 + 1, πoi − 1] there are no genes
from π and, thus, from π[1..k]. Thus we can replace sum with its last member:

xπoi
− xπoi−1

= πoi − πoi−1 − [πoi ∈ π[1..k]] = πoi − πoi−1 − [oi ≤ k].

We got the same difference as in (5).
Now consider yπoi

− yπoi−1
. By the definition of y it is equal to:

yπoi
−yπoi−1

=

πoi∑
i=1

[i ∈ π[1..k]]·|Si|−
πoi−1∑
i=1

[i ∈ π[1..k]]·|Si| =
πoi∑

i=πoi−1
+1

[i ∈ π[1..k]]·|Si|.

Again, in the interval [πoi−1
+1..πoi−1] there are no genes from π[1..k]. Thus

we can replace the sum with only the last member:

yπoi
− yπoi−1

= [πoi ∈ π[1..k]] · |Si| = [oi ≤ k] · |Si|.

We got the same difference as in (6).
We do not need to consider other points, because points oi−1..oi − 1 have

the same y coordinate and oi−1 is the leftmost of them. Thus, when at least one
gene is added the diagonal ((x0, y0), (xN , yN )) is not horizontal and oi−1 is the
farthest point among oi−1..oi − 1.
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6 A. A. Sergushichev

4.2 Square root decomposition

Let consider what happens when gene πk is added to query set π[1..k−1] (Fig. 2).
Let rk be a rank of gene πk among genes π, then coordinate of points (xi, yi)
for i < rk do not change, while all (xi, yi) for i ≥ rk are changed on (∆x, ∆y) =
(−1, |Sπk

|).
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Fig. 2. Update of a GSEA graph when gene πk ≈ 800 is added. Only a fragment is
shown. Black graph corresponds to the GSEA graph for gene set π[1..k−1], gray graph
corresponds to π[1..k]. A part of the graph to left of x = xrk does not change and the
other part is shifted to the top-left corner. The diagonal ((x0, y0), (xN , yN )) is rotated
counterclockwise.

To make fast incremental updates we will decompose the problem into mul-
tiple smaller ones. For simplicity we assume that K + 1 is an exact square of
an integer b. Let split K + 1 points into b consecutive blocks of the size b:
{(xk0 , yk0 ), ..., (xkb−1, y

k
b−1)}, {(xkb , ykb ), ..., (xk2b−1, y

k
2b−1)} and so on.

For each of b blocks we will store and update the farthest up point from
the diagonal. When we know for each block its farthest point we can find the
globally farthest point by a simple pass in O(b) time.

Next, we show how to update the farthest points in blocks in amortized time
O(b). This taken together with one O(b) pass will get us an algorithm to update
the globally farthest point in amortized O(b) time.

Below we use c = brk/bc as an index of a block where gene πk belongs.

First, we describe the procedure to update points coordinates. We will store
xi coordinates using two vectors: B of size b and D of size K + 1, such that
xi = Bi/b + Di. When gene πk is added all xi for i ≥ rk are decremented by
one. To reflect this we will decrement all Bj for j > c and decrement all Di

for rk ≤ i < cb. It is easy to see that it takes O(b) time. After this update

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 20, 2016. ; https://doi.org/10.1101/060012doi: bioRxiv preprint 

https://doi.org/10.1101/060012
http://creativecommons.org/licenses/by/4.0/


Fast preranked gene set enrichment analysis 7

procedure we can get value xi in O(1) time. The same procedure is applied for
y coordinates.

Second, for each block we will maintain an upper part of its convex hull.
Having convex hull is useful because the farthest point in block always lays on
its convex hull. All blocks except c have the points either not changed or shifted
simultaneously on the same value. That means that lists of points on the convex
hulls for these blocks remain unchanged. For the block c we can reconstruct
convex hull from scratch using Graham scan algorithm. Because the points are
already sorted by x coordinate, this reconstruction takes O(b) time. In total, it
takes O(b) time to update the convex hulls.

Third, the farthest points in blocks can be updated using the stored con-
vex hulls. Consider a block where the convex hull was not changed (every block
except, possibly, block c). Because diagonal always rotates in the same counter-
clockwise direction, the farthest point in block on iteration k either stays the
same or moves on the convex hull to the left of the farthest point on the (k−1)-
th iteration. Thus, for each such block we can compare current farthest point
with its left neighbor on the convex hull and update the point if necessary. It
is repeated until the next neighbor is closer to the diagonal than the current
farthest point. In the block c we just find the farthest point in a single pass by
the points on the convex hull.

Using potential method we can show that the updating farthest points takes
O(b) amortized time. Let a potential after adding k-th gene Φk be a sum of
relative indexes of the farthest points for all the blocks. As there are b blocks of
size b the sum of relative indexes lies between 0 and b2. Thus, Φk = O(b2). For
an update of all b− 1 blocks except c we need to make tk = b− 1 + z operations
of comparing two points, where z is the number of times the farthest points were
updated. This can take up to Θ(b2) time in the worst case. However, it can be
noticed, that potential change Φk−Φk−1 is equal to −z+O(b): the sum of indexes
is decreased by a number of times the farthest points were updated plus O(b) for
the block c where the index can go from 0 to b− 1. This gives an amortized cost
of k-th iteration to be ak = tk + Φk − Φk−1 = b− 1 + z − z +O(b) = O(b). The

total real cost of K iterations is
∑K
k=1 ak +Φ0−ΦK = O(Kb) +O(b2) = O(Kb),

which means amortized cost of one iteration to be O(b).
Taken together the algorithm allows to find all cumulative enrichment scores

sr(π[1..k]) in O(Kb) = O(K
√
K) time. The straightforward implementation of

calculating cumulative values from scratch would take O(KK logK) time. Thus,
we have improved the performance O(K logK√

K
) times.

4.3 Implementation details

We also implemented an optimization that does not build convex hull from
scratch for a changed block c, but only updates the changed points. This does
not influence on asymptotic performance, but decreases the constant factor.

First, we start updating convex hull from position rk and not from 1. To be
able to do this, we have an array prev that for each gene g ∈ π stores a previous
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8 A. A. Sergushichev

point on a convex hull if g were the last gene in the block. This actually is the
same as the top of the stack in Graham algorithm and represent the algorithms
state for any given point. As all points h to the left of g are not changed prevh
also remains unchanged and need not to be recalculated.

Second, we stop updating the hull, when we reach the point on the previous
iteration convex hull. We can do this because every point to the left of g is
rotated counterclockwise of any point to the right of g, which means that the
first point on the convex hull right of g on (k − 1)-th iteration remains being a
convex hull point at k-th iteration.

5 Experimental results

To assess the algorithm performance we ran the algorithm on a T-cells differen-
tiation dataset [4]. The ranking was obtained from differential gene expression
analysis for Naive vs. Th1 states using limma [2]. From that results we selected
12000 genes with the highest mean expression levels.

As a pathway databases we used Reactome database [1]. There were 586 gene
sets that had overlaps with the selected genes of the size 15 to 500 (common gene
set size limits for preranked gene set enrichment analysis).

We compared the algorithm to the reference GSEA implementation [3] ver-
sion 2.1.

Experiments were run on an Intel Core i3 2.10GHz processor. Both methods
were run in one thread.

We ran reference GSEA with default parameters. The permutation number
was set to 1000, which means that for each input gene set 1000 independent
samples were generated. The run took 100 seconds and resulted in 79 gene sets
with GSEA-adjusted FDR q-value of less than 10−2. All significant gene sets
were in a positive mode.

First, to get a similar nominal p-values accuracy we ran FGSEA algorithm
on 1000 permutations. This took 2 seconds, but resulted in no significant hits
due after multiple testing correction (with FRD ≤ 1%). The same effect required
GSEA authors to develop a custom method approximate FDR correction.

Second, to get a similar number of significant hits FGSEA was run with 10000
permutations. It took 9 seconds and resulted in 78 gene sets with BH-adjusted
p-value of less than 10−2. Is is important to note, that, unlike for GSEA, 3 of
these 78 gene sets were in a negative mode.

Last, we ran FGSEA with a similar total running time. Withing 90 seconds
FGSEA was able to do 100000 permutations. This resulted in 77 gene sets with
BH-adjusted p-value of less than 10−2 (3 sets were in the negative mode). The
minimal nominal p-value was 1.23 · 10−5.

6 Conclusion

Preranked gene set enrichment analysis is a widely used tool in analysis of gene
expression data. However, current implementations are slow due to a lot of sam-
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pling. Here we present an algorithm that allows to decrease the number of re-
quired samples while keeping the same accuracy of nominal p-values. This allows
to achieve more accurate p-values in a faster time. Consequently, gene sets can
be ranked more precisely in the results and, which is even more important, stan-
dard multiple testing correction methods can be applied instead of approximate
ones as in [3].

Availability

The FGSEA method implemented as a package for R and is available at https:
//github.com/ctlab/fgsea along with the example data and corresponding
results.
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