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Abstract 
The visual system has the remarkable ability to integrate fragmentary and degraded 
visual input into a perceptually organized collection of surfaces, shapes and objects. 
Here we test the long-standing maxim that such integrative functions must be 
attributed to attentional selection and conscious access. Employing a full-factorial 
design of masking and the attentional blink, we show that behaviorally, both masking 
and the withdrawal of attention affect perceptual decisions about the presence of 
integrated surface structure from fragmented input. However, when using a 
multivariate classifier on electroencephalogram data, we are able to decode the 
presence of integrated percepts equally well regardless of the availability of attention. 
In contrast, masking destroys any evidence for integrated percepts, while leaving 
feedforward processing intact. Thus, there is a fundamental difference in the way 
masking and attention impact perceptual integration, despite having a similar impact 
on behavioral decisions. Whereas masking disrupts perceptual integration, the brain is 
able to organize fragmented visual input into perceptually meaningful wholes in the 
absence of conscious access. 
 
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 21, 2016. ; https://doi.org/10.1101/060079doi: bioRxiv preprint 

https://doi.org/10.1101/060079


Keywords:  
Perceptual integration, consciousness, access, masking, attentional blink, perceptual 
organization, neuronal integration, perceptual inference, feature integration, top-down 
attention 
 
Dating back to Helmholtz, conscious perception is thought to result from the 
unconscious integration of spatially scattered features, allowing the brain to make 
perceptual inferences about visual input1. Historically, attentional selection is thought 
to be required for this process of integration2. In this view, attention is crucial to 
promote unconscious representations to conscious ones, a position that echoes 
through in current theorizing about consciousness3,4. However, the link between 
perception and conscious access has been called into question in recent years, 
suggesting that perceptual structures may be formed despite not being consciously 
detected5-7. In this counterview, conscious access does not play a causal role in 
perception itself, so that integrated perceptual representations may exist without it. 

The current study employs the Kanizsa illusion (see Fig. 1a), together with 
two well-known manipulations of consciousness, to assess whether neural 
representations can reach a state of integration in which features are combined to form 
perceptual entities, despite not being consciously detected. Kanizsa figures are similar 
to control figures in terms of physical input, but they have different perceptual 
outcomes, notably an illusory surface region with accompanying contours8 and 
increased brightness9. These emergent properties are a primary demonstration of 
perceptual integration, as the constituent parts in isolation (the inducers) do not carry 
any of the effects that are brought about by their configuration. Earlier work has 
shown that Kanizsa configurations can facilitate detection of target stimuli, with and 
without competing objects10-14. However, in these studies conscious access has been 
implemented in various ways, while the dependent measure was always a behavioral 
response. The only study that has measured the neural substrate of perceptual 
integration in the absence of conscious report, postponed the behavioral response until 
after data collection7, leaving open the possibility that subjects were consciously 
accessing the stimulus during scanning but had forgotten it at test time15. The level at 
which conscious access and perceptual integration interact thus remains unclear. The 
current study employed several electroencephalographic (EEG) measures to 
investigate the underlying neural substrate of perceptual integration under two very 
different types of manipulations known to affect consciousness: one in which the 
pattern was either masked or not masked and one in which attention was either 
available or not available (as induced by the attentional blink; AB) (see Fig. 1b for the 
factorial design). We expected masking to affect behavioral and neural measures of 
perceptual integration14,16,17. The crucial question was whether the same result would 
occur when conscious access was prevented by withdrawing attention, as would be 
predicted if access reflects or causes perceptual integration. 
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Results	
  
T1	
  classification	
  accuracy	
  reflects	
  perceptual	
  integration	
  
We recorded 64-channel EEG data from human subjects in two EEG sessions. Two 
black target figures (T1 and T2) were shown in a rapid serial visual presentation 
(RSVP) containing red distractors. Each target could either be a Kanizsa or a control 
figure (Fig. 1a and Fig. S1). T1 and T2 lag was varied, inducing an attentional blink at 
short lags (300 ms) with recovery at long lags (≥600 ms). In half of the trials, T2 was 
strongly masked using high contrast masks. In the other half, low contrast masks were 
used, so that there was no effect of masking (see examples of masks in Fig. S2). 
Examples of two of the four trial types are shown in Fig. 1b. At the end of each trial, 
subjects indicated whether T1 and/or T2 contained a surface region (see online 
methods for details). Accuracies were computed as hit rate (HR) minus false alarm 
rate (FAR), reflecting how well subjects were able to distinguish surface from control 
figures, thus serving as a behavioral index of perceptual integration. T1 accuracy was 
high, at .90 (s.e.m. .02). 

To establish a neural index for perceptual integration, we trained a linear 
discriminant to classify trials as either Kanizsa or control using EEG data. The 
training set was obtained from an independent RSVP task in which subjects pressed a 
button when a black figure would repeat (1-back task), while ignoring red distractors 
(see Fig. S3). To ensure that response-related processes would not contaminate the 
neural index for perceptual integration, response type (repeat or not) was independent 
from stimulus class (Kanizsa or control), and all response trials were excluded from 

10 ms

150 ms

T1

T2

long lag
     600-900 ms

T2

T1
short lag
    300 ms

high contrast
masks

low contrast
masks

AB / unmaskedno AB / strongly masked

Examples of Kanizsa images Examples of control images

b

a

10 ms

150 ms

Figure 1. Experimental design. (a) Examples of different Kanizsa 
images and their controls as used in the experiment, see Fig. S1 for 
the complete stimulus set. (b) Examples of two of the four trial types 
in the factorial design: without an attentional blink (long lag) and 
strong masking (left) and with an attentional blink (short lag) and no 
masking (right).
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the training set. Next, we used the resulting classifier on the experimental runs, 
computing classification accuracy (HR-FAR, as in the behavioral measure) for every 
time sample. Single trial classification accuracy (Kanizsa versus control) for T1 was 
well above chance, peaking at ~264 ms (Fig. 2a), and was strongly occipital in nature 
(see correlation/class-separability map18 in Fig. 2b, online methods for details). To 
provide a direct link between peak classification accuracy and perceptual integration, 
we computed behavioral and classifier accuracy for 12 Kanizsa-control pairs (see Fig. 
S1 and online methods for characterization of the full stimulus set). A robust linear 
regression analysis19 showed that T1 peak classification performance predicted T1 
behavior with high accuracy (R2=.61, p<.005, see Fig. 2c), confirming that peak 
classification accuracy reliably reflects perceptual integration. 

 

	
  
	
  
The	
  attentional	
  blink	
  and	
  masking	
  differentially	
  impact	
  behavioral	
  and	
  
neural	
  measures	
  of	
  perceptual	
  integration	
  
We then established how this marker of perceptual integration is impacted by 
attention and masking. In terms of behavior, we observed the classic deleterious 
effects of both masking  (mask vs. no mask, F1,10=426.54, P<10-8) and the attentional 
blink (short vs. long lag, F1,10=51.89, P<10-4) on accuracy (Fig. 2f). There was also an 
interaction (F1,10=52.17, P<10-4), which was entirely driven by the difference between 
unmasked long- and short-lag trials (post-hoc t-test, P<10-4).  
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Fig 2. Peak classification accuracy reflects perceptual integration.  (a) T1 EEG mean decoding accuracy of 
perceptual integration over time, black line reflects p<.05, +/- SEM in light blue. (b) and the correlation/class 
separability map reflecting the underlying neural sources for maximum decoding at ~264 ms, see methods. 
(c) The degree to which classification accuracy at ~264 ms predicts behavioral sensitivity to perceptual 
integration at T1. The legend shows six representative Kanizsa figures that correspond to the colored data 
points. Color follows the order of classification accuracy in T1, for the full legend see figure S1. (d) T2 EEG 
decoding accuracy over time for the four experimental conditions and (e) maximum decoding accuracy at 
~264 ms for these conditions. (f) Behavioral sensitivity to perceptual integration for the four conditions 
(compare to e). Error bars are mean +/- SEM, individual data points are plotted in light in the background.

b correlation/class
separability map

-3

-2

-1

0

1

2

3

at ~264 ms

z-
sc

or
e

be
ha

vi
or

al
 a

cc
ur

ac
y

hi
t r

at
e 

- f
al

se
 a

la
rm

 ra
te

long lag     short lag

0     0.1     0.2     0.3     0.4
0

0.2

0.4

0.6

0.8

1

R 2 = 0.61
pbeta< .005

d long lag short lag
T2 classification

-500 0 500

0

0.1

0.2

0.3

-500 0 500

0

0.1

0.2

0.3

EE
G

 d
ec

od
in

g 
ac

cu
ra

cy
m

as
ke

d
un

m
as

ke
d

**
*

**
*

-0.1

0

0.1

0.2

0.3

0.4 unmasked
masked

at ~ 264 ms

ns

ns

unmasked
masked

**
***
**

**

-0.2

0

0.2

0.4

0.6

0.8

1

***

ns

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 21, 2016. ; https://doi.org/10.1101/060079doi: bioRxiv preprint 

https://doi.org/10.1101/060079


 We hypothesized that if both masking and the attentional blink impact 
perceptual integration, they should affect neural markers of perceptual integration in 
similar ways. To enable a direct comparison with behavior, we extracted classification 
accuracy in the four experimental T2 conditions. Fig. 2d shows the entire time course, 
Fig. 2e shows peak classification accuracy at 264 ms (latency taken from T1). A 2×2 
analysis of variance (ANOVA) showed a highly significant main effect of masking 
(F1,10=37.68, P<.001), but no main AB effect (short vs long lag) (F1,10=2.16, P=.172), 
and no significant interaction between masking and AB (F1,10=0.02, P=.963). Post-
hoc t-tests confirmed significant costs for masked versus unmasked stimuli for both 
long and short lag (both P<.001), but no significant differences between long lag and 
short lag (both P>.25).  

Thus, while we observe a strong effect of masking in both brain and behavior, 
the classic effect of diminished performance on short lag (AB) trials only occurs in 
behavior. To further statistically underpin the differential effect of attentional 
selection on behavioral and neural measures of perceptual integration, we entered 
both measurements into a large 2×2×2 ANOVA with factors measure (normalized 
behavioral / normalized neural), AB (yes/no) and masking (yes/no). The validity of 
treating neural and behavioral HR-FAR data as repeated measures of the same thing 
(i.e. classification of a perceptual object) is discussed in the online methods section. In 
line with the other results, this analysis showed a three-way interaction effect driven 
by differences in behavioral and neural classification accuracies (F1,10=9.30, P=.012), 
as well as a two-way interaction between measure and AB (F1,10=10.92, P=.008) but 
no interaction between measure and masking (F1,10=1.51, P=.247). 
 
Feedforward	
  processing	
  remains	
  intact	
  during	
  masking	
  
These data support the idea that masking disrupts perceptual integration whereas the 
attentional blink does not. However, a concern might be that masking wiped out all 
processing of the stimulus, rather than specifically affecting perceptual integration, 
resulting in a floor effect. To test this, we selected a subset of the stimulus set that 
could be divided orthogonally according to its impact on contrast detection or 
perceptual integration. Fig. 3a illustrates this: the horizontal axis captures differences 
in perceptual integration (surface perception on the right but not on the left), while the 
vertical axis captures difference in bottom up feature contrast (high contrast at the top 
versus low contrast at the bottom, see Fig. S5 and online methods for a specification 
of the entire stimulus set). If masking wipes out all stimulus processing, we should no 
longer be able to classify high versus low contrast stimuli. We computed 
classification accuracy for feature contrast on the one hand and perceptual integration 
on the other, using a within-condition eight-fold cross validation scheme (see online 
methods for details). The results are shown in Fig. 3b-c. In an early time window ~80-
90ms, both masked and unmasked stimuli showed highly significant classification 
accuracies for feature contrast (left panes, masked: t(10)=7.45, p<10-4; unmasked: 
t(10)=8.82, p<10-5, statistics at ~92 ms, T1 peak latency). Thus, despite strong 
masking, the bottom-up signal is processed up to the point of contrast detection. 
Conversely, masking does wipe out classification accuracy on the perceptual 
integration dimension (right panes, masked: t(10)=-.19, p=.852; unmasked: 
t(10)=6.82, p<10-4). Note that for all analyses, the same type of masks would follow 
all stimulus classes (regardless of whether these were Kanizsa, control, high- or low 
contrast), such that the masks themselves could not bias classification accuracy. These 
results show that masking selectively abolishes perceptual integration, leaving 
feedforward processing largely intact (corroborating previous work16,17).  
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Fig 3. Separating out perceptual integration and feature contrast detection. (a) 
Example stimuli that were used to orthogonally classify feature contrast and 
perceptual integration on the same data. (b) Classification accuracies across 
time for contrast detection and perceptual integration (left) as well as correlation/-
class separability maps (right) for T1, (c) and for unmasked (left) and strongly 
masked trials (right). Line graphs contain mean +/- SEM.
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Masking	
  selectively	
  disrupts	
  perceptual	
  integration	
  
Another concern might be that EEG classification accuracy is an all-or-none 
phenomenon whereas behaviour relies on graded evidence. In such a scenario, the 
behavioral effects on perceptual integration (Fig. 2f) might not be reflected in 
classification accuracy (Fig. 2e) due to a lack of sensitivity of the classifier to smaller 
effects such as those observed during the AB. To test this hypothesis, we conducted a 
control experiment in which we used a staircase to titrate mask contrast to get a 
weaker behavioral effect of masking, similar in magnitude to the effect of the 
attentional blink in Fig. 2f (see online methods for details). Fig. 4a shows the resulting 
behavioral effect of weak masking in this experiment. When computing classification 
accuracy on these data, we see that it nicely follows behavior (Fig. 4b-c), t(5)=3.82, 
P=.012. Together, these results show that the drops in behavioral accuracy caused by 
masking and the attentional blink have different root causes: masking impacts 
perceptual integration directly, whereas the attentional blink leaves it intact. 
	
  

	
  
	
  
Perceptual	
  integration	
  predates	
  conscious	
  access	
  
So what neural process causes the dip in behavioral accuracy during the attentional 
blink? A natural hypothesis would be that the attentional blink interferes with 
conscious access after perceptual integration has already taken place. If true, we 
should be able to observe evidence of a selection process that results in conscious 
access at a later point in time. Investigating this issue requires a classifier that is 
sensitive to such a selection mechanism. Since the independent training runs that we 
used for training the classifier in the first analysis were designed to control for the 
direct influence of decision-related processes, these would not capture such a 
selection mechanism. The neural response to T1 however, does involve a conscious 
decision about the presence of a Kanizsa. We therefore trained a classifier on T1 data, 
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and tested it on T2 data (see online methods for details). Fig. 5a and 5b show 
classification accuracies for the four experimental conditions when using this T1 
classifier. 

We again find the initial peak at 264 ms that was described before. Despite the 
potential contribution of decision mechanisms to classification accuracy when 
training on T1, this peak follows a pattern that is similar to the pattern that we 
observed when training on the independent training runs (cf. Fig. 2e and Fig 5b, top), 
and which is not in line with behavioral accuracy (Fig. 2f, see caption of Fig. 5b for 
statistical tests). So at what point in time is the behavioral effect of the attentional 
blink reflected in the neural data? The most notable difference when training on T1, is 
a second peak in classification accuracy occurring around 406 ms, and which is 
heavily modulated by AB (see top of Fig. 5a, online methods and Fig. S7). At this 
time point, the pattern of results is identical to that obtained in behavior (cf. Fig. 2f 
and Fig. 5b, bottom). All manipulations had highly significant effects on classification 
accuracy: a main effect of AB (F1,10=7.96, P=.018), a main effect of masking 
(F1,10=130.19, P<10-6), as well as a strong interaction effect (F1,10=14.92, P=.003).  

To again directly compare behavioral to neural data at 406 ms, we once more 
entered the normalized measurements into a large 2×2×2 ANOVA with factors 
measure (behavioral/neural), AB (yes/no) and masking (yes/no). The results show 
highly significant main effects of AB (F1,10=23.65, P<.001), masking (F1,10=528.18, 
P<10-9), as well as a strong interaction effect between AB and masking (F1,10=51.55, 
P<10-4), but importantly, now no two- or three-way interaction effects with 
measurement (neural/behavioral, all F1,10<3.08,  all P>.110), underpinning the 
similarity between behavioral and neural data pattern at this time point. The 
correlation/class separability map at 406 ms (Fig 5b, bottom) has the same topology 
and as that of a classical P300 (or P3b), which has often been associated with 
conscious access and perceptual decision-making20-22. Our data provide converging 
evidence that neural signals around the time frame of the P300 reflect a post-
perceptual signal that is involved in conscious access, rather than perceptual 
integration itself. What we unambiguously show is that perceptual integration 
precedes such conscious access. 

In a statistical sense we have so far regarded behavioral and classification 
accuracy data as repeated measures of the same underlying perceptual object. Another 
approach would be to view neural mechanisms as the cause of behavioral outcomes, 
by assessing the degree to which the neural data are able to serve as a model for 
behavior across time. To do this, we used normalized classification accuracies as 
reference points to determine the goodness of fit (GOF) with normalized behavioral 
accuracies as test data. As a measure of goodness of fit, we used the normalized root 
mean square error (NRMSE) cost function given by: 

 

𝑓𝑖𝑡 𝑡 = 1−
| 𝑥𝑟𝑒𝑓 : , 𝑡 − 𝑥 : |

| 𝑥𝑟𝑒𝑓 : , 𝑡 −𝑚𝑒𝑎𝑛(𝑥𝑟𝑒𝑓 : , 𝑡 ) | 

 
where x denotes the test data (behavioral accuracy), xref denotes the neural data 
(classification accuracy), || indicates the 2-norm (Euclidean length) of a vector, fit is a 
row vector of length Nt and t = 1,...,Nt, where Nt is the number of time points. 
NRMSE costs vary between -Infinity (bad fit) to 1 (perfect fit). If the GOF cost 
function is equal to zero, then x is no better than a straight line at matching xref. We 
obtained this fitness measure separately for the different factors by collapsing the 
neural and behavioral data either across the masking factor, across the AB factor, or 
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Fig 5. The impact of masking and attention on perceptual integration over time (a) 

EEG decoding accuracy for the four experimental T2 conditions when training on 

T1. (b) EEG decoding accuracies and correlation/class separability maps plotted 

at peak classification performance 264 ms (top) and at the second peak 406 ms 

(bottom). Blue lines represent the unmasked condition, red lines represent the 

masked condition. At the 264 ms time point, there was a strong main effect of 

masking (F
1,10

=91.63, P<10-5), a main effect of AB (F
1,10

=8.22, P=.017), and a 

trending interaction between masking and AB (F
1,10

=4.06, P=.071). To test directly 

whether the measurement source (neural or behavioral) at 264 ms results in a 

differential effect on classification accuracy, we entered the normalized 

measurements into a large 2×2×2 ANOVA with factors measure 

(behavioral/neural), AB (yes/no) and masking (yes/no), see online methods. There 

was no interaction between measure and masking (F
1,10

=.274, P=.61), but there 

was an interaction between measure and AB (F
1,10

=6.75, P=.027), as well as a 

trending three-way interaction (F
1,10

=4.50, P=.060), confirming that even when 

decision mechanisms are allowed contribute to classifier performance, the neural 

data at 264 ms cannot explain the pattern of results that is observed in behavior. 

The 406 ms time point on the other hand follows the same pattern as behavioral 

accuracy (see main text for statistics) and has a spatial distribution that is 

homologous to that of a classical P300. (c) An estimation of the goodness of fit 

when using the normalized EEG classification accuracy data as a model for the 

normalized behavioral detection data (left axis). Datasets are either collapsed 

over the AB dimension (GOF masking), over the masking dimension (GOF 

attention) or without collapsing over either dimension (GOF masking, attention 

and their interaction). T1 decoding accuracy is plotted as a green shade in the 

background for reference (right axis). Not until after the perceptual integration 

signal has peaked at 264 ms does the black line overtake the red line, showing a 

postperceptual contribution of attention to behavioral accuracy. 

b

-3

-2

-1

0

1

2

3

at ~264 ms

z
-s

c
o

re

at ~406 ms

long lag short lag

-500 -400 -300 -200 -100 0   100 200 300 400 500 600 700 800 900 1000

g
o
o
d
n
e
s
s
 o

f 
fi
t 
(G

O
F

)

u
s
in

g
 N

R
M

S
E

 a
s
 a

 c
o
s
t 
fu

n
c
ti
o
n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

EEG perceptual 

integration (right axis)

GOF masking only 

GOF attention only 

GOF masking, attention 

         and their interaction

E
E

G
 d

e
c
o
d
in

g
 a

c
c
u
ra

c
y

0.1

0.2

0.3

0.4

0.5
264 ms 406 ms

c

264 ms 406 ms 264 ms 406 ms

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

long lag short lag

T2 classification

-500 0 500-500 0 500

Predicting behavioral responses from neural classification data

E
E

G
 d

e
c
o
d
in

g
 a

c
c
u
ra

c
y

m
a
s
k
e
d

u
n
m

a
s
k
e
d

E
E

G
 d

e
c
o
d
in

g
 a

c
c
u
ra

c
y

*
*
*
*
*

*
*
*
*
*

-0.1

0

0.1

0.2

0.3

0.4

0.5

*

ns

*
*
*
*

*
*

-0.1

0

0.1

0.2

0.3

0.4

***

ns

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 21, 2016. ; https://doi.org/10.1101/060079doi: bioRxiv preprint 

https://doi.org/10.1101/060079


without regard to either factor (see online methods for details).  The results are shown 
in Fig. 5c, where we also plot T1 classification accuracy as a reference for the time 
course of perceptual integration. Fig. 5c confirms that up to 264 ms, the masking 
manipulation uniquely models (predicts) behavior, indeed even better than when AB 
is also allowed to contribute to the fit. Only after 264 ms does attention start to 
contribute to behavioral outcomes, trailing the perceptual integration signal itself and 
in line with prior analyses. 

Discussion	
  
We show that EEG can be used to decode the presence of integrated percepts in visual 
cortex. Furthermore, we show that masking obliterates behavioral accuracy and 
classifier performance while retaining the ability to decode feature contrast, showing 
that it uniquely disrupts perceptual integration while leaving feedforward signals 
intact16,17. Interestingly however, peak classification performance on integration 
remains unchanged during the attentional blink, despite causing a marked dip in 
behavioral accuracy. This shows that the brain is able to integrate features into 
perceptual objects in the absence of conscious access. 

 This conclusion is seemingly at odds with experiments on object-based 
attention. For example, in an experiment by Roelfsema and colleagues23, monkeys 
were trained to perform a curve-tracing task in a display with overlapping curves. 
Attention to the task-relevant curve resulted in a spreading activation across V1 
neurons that coded the features belonging to the curve, thus binding the constituent 
elements of the curve together. This suggests that attention is the glue that unites an 
object, in line with the classical framework put forward by Treisman2, and 
inconsistent with the position that attentional selection is not required for perceptual 
integration. Other studies have shown that such spreading activation follows Gestalt 
rules24, and encapsulates task irrelevant features as long as they are part of a task 
relevant object25,26. However, with few exceptionse.g.27, task relevance and selection 
are intertwined in experiments on object-based attention. The relationship between 
object-based attention and perceptual integration might therefore be caused by task 
relevance, rather than by conscious access per se. 

Here we show that Kanizsa figures can be integrated in visual cortex despite 
not being promoted to a consciously accessible state through attentional selection. In 
contrast, masking destroys perceptual integration regardless of task demands. 
Naturally, this difference must be reflected in neural mechanisms. Dynamic feature 
grouping that underlies perceptual integration is thought to rely on cortico-cortical 
feedback16,28-35. While much remains to be learned about the origin of these feedback 
signals, evidence suggests that they originate from within visual cortex29,30,33-38. 
Although attentional selection also involves feedback, this feedback originates from 
frontoparietal cortex20,39-44. In the consciousness literature, such long-range 
integration is often referred to as ‘global ignition’3,45. The current data suggest that 
global ignition is not required to effectuate perceptual integration within visual cortex. 
  Our results also speak to a current debate about whether consciousness 
overflows cognitive access mechanisms46,47. In this debate, the question is whether 
access causes representational content to be extracted, or whether attention acts to 
select from a rich representational set that cannot be accessed in its entirety, 
reminiscent of the debate on early versus late selection48. In support of the latter 
position, a number of retro-cueing studies show that the representational capacity in 
early visual cortex is much larger than what can be accessed at any given moment, 
and that the extraction of this rich set from retinal input does not require conscious 
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access49,50. A recent study has questioned such results, suggesting that a retro-cue 
might serve to postdictively impact perception after the display has already 
disappeared, dismissing the idea that retro-cue experiments are able to convincingly 
show that perceptual representations can exist without access51. The current 
experiment resolves this issue by providing a direct neural measure of perceptual 
integration, showing that neural representations in visual cortex can reach a 
perceptually integrated state in the absence of conscious access.  
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