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Figure 1: Multi-box model of ocean biogeochemistry. The upper ocean is divided into two boxes,
one of which contains diazotrophs and the other which does not. The boxes represent highly
stratified, warm water, subtropical gyres and cold water upwelling regions, respectively. The phy-
toplankton in each box have unique stoichiometric ratios and the boxes have varying levels of
upwelling and nutrient deposition.
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Figure 2: Influence of varying ocean conditions on nutrient limitation (a) and primary productivity
(b) through (d). Figure (a) shows the ultimate limiting nutrients as a function of iron deposition
rates in both high and low-latitudes. The set of ultimate limiting nutrients are determined by
relative nutrient supply and demand. The black contours show the points where relative supply
and demand for two different nutrients are equal to eachother, implying a potential transition in
the ultimate limiting nutrient. Figure (b) shows the impact of iron levels on primary productivity.
Figures (c) and (d) show that impact of high and low-latitude nitrate supply and diazotroph iron
content on primary productivity. In each case, the simulations were performed when low-latitude
iron was an ultimate limiting nutrient.
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Figure 3: The effect of iron deposition on nutrient ratios in the ocean. Figure (a) shows (N:P)deep
as a function of high and low-latitude iron deposition. The black contour is the set of points where
(N:P)org = (N:P)deep. Figure (b) shows (N:P)deep, (N:P)org, and low-latitude (N:P)org, as iron
deposition is increased throughout the ocean.
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Figure 4: Response of the ocean to increases of the nitrate, phosphate, and iron fluxes in different
nutrient limitation regimes. Each figure corresponds to a numerical experiment with parameters se-
lected from the marked locations in Figure 2. Figure (d) corresponds to both the (Fe,Fe) limitation
regime and our best estimate of the modern ocean.
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