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Human protein-protein interaction networks are critical to understanding cell biology and 
interpreting genetic and genomic data, but are challenging to produce in individual large-
scale experiments. We describe a general computational framework that through data 
integration and quality control provides a scored human protein-protein interaction 
network (InWeb_IM). Juxtaposed with five comparable resources, InWeb_IM has 2.8 
times more interactions (~585K) and a superior functional signal showing that the added 
interactions reflect real cellular biology. InWeb_IM is a versatile resource for accurate 
and cost-efficient functional interpretation of massive genomic datasets illustrated by 
annotating candidate genes from >4,700 cancer genomes and genes involved in 
neuropsychiatric diseases. 
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Since the turn of the millennium it has become increasingly feasible to experimentally map 
large-scale protein-protein interaction networks (i.e., hundreds of proteins systematically tested 
for thousands of interactions in a single study1-2). Despite the unquestionable importance of 
these efforts in humans3-9 the most recent screens have only produced in the order of ~25,000 
new direct interactions7,9, representing only 4-22% of the most conservative estimates of the 
human interactome10-11. 
  
Integration of protein-protein interaction data between heterogeneous databases, different 
organisms, and from fundamentally different types of interaction experiments is not 
straightforward. Nonetheless it has been consistently demonstrated that robust computational 
integration of many different datasets not only improves coverage, but can lead to very high 
accuracy when the resulting inferred protein networks are tested experimentally12-13 or against 
repositories of well-established interactions (reviewed in 8 and exemplified in 14-16). This is in 
part because the different experimental large-scale methods complement each other so that no 
single approach captures the full spectrum of stable and transient interactions between proteins 
relevant to cell biology17. Importantly, the high value of integrated protein networks for the 
interpretation of vast genomic datasets is illustrated by the onslaught of exome-sequencing 
projects and genome-wide association studies that have used integrated protein-protein 
interaction data to reveal non obvious molecular pathways perturbed by somatic mutations in 
cancers as well as germline common and rare genomic variation in metabolic, psychiatric and 
immune-mediated diseases (reviewed in 8 and exemplified in 8, 18-22). 
  
We devised a general computational framework to exploit, leverage, and complement ongoing 
experimental interaction studies and to provide a systematically integrated human protein-
protein interaction network for the annotation of genomic and genetic datasets (details can be 
see in Methods, Supplementary Figure 1 and Supplementary Table 1). Specifically, we 
extracted data from eight heterogeneous protein-protein interaction resources (using only data 
on physical interactions between proteins or data from protein complexes) covering data from 
68,160 independent publications (where independent means articles indexed with a unique 
PubMed identification number). These data span 4,910,949 redundant protein-protein 
interactions, 191,336 protein identifiers (covering all accession mapping systems used by the 
different databases), and stem from 1,493 organisms. Orthology transfer of interaction data is 
not straightforward and for this reason we used eight different orthology databases with 
stringent settings and only transferred the interactions if at least four of these databases agreed 
on the orthology relationship (see Supplementary Note 1 for an analysis supporting this 
design).  After thorough quality control of the raw data (including filtering to be sure only 
experimentally measured protein-protein interactions were included in workflow) we created an 
integrated human protein-protein interaction network named InWeb_InBioMap (InWeb_IM, 
hereafter). 
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InWeb_IM consists of 585,843 interactions (Figure 1 a-h and Supplementary Table 1). When 
mapping all interactions to UniProt identifiers (IDs) the interactions span 17,530 proteins (or 
~87 % of reviewed human UniProt ids). Importantly, 57% of the data come directly from 
experiments with human proteins, 68% of the data comes from either mice or humans, and 95% 
of the data comes from human, mouse, rat, cow, nematode, fly, or yeast (Figure 1e). We 
compared InWeb_IM to five widely used human protein interaction networks23-28 using a number 
of quantitative and qualitative metrics (Figure 1 a-h, details on other networks are provided in 
Methods and Supplementary Note 2). In terms of absolute amount of interactions InWeb_IM 
has twice the amount of protein-protein interactions compared to I2D, the next-largest network, 
and 2.8 times the median of all networks (Figure 1a). We draw our data from 34.1% more 
publications than PINA, the network with the next-best coverage in terms of source articles 
(Figure 1c). Considering the total number of proteins that are implicated in one or more 
interactions, InWeb_IM has 4% fewer than I2D, but more than the remaining four networks 
(Figure 1d). Overall, InWeb_IM has several fold more interaction data than the other networks 
while also having the largest amount of unique interactions i.e., interactions that are not 
available from any of the other five networks (344,146 Figure 1f).  
  
In InWeb_IM interactions are given an initial score based on a number of metrics most notably 
the reproducibility of the interaction data between different publications (Methods, 
Supplementary Figure 1 and Supplementary Note 3). To validate the initial score, we defined 
a highly trusted (gold standard, hereafter) set of protein-protein interactions from pathway 
databases (Methods and Supplementary Note 3). We ranked the non-pathway-database-
derived interactions based on the initial score and plotted a curve of the enrichment of the gold 
standard interactions as a function of the rank based on the initial score. This analysis suggests 
that the initial score indeed up prioritizes the gold standard interactions, as the curve is well 
above the diagonal and its slope is steeper than the diagonal for the non-pathway-database-
derived interactions that rank in the top 30% (Figure 2a, Methods and Supplementary Note 3). 
We then calibrated the initial score against the gold standard interactions to transform it into a 
lower bound of the true positive rate of interactions with that initial score or better to give it a 
probabilistic interpretation (Figure 2a, Methods and Supplementary Note 3). We confirmed 
that this final confidence score correlates with an experimentally determined measure of the 
confidence of interactions between proteins in an independent experiment of 58 
immunoprecipitations (Figure 2c, Methods and Supplementary Note 4) with a statistically 
robust correlation (of 0.38, C.I. [0.35, 0.42]). We repeated this analysis for the only other two 
network that assigns scores to the interactions, and found a comparable correlation in iRefIndex 
(0.41, C.I. [0.38, 0.44]), and a lower correlation in Mentha (0.23, C.I. [0.17, 0.29]), where both 
correlations are statistically significant. Together these analyses confirm the reliability of our 
score and show it is significantly correlated with an experimentally derived measure of the 
interaction confidence between proteins. 
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The fact that InWeb_IM has many more interactions is not per definition a sign of quality as it 
could in theory reflect that it is noisier than the other resources. To test the biological signal of 
InWeb_IM we implemented a classifier and cross-validation scheme (Figure 2d, Methods and 
Supplementary Note 5) that tests the ability of each network to recapitulate known pathway 
relationships from 853 stringently defined canonical pathways in the Molecular Signatures 
Database (MSigDB). We normalized for the amount of proteins covered by data to enable the 
networks to be compared interaction-for-interaction meaning that we only looked at the signal of 
the interactions that did exist in each network and did not penalize networks that were smaller 
than InWeb_IM for missing data (Methods and Supplementary Note 5). In a 30% holdout 
analysis InWeb_IM has an area under the receiver operating characteristics curve (AUC) of 
0.95 compared to the other networks that range from AUCs of 0.93 to 0.88 with a median of 
0.89 (Figure 2d). If we do not normalize for coverage, but make an absolute comparison of the 
ability to recapitulate pathway relationships in MSigDB, InWeb_IM has an AUC of 0.86 which is 
16% better than the next-best network (the other five networks range in AUCs from 0.78 to 0.63 
see Supplementary Note 5) as expected of a high quality network with more than the two times 
the amount of data than other networks. To further dissect the InWeb_IM data, and to support 
the quality of both the unique and orthology transferred subsets of interactions in the network, 
we repeated the analysis on both of these subsets (Supplementary Note 6) which resulted in 
high AUCs (0.90 and 0.85, respectively). These analyses confirm that not only the network as a 
whole, but also the >344,000 unique interactions and the >252K interactions stemming from 
orthology transfer have a very good biological signal. 

In addition to testing the correlation between the confidence scores from InWeb_IM, Mentha 
and iRefIndex and the experimentally derived confidence scores from the aforementioned 58 
pull downs, we also tested the overall concordance between data in the different networks and 
this independent set of human protein-protein interactions (comprising 15,205 interactions, 
Figure 2e, Methods and Supplementary Note 4). Again, InWeb_IM shows the best agreement 
with this independent dataset (AUC of 0.84) compared to the other networks (AUCs ranging 
from 0.82 to 0.78 with a median of 0.80). 

Many of the genes emerging from recent cancer sequencing studies do not integrate into well-
defined pathways and it challenging to functionally interpret the many tumor genomes that are 
now available. To illustrate the potential for interpretation of massive genomic data sets using 
InWeb_IM we combined the protein networks with sequencing data from >4,700 tumor 
genomes (from 21 tumor types) that identified 219 significantly mutated cancer genes29 using an 
algorithm called network mutation burden (NMB). With NMB we tested the ability to predict 
these 219 cancer genes in a leave-one-out cross validation where genes are classified based 
on the mutation burden in their first order protein-protein interaction network excluding any 
information about the gene itself (Methods and Supplementary Note 7). In essence, this 
analysis is a fast, data-driven, and systematic way to assign the 219 known cancer genes to 
networks (i.e., draft pathways) that are associated to cancer based on the overall burden of 
mutations seen in the network in question. Importantly, this analysis provides contextual 
information about the molecular groupings of cancer genes. When compared to the five other 
networks InWeb_IM has the best biological signal (i.e., ability to predict cancer genes, AUC = 
0.74 compared to AUCs ranging from 0.72 to 0.71 with a median AUC of 0.72, Figure 2f). 
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To further explore the biological possibilities of the InWeb_IM data we integrated it with tissue-
specific expression quantitative trait loci information from the Genotype Tissue Expression 
Project (GTEx)30 to derive 27 protein-protein interaction networks where the corresponding 
genes are under tissue-specific regulation. On average the tissue-specific networks derived 
from InWeb_IM have 2-3 times more data than analogous networks derived from the other five 
resources (Supplementary Note 8 and Supplementary Figures 2,3 and 4). One example is 
brain, where InWeb_IM has 2.2 times more interaction data connecting brain-regulated genes at 
the protein level than the next largest network (I2D, Supplementary Figures 2 and 4). This 
observation suggests that it is a particular use of InWeb_IM to discover new pathway 
relationships in neuropsychiatric diseases.  
 
We tested the ability of each network to annotate and interpret 65 autism genes from a recent 
study31 using NMB, and indeed observe that InWeb_IM is the only network that can assign 
these autism genes into statistically significant networks with each other (Supplementary Note 
9 and Supplementary Figure 5). Furthermore, the quality and applicability of the data for 
genomic interpretation of diseases with tissue-specific manifestations has further been indicated 
by the successful use of interim versions of InWeb_IM to interpret genetic data from 
neurological19, cardiovascular13,32, immunological18,33, metabolic diseases34, and cancers22. 
Previous evolutions of the data have also been used as part of the 1000 Genomes Project to 
annotate population-scale genetic variation35. 
  
The curation practices of most protein-protein interaction databases we use are robust, and 
error rates have been proven to be low (i.e., in the order of ~6%36). In addition, the combination 
of a computationally derived global confidence score and complete transparency of the source 
and methodology related to each of the 585K interactions provides a multidimensional approach 
to consolidating the biological relevance of networks and hypotheses derived from InWeb_IM 
analyses with minimal effort and without the need for particular expertise in protein-protein 
interaction data or functional genomics networks. This is particularly important for biological 
follow up of the network analyses because in many cases scrutinizing the original publication(s) 
and reading the database entry(ies) can also inspire targeted and cost-efficient experiments that 
ultimately provide proof of specific discoveries and new insight into the cell biology of human 
diseases (discussed in Ref. 8 and exemplified in Ref. 13). 
  
In addition, the score assigned to each interaction has a probabilistic interpretation, which 
enables the integration with orthogonal probabilities resulting from genomic and genetic 
sequencing and genotyping results in Bayesian frameworks. Importantly, the source data for all 
interactions in InWeb_IM can be easily traced back both in terms of specific publication, 
database, organism, and experimental method (See Supplementary Note 10 for an example). 
This combination of features is unique to InWeb_IM (see Supplementary Note 11 for a 
discussion). To exemplify the utility of being able to access the source publications easily and to 
confirm the high quality of the data in InWeb_IM, we randomly extracted 20 human interactions 
and read the articles from which the data came (Supplementary Note 12). All twenty of the 
interactions were true positives and for 19 of 20 interactions the databases also had annotated 
the proteins with correct organism identifiers. In one of 20 interactions the experiments were 
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executed with the murine orthologs of the human proteins and annotated as human in the 
database, so the interaction was true in the mouse and not a false positive, but an error in the 
annotation (in terms of organism) of the protein identifiers. This analysis shows that 20 of 20 
interactions (100%) were true and 19 of 20 (95%) were annotated with the correct organism 
identifiers supporting the high quality of the InWeb_IM data and the source database 
annotations. 
  
InWeb_IM builds on the invaluable foundation laid by the experimental proteomics communities 
that provide the raw data and the many truly excellent protein-protein interaction databases that 
heroically extract non-structured data on the physical interactions of proteins from the >25 
million articles in PubMed with very high accuracy36. We used eight different databases, but the 
framework presented here can be applied to any number of sources of interaction data. 
Importantly, interaction screens of particular importance that are not included in any of these 
resources can be added into the pipeline seamlessly.  
  
While other excellent functional genomics networks like STRING37, GeneMANIA38 and 
HumanNet39 exist our work focuses on experimental protein-protein interaction data alone (see 
Supplementary Note 13 for a discussion of the benefits and drawbacks of protein-protein 
interaction networks versus other functional genomics networks). Compared to other protein-
protein interaction resources, we show that the strengths of InWeb_IM resource lies in a 
combination of quantitative (e.g., more than double the amount of interactions compared to the 
next-largest network, >16% better biological signal across 853 pathways, better ability to stratify 
cancer and autism genes into significant subnetworks and better concordance with an 
independent human protein-protein interaction dataset) and qualitative features (e.g., a global 
confidence score with a probabilistic interpretation and transparency in terms of specific 
publication an interaction originates from). Although some of the other networks also have a 
good biological signal InWeb_IM is consistently ranked as number 1 (Figure 2e-f), while the 
ranks of the other networks fluctuate. These features make it a versatile resource to interpret 
and augment very large genomic datasets that are now being produced as part of the ongoing 
genomic revolution. Our analyses suggest that a few of its uses are to uniquely enable deriving 
tissue-specific networks e.g., involved in neuropsychiatric diseases and the interpretation of 
cancer genomes (for example, but not limited to those involved in head and neck squamous cell 
carcinoma, lung adenocarcinoma, colorectal cancer, and acute myeloid leukemia, 
Supplementary Table 2). 
  
We expect that the general approach we present here to aggregate and score protein-protein 
interaction data (Supplementary Figure 1) - as well as the InWeb_IM network itself - will 
become increasingly useful with more interaction data and genetic datasets in the future. 
InWeb_IM is available from https://www.intomics.com/inbiomap . Moreover, we make the data 
accessible from a graphical user interface 
http://apps.broadinstitute.org/genets#InWeb_InBiomap so that it can interactively explored by 
any individual researcher that wishes to study the interactions of proteins of interest. We also 
provide a roadmap for future updates and overview of file formats and ways to query the 
InWeb_IM data in Supplementary Note 14. 
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Figure Legends: 
  
Figure 1 | A quantitative comparison of InWeb_IM and five widely used human protein-
protein interaction networks. We compared InWeb_IM to Mentha, the protein interaction 
network analysis platform (PINA), Interologous Interaction Database (I2D), High Quality 
Interactomes (HINT), and iRefIndex using a number of metrics such as a) the total amount of 
interactions, b) number of source databases, c) number of PubMed identification numbers, and 
d) number of proteins (using the UniProt reference proteome) covered by at least one 
interaction. Panel e) plots the proportion of InWeb_IM interactions have been found in humans 
illustrating that 57% (>334,000) of the interactions are not orthology transferred and that 68% 
(or >398,000) of the interactions have been found in either humans or mice. In the four networks 
with the most data, we also measured the overlap of f) interactions, g) proteins covered by at 
least one interaction, and h) publications supporting the interaction data (I2D excluded in panel 
c) and h) because PubMed identification numbers could not be traced). 
  
  
Figure 2 | Validating the InWeb_IM score and comparing its biological signal to five other 
networks. a) A plot of the cumulative fraction of the gold standard set (pathway-database-
derived interactions) as a function of the rank based on the initial score (normalized to 
percentages) shows that the initial score prioritizes gold standard interactions (AUC is 0.83). b) 
We calibrated the initial score against the gold standard interactions to show that the initial 
score correlates with the percent overlap in this set (dark green line for initial data points and 
light green line for the fitted general logistic function, and the blue line shows the fraction of 
interactions with scores higher than the values indicated on the x-axis.). Hereby the initial score 
is transformed into the final confidence score that can be interpreted as a lower bound on the 
true positive rate (and ranges between 0 and 1). c) We observe a significant correlation 
between the confidence scores from InWeb_IM, Mentha and iRefIndex and experimental values 
of the confidence of binding between proteins (i.e., the heavy-to-light isotope ratios from mass-
spectrometry data of 58 independent human immunoprecipitations). The density of the scores is 
not uniform across all probabilities because there are fewer interactions with high scores than 
lower scores for some networks. d) We used a cross-validation scheme to test the ability of the 
six networks to recapitulate pathway relationships between genes in 853 MSigDB canonical 
pathways through a 30% holdout analysis. Compared to other protein-protein interaction 
networks InWeb_IM has a superior signal (AUC = 0.95) followed by Mentha (AUC = 0.93); I2D 
(AUC = 0.91); iRefIndex and PINA (AUC = 0.89), and HINT (AUC = 0.88). e) We tested the 
overall agreement between interactions reported in each network with the aforementioned 
quantitative protein-protein interactions from 58 immunoprecipitations in human cells. In this 
analysis, InWeb_IM has the highest AUC (0.84), followed by iRefIndex (0.82), Mentha (0.81), 
I2D (0.79), and PINA (0.78).  f) We also tested the ability of InWeb_IM to classify 219 cancer 
genes from the Cancer5000 Stringent Set defined by Lawrence et al29. InWeb_IM has the 
highest AUC (0.74) followed by I2D, Mentha, and PINA (all 0.72); and HINT and iRefIndex (both 
0.71). 
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Online Methods 
  
Raw interaction data. Raw and partially overlapping interaction data sets were obtained from 
eight source databases: BIND1, BioGRID2, DIP3, IntAct4, MatrixDB5, NetPath6, Reactome7, 
WikiPathways8, along with key information about the individual interaction, such as protein IDs, 
species, interaction type and PubMed identification numbers for the paper reporting the 
interaction (where we consider publications independent if they are indexed by a different PMID). 
Interactions that were annotated as genetic interactions, co localizations, or neighboring 
reactions were ignored and from the pathway databases (NetPath, Reactome and 
WikiPathways) we exclusively extracted the small subset of data that describes direct protein-
protein interactions or data on experimentally resolved protein complexes. Proteins IDs for all 
eight databases were mapped to accession identifiers from UniProt9, and PubMed identification 
numbers were used to identify experiments. The authors would like to acknowledge first, that 
InWeb_IM builds on the invaluable foundation laid by the experimental proteomics communities 
that provide the raw data and, second, the many high quality protein-protein interaction 
databases that laboriously extract non-structured data on the physical interactions of proteins 
from the 25+ million articles in PubMed with a very low error rate10. 
  
Orthology transfer of raw data. Orthology mapping is far from trivial, as different methods rely 
on different orthology definitions, sequence homology thresholds and handling of paralogs and 
orthologs. Orthology transfer of interactions in InWeb_IM was built on a voting scheme across 
eight orthology resources eggNOG11, Ensembl12, HomoloGene13, Inparanoid14, Gene15, 
OrthoDB16, KEGG17, and HOGENOM18, where interactions are orthology transferred if four or 
more databases agree in the orthology assignment (which was determined to give the best 
biological signal of the resulting network, see Supplementary Note 1). Among these inferred 
interactions we only kept those that were between proteins from the reviewed part of UniProt. 
  
Calculating confidence scores for the interactions. For each inferred interaction we kept 
track of the number of publications corresponding to the underlying evidence. Each of these 
publication contributed to the confidence score for the inferred interaction based on the total 
number of interactions from the publication; publications describing few interactions contributed 
more than publications describing many interactions because small-scale experiment are more 
reliable than interactions from a large screening19. In addition, the confidence score was 
adjusted based on the local topology of the network around the interaction, punishing 
interactions between proteins with many non-shared neighbors. Finally, using a gold standard 
set of known high-confidence pathway interactions, the confidence scores were re-calibrated so 
that a score for an interaction can be interpreted as a lower bound on the probability for the 
interaction being a true positive. More details and a discussion on how our score fits with the 
concepts of standardized scoring schemes such as PSISCORE can be found in 
Supplementary Note 3. 
  
Qualitative and quantitative comparison to other resources. We compared the number of 
interactions, source databases, supporting publications, and proteins within the above 
mentioned databases to InWeb_IM. All proteins are indexed using UniProt accessions, which 
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are extracted directly from all networks, and we mapped UniProt to gene symbols using HGNC-
provided conversion table for functional analyses. Details can be found in Supplementary Note 
2. 
  
Correlating the InWeb_IM confidence score to quantitatively measure protein-protein 
interactions from an independent experiment. We made a linear correlation of the InWeb_IM 
confidence scores to experimentally derived quantitative interaction confidences (measured as 
the heavy-to-light isotope ratios from the mass-spectrometry data of 58 independent human 
immunoprecipitations using the stable isotope labeling in cell culture [SILAC] method). More 
details about this metric, the design choice of our experiment, and the 58 immunoprecipitations 
can be found in Supplementary Note 4. 
  
Quantifying the ability of InWeb_IM to recapitulate pathway relationships. We used an 
algorithm called Quack (www.broadinstitute.org/genets) to test how well each network can learn 
structures for 853 stringently defined pathways catalogued in MSigDB normalized for the 
amount of interactions covered by data in the network being tested. When predicting genes in 
e.g., the WNT pathway in the 30% holdout analysis, the positive data points were proteins 
assigned to the WNT pathway MSigDB and the negatives were sampled from the rest of the 
network. This means that if ten proteins in a pathway (e.g., the WNT pathway) were covered by 
data in InWeb_IM, but only five of the WNT pathway proteins were covered by data in another 
network a true positive rate of 100% for InWeb_IM would mean identifying ten out of ten WNT 
proteins in InWeb, but a true positive rate of 100% for the other network would mean identifying 
five out of five of the WNT proteins. In this way we are able to determine the biological signal 
interaction-for-interaction in each network. If we do not normalize for network size, but make an 
absolute comparison of the ability to recapitulate pathway relationships in MSigDB InWeb_IM 
has an AUC of 0.86 which is 16% better than the next best network (the other five networks 
range in AUCs from 0.78 to 0.63). Details can be found in Supplementary Note 5. 
  
Genomic annotation of cancer genes from 21 tumor types. We tested how well known 
cancer genes can be classified as cancer driver candidates by inferring significance through the 
aggregated mutation burden of first-order interactors at the protein level using an algorithm 
Network Mutation Burden (NMB which is described in detail in 
http://biorxiv.org/content/early/2015/08/25/025445). We used the Cancer5000 stringent set of 
genes (n = 219) defined by Lawrence et al20 as the true positive set and 293 genes that had a 
FDR = 1 across all 21 tumor types in this paper as negatives. As a negative control for cryptic 
confounders we randomly selected 87 genes and reran the analysis, which gave a null signal in 
all networks as expected. More details can be found in Supplementary Note 7. 
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Concordance between the six networks and an independent dataset of human protein-
protein interactions. To evaluate the concordance between an independent set of human 
protein-protein interactions and the six protein-protein interaction networks, we used both 
network architectural metrics and quantitative proteomic metrics from the experimental data to 
test how well predicted physical interactions amongst 58 baits agree with the interactions 
reported in each of the networks. Specifically, for each resource, we take interactions present in 
the network as the gold-standard set of known interactions, and constructed a Random Forest 
model where we used the median-adjusted (by-bait) heavy-to-light ratio, along with Jaccard 
metric and edge-betweenness centrality, to predict whether each of the 15,205 potential 
physical interactions are known gold-standard interactions. After training the model on 50% of 
the data, we computed the Area Under the ROC Curve (AUC) on the remaining 50% of the data 
(where interactions detected in the experiment are used as positive data points in the analysis 
and negative data points are interactions not found in the experiment) as a measure of how well 
interaction data from each network correspond to the quantitative proteomic experiment result. 
HINT was not included in this analysis because of low overlap between HINT and the 
experimental data set (less than 1.5% of all of the experimentally derived interactions). More 
details about the 58 pull down experiments can be found in Supplementary Note 4. 
  
Code and data availability. InWeb_IM and the code for network mutation burden (NMB) will be 
made available at time of publication from www.lagelab.org.  All data will be made public from 
www.lagelab.org and https://www.intomics.com/inbiomap. Moreover, the data can be accessed 
from a graphical user interface http://apps.broadinstitute.org/genets#InWeb_InBiomap so that it 
can interactively explored by any individual researcher that wishes to study the interactions of 
proteins of interest. We also provide a roadmap for future updates and overview of file formats 
and ways to query the InWeb_IM data in Supplementary Note 13. 
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