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Figure 3: Selected examples of pan-genome representations: (a) three unaligned sequences, colors highlight sim-
ilarities; (b) a multiple sequence alignment of the same three sequences; (c) the De Bruijn graph of the �rst (red)
sequence block; (d) acyclic sequence graph, paths representing the three haplotypes shown as solid/dashed/dotted
lines; (e) cylic sequence graph; (f) Li-Stephens model of the �rst nine characters with states indicated by circles,
emission distributions given in boxes and transitions given by arrows; dashed arrows indicate the (less likely)
\recombination" transitions.
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sequence alignment (MSA), the input sequences
are aligned by inserting gap characters into each
sequence (Figure 3b). The result is a matrix,
where each column represents putatively homolo-
gous characters. Refer to [95, 96] for reviews on
current methods and remaining challenges. Such
classical colinear alignments are not able to capture
larger rearrangements like inversions and translo-
cations well and hence only apply to short ge-
nomic regions such as single genes or to very similar
genomes.

One advantage of using an MSA as a represen-
tation of a pan-genome is that it immediately de-
fines a coordinate system across genomes: a column
in the alignment represents a location in the pan-
genome. MSAs furthermore support many compar-
ison tasks.

All approaches designed for linear reference
genomes can, in principle, be extended to multi-
ple alignments at the expense of adding bookkeep-
ing data structures to record where the gaps are.
Efficient data structures for prefix sum, rank, and
select queries exist [97], which can be used for the
purpose of doing projections to and from a sequence
and its gapped version as a row of an MSA. Mul-
tiple sequence alignments can be compactly repre-
sented by journaled string trees [98]. This data
structure also allows for efficiently executing se-
quential algorithms on all genomes in the MSA
simultaneously. One example for such a sequen-
tial algorithm is online pattern matching, that is,
searching all genomes for the exact or approximate
occurrence of a pattern without building an index
structure first.

When aligning two or more whole genomes,
structural differences such as inversions and
translocations need to be taken into account. Stan-
dard methods for a colinear MSA are therefore not
applicable. Instead, one aims to partition the in-
put genomes into blocks such that sequences within
blocks can be aligned colinearly. Creating such
a partitioning is a non-trivial task in itself and
mostly approached through graph data structures
that represent local sequence similarities and adja-
cencies. On the one hand, such graphs therefore
facilitate whole genome alignment. On the other
hand, they can be understood as representations of
the pan-genome. Concrete realizations of this idea
include A-Bruijn graphs [99], Enredo graphs [100]
and Cactus graphs [101, 102]. For detailed defini-

tions and a comparison of these concepts we refer
the reader to the review [103].

Block-based multiple sequence alignments can
also serve as the basis for a coordinate system on a
pan-genome: by numbering blocks as well as num-
bering columns inside each colinearly aligned block,
a notion of a position in a pan-genome can be de-
fined. This idea is explored by Herbig et al. [104],
who furthermore show how it can serve as a foun-
dation for visualization.

k-mer-Based Approaches. Starting from ei-
ther assembled genomes, contigs, or just collections
of (error-corrected) reads, a pan-genome can also
be represented as a collection of k-mers, i.e. strings
of length k. The task of efficiently counting all k-
mers occurring in an input sequence has been stud-
ied extensively in recent years and many solutions
are available, including Jellyfish [105], DSK [106]
and KMC2 [107]. Such a k-mer collection is a rep-
resentation of the corresponding de Bruijn Graph
(DBG), illustrated in Figure 3c. DBGs were intro-
duced in the context of sequence assembly [108],
but can be used as pan-genome representations sup-
porting many applications beyond assembly. When
k-mer neighborhood queries are sufficient, and no
k-mer membership queries are required, then even
more space-efficient data structures for DBGs ex-
ist [109].

When building DBGs for multiple input samples,
one can augment each k-mer by the set of samples
containing it. This idea is realized in colored DBGs
where we color each k-mer according to the input
samples it occurs in. Colored DBGs have been
used successfully for reference-free variant calling
and genotyping [110]. Recently, Holley et al. [111]
introduced Bloom filter tries, a data structure able
to efficiently encode such colored DBGs.

For k-mer based representations of pan-genomes,
the length k is obviously an important parameter
and picking the right value depends on the intended
application. Data structures able to represent a
pan-genome at different granularities (i.e. at differ-
ent values of k) are hence an interesting research
topic. For instance, Minkin et al. [112] show that
iteratively increasing k helps to capture nested syn-
teny structure.

Pan-genomes encompassing many species can be
encoded as a mapping between k-mers and clades:
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given a phylogenetic tree, each k-mer is mapped to
the lowest common ancestor of all genomes contain-
ing it. This technique was introduced by Wood and
Salzberg [113], who show that it efficiently supports
the task of analyzing the composition of metage-
nomic samples.

Advantages of k-mer-based representations in-
clude simplicity, speed, and robustness: it is not
necessary to produce an assembly or an alignment,
which both can be error-prone, and very efficient
Bloom-filter-based data structures to store them
exist and are available in mature software libraries
such as the GATB [114]. However, they do not
explicitly represent structural information at dis-
tances greater than the k-mer length. For applica-
tions where such information is needed, DBGs can
sometimes serve as a basis to design richer data
structures. Colored DBGs [110, 111] are an ex-
ample of this since they store information about
occurrence in individual genomes on top of each
k-mer.

Further Sequence Graphs. Building on the
above ideas, more general approaches conceptualize
a pan-genome as an (edge- or node-labeled) graph
of generic pieces of sequence. Such graphs are not
necessarily constructed using an MSA and the con-
stituting sequences are not necessarily fixed-length
k-mers. Figures 3d and 3e show examples of an
acyclic and a cyclic sequence graph, respectively.
Individual genomes can be represented as paths in
such graphs and node identifiers can serve as a “co-
ordinate system”.

Compressed DBGs (also called compacted
DBGs), which collapse chains of non-branching
nodes in a DBG into a single node, are an example
of this. Marcus et al. [115] show how such com-
pressed DBGs can be constructed for a pan-genome
by first identifying maximal exact matches using a
suffix tree, by-passing uncompressed DBGs. Beller
and Ohlebusch [116] and Baier et al. [117] show how
the same can be achieved more efficiently, using
an FM index resp. compressed suffix trees and the
Burrows-Wheeler transform. Trading efficiency for
comprehensibility, compressed DBGs can also form
the foundation for annotated pan-genomes stored
in graph databases [?].

Useful data structures for pan-genomes may
combine some of the basic approaches discussed so

far. For example, PanCake [118] uses a graph-based
structure to represent common genomic segments
and uses a compressed multiple-alignment based
representation in each node of the graph. Dilthey
et al. [15] propose a generative model by represent-
ing sequence variation in a k-mer-emitting HMM.

Further examples of implementations of sequence
graphs include the Global Alliance for Genomics
and Health (GA4GH) “side graph” data model and
the FASTG format6. Side graphs represent a pan-
genome as a set of sequences and an additional set
of joins, each of which defines an extra adjacency
between the sides of two bases within the sequences.
The GA4GH graph tools7 allow side graphs and
embeddings of individual sampled genomes in that
graph to be made available over the Internet, for
data distribution and remote analysis.

Haplotype-Centric Models. When a fixed set
of (non-nested) sequence variants is considered, ev-
ery haplotype in a population can be represented as
a string of fixed length. The character at position
k reflects the status of the k-th variant. When all
variants are bi-allelic, then these haplotype strings
are formed over a binary alphabet. Such collections
of haplotypes are often referred to as haplotype pan-
els. This representation is favorable for many popu-
lation genetic analyses since it makes shared blocks
of haplotypes more easily accessible, for instance
compared to sets of paths in a graph.

A recent data structure to represent haplotype
panels, termed Positional Burrows-Wheeler Trans-
form (PBWT) [119], facilitates compression and
supports the enumeration of maximal haplotype
matches.

One of the most widely used haplotype-based
models is the Li-Stephens model [120]. In a nut-
shell, it can be viewed as a hidden Markov model
(HMM) with a grid of states with one row per hap-
lotype and one column per variant, as sketched in
Figure 3f. Transitions are designed in a way such
that staying on the same haplotype is likely but
jumping to another one is also possible. It hence
is a generative probabilistic model for haplotypes
that allows for sampling new individuals and pro-
vides conditional probabilities for new haplotypes

6http://fastg.sourceforge.net
7https://github.com/ga4gh/server and

https://github.com/ga4gh/schemas
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given the haplotypes contained in the model.

5 Computational Challenges

Pan-genomic data have all of the standard prop-
erties of Big Data—in particular, volume, variety,
velocity and veracity. Especially due to the sheer
size of generated sequencing data, extreme hetero-
geneity of data and complex interaction on differ-
ent levels, pan-genomics comes with big challenges
for algorithm and software development [121]. The
International Cancer Genome Consortium (ICGC)
has amassed a dataset in excess of two petabytes
in just five years with the conclusion to store data
generally in clouds, providing an elastic, dynamic
and parallel way of processing data in a cheap, flex-
ible, reliable and secure manner [122].

Currently large computing infrastructure
providers and large public repositories (e.g.
NCBI/EBI/DDBJ) are completely separated. We
need hybrids that offer both large public reposi-
tories as well as the computing power to analyze
these in the context of individual samples/data.
We consider it desirable to bring the computation
as close as possible to the data by uploading
queries or in-database computing.

Distributed and parallel computing will be nec-
essary to successfully handle pan-genome data in
practice. To this end, leveraging the capabilities
of existing Big-Data frameworks is desirable and
should be combined with bringing the computation
as close as possible to the data. On the practi-
cal side, tackling these challenges will also involve
establishing widely-accepted standards for file for-
mats for sequence graphs and related data like read
alignments to such graphs. On the theoretical side,
studying changes in algorithmic complexity when
working with sequence graphs instead of sequences
will be an interesting and challenging aspect of
computational pan-genomics.

All these general challenges apply to all individ-
ual computational problems we discuss in the fol-
lowing.

5.1 Read Mapping

Given a set of reads sequenced from a donor, read
mapping consists in identifying parts of the refer-
ence genome matching each read. Read mapping to

a pan-genome has a potential to improve alignment
accuracy and subsequent variant calling, especially
in genomic regions with a high density of (complex)
variants.

For a single reference sequence, the read map-
ping problem has mostly been solved by indexing
the reference into a data structure that supports
efficient pattern search queries. Most successful
approaches use k-mer based or Burrows-Wheeler
transform based indexes, as reviewed in [123]. In-
dexing a pan-genome is more complicated.

Efficient indexing of a set of reference genomes
for read mapping was first studied in [124, 125].
The approach uses compressed data structures, ex-
ploiting the redundancy of long runs of the same
letter in the Burrows-Wheeler transform of a col-
lection of similar genomes. This approach yields a
reasonably compressed representation of the pan-
genome, but read alignment efficiency is hampered
by the fact that most reads map to all of the ref-
erences, and that extraction of these occurrence
locations from a compressed index is potentially
slow. More recently, approaches based on Lempel-
Ziv compression have been proposed to speed-up
the reporting of occurrences, as reviewed in [126].

The earliest approach to index a sequence graph
(see Section 4.2) was proposed in [127], where k-
mer indexing on the paths of such a graph was
used; instead of a full sequence graph, a core se-
quence graph was used where columns were merged
in regions of high similarity (core genome) to avoid
extensive branching in the graph. After finding
seed occurrences for a read in this graph, the align-
ment was refined locally using dynamic program-
ming. Similar k-mer indexing on sequence graphs
has since been used and extended in several read
mapping tools such as MuGI [128], BGREAT [129]
and VG8.

Instead of k-mer indexing, one can also use
Burrows-Wheeler-based approaches, based on ap-
pending extracted contexts around variations to
the reference genome [130]. Context extraction ap-
proaches work only on limited pattern length, as
with long patterns they suffer from a combinato-
rial explosion in regions with many variants; the
same can happen with a full sequence graph when
all nearby k-mer hit combinations are checked us-
ing dynamic programming. There is also a special

8https://github.com/ekg/vg
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Burrows-Wheeler transform and an index based on
that for a sequence graph [131, 132]. This approach
works on any pattern length, but the index itself
can be of exponential size in the worst case; best
case and average case bounds are similar to the
run-length compressed indexes for sets of references
like [125]. The approach is also likely to work with-
out exponential growth on a core sequence graph
of [127], but as far as we know, this combination has
not been explored in practice. A recent implemen-
tation9 avoids the worst case exponential behavior
by stopping the construction early; if this happens,
the approach also limits the maximum read length.
This implementation has been integrated into VG
as an alternative indexing approach. HISAT210 [94]
implements an index structure that is also based
on [131], but builds many small index structures
that together cover the whole genome.

In summary, a number of approaches to perform
read mapping against a pan-genome reference un-
der various representation models exist, and effi-
cient implementations for daily usage are under ac-
tive development. However, we consider this field
as being far from saturated and still expect con-
siderable progress in both algorithmic and software
engineering aspects. To reach the full potential of
these developments, the interactions between read
mapping and variant calling methods need to be
considered.

5.2 Variant Calling and Genotyping

The task of determining the differences between a
sequenced donor genome and a given (linear) ref-
erence genome is commonly referred to as variant
calling. In case of diploid or polyploid organisms,
we additionally want to determine the correspond-
ing genotype. In the face of pan-genome data struc-
tures, variant calling decomposes into two steps:
identifying known variants already represented in
the data structure and calling novel variants. Re-
fer to Schneeberger et al. [127] for an early work
on pan-genome variant calling. They do not only
show the feasibility of short read alignment against
a graph representing a pan-genome reference (see
Section 5.1) but also demonstrate its positive im-
pact on variation calling in the frame of the Ara-
bidopsis 1001 Genomes Project.

9https://github.com/jltsiren/gcsa2
10https://ccb.jhu.edu/software/hisat2/index.shtml

Known Variants. By using a pan-genome ref-
erence, one merges read mapping and calling of
known variants into a single step. Read align-
ments to sequence variants encapsulated in our
pan-genome data structure indicate the presence
of these variants in the donor genome. In partic-
ular, this applies not only to small variants which
can be covered by a single read (such as SNPs and
indels), but also to larger structural variants such
as inversions or large deletions. Integrating those
steps potentially decreases overall processing time
and, more importantly, removes read-mapping bi-
ases towards the reference allele and hence improves
accuracy of calling known variants. One important
challenge is to statistically control read mapping
ambiguity on a pan-genome data structure. Lever-
aging the associated statistical models for estimat-
ing genotype likelihoods is expected to lead to sig-
nificant improvements in genotyping.

As a first major step in that direction,
Dilthey et al. [15] cast the (diploid) variant calling
problem into finding a pair of paths through a pan-
genome reference represented as a k-mer-emitting
Hidden Markov Model. They demonstrate that this
leads to substantially improved performance in the
variation-rich MHC region.

Novel Variants. Detecting variants not present
in a pan-genome data structure is similar to tradi-
tional variant calling with respect to a linear ref-
erence genome. Still, differences exist that require
special attention. The most straightforward way
to use established variant calling methods is to use
read alignments to a pan-genome and project them
onto a linear sequence. For small variants such as
SNPs and indels, that are contained within a read,
this approach is likely to be successful. Methods to
characterize larger structural variation (SV) need
to be significantly updated. SV calling methods are
usually classified into four categories based on the
used signal: read pair, read depth, split read, and
assembly, as reviewed by Alkan et al. [59]. Each
of these paradigms has its merits and shortcom-
ings and state-of-the-art approaches usually com-
bine multiple techniques [133]. Each of these ideas
can and should be translated into the realm of pan-
genomes. For split-read and assembly based ap-
proaches, the problem of aligning reads and con-
tigs, respectively, to a pan-genome data structure
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(while allowing alignments to cross SV breakpoints)
needs to be addressed. In case of read pair meth-
ods, a different notion of “distance” is implied by
the pan-genome model and has to be taken into ac-
count. For read depth methods, statistical models
of read mapping uncertainty on pan-genomes have
to be combined with models for coverage (biases).
Developing standards for reporting and exchanging
sets of potentially nested variant calls is of great
importance.

Somatic Mutations. Calling somatic mutations
from paired tumor/normal samples is an impor-
tant step in molecular oncology studies. Refer to
Section 2.6 for details and to [134] for a compar-
ison of current work flows. Calling somatic vari-
ants is significantly more difficult compared to call-
ing germ-line variants, mostly due to tumor het-
erogeneity, the prevalence of structural variants,
and the fact that most somatic variants will be
novel. Pan-genome data structures promise to be
extremely useful in cancer studies for the stable de-
tection of somatic variants. A conceivable approach
for leveraging pan-genome data structures in this
context would be to map reads from the matched
normal sample to the pan-reference, call germline
mutations, create a restricted pan-genome with de-
tected variants and map tumor reads to that pan-
reference for calling somatic mutations. There are
many more potential applications including build-
ing a pan-genome representation of a heterogeneous
tumor to be used as a starting point for retracing
tumor evolution.

Storing Variants. Storing and exchanging vari-
ant calls genotyped in a large cohort of samples
increasingly becomes a bottleneck with growing co-
hort sizes. Some improvement is achieved by adopt-
ing binary instead of text-based data formats for
variant calls, i.e. using BCF instead of VCF11, but
more efficient approaches are urgently needed. Or-
ganizing data by individual rather than by vari-
ant while sorting variants by allele frequency has
proven beneficial for compression and some re-
trieval tasks [135]. We expect the question of stor-
ing, querying and exchanging variant data to re-
main an active and relevant field of research in the
coming years.

11http://samtools.github.io/hts-specs/

5.3 Haplotype Phasing

Humans are diploid, that is, each chromosome
comes in two copies, one inherited from the mother
and one inherited from the father. The individual
sequences of these two chromosomal copies are re-
ferred to as haplotypes, where one often restricts the
attention to polymorphic sites. The process of as-
signing each allele at heterozygous loci to one of the
two haplotypes is referred to as phasing. Plants are
often polyploid. For example, wheat can be tetra-
(= 4 copies) or hexaploid (= 6 copies), while certain
strawberries are even decaploid (= 10 copies). As
an extreme, the “ploidy” of viral quasispecies, that
is the number of different viral strains that popu-
late an infected person (see Section 2.3) is usually
unknown and large. The same applies to heteroge-
neous tumors, as discussed in Section 2.6.

Pan-genome data structures have the potential
to, on the one hand, store haplotype informa-
tion and, on the other hand, be instrumental for
phasing. Currently, several approaches for ob-
taining haplotype information exist, as reviewed
in [79, 136]. Statistical phasing [137] uses geno-
type information of large cohorts to reconstruct
haplotypes of all individuals based on the assump-
tion that haplotype blocks are conserved in a pop-
ulation. Once sets of haplotypes, called reference
panels, are known, additional individuals can be
phased by expressing the new haplotypes as a mo-
saic of the already known ones. The question of
how to best organize and store reference panels is
open. To this end, Durbin [119] has proposed the
aforementioned PBWT index structure. We con-
sider marrying reference panels to pan-genome data
structures an important topic for future research.

To determine haplotypes of single individuals, in-
cluding rare and de novo variants, statistical ap-
proaches are not suitable and experimental tech-
niques to measure linkage are needed. Such tech-
niques include specialized protocols and emerging
long-read sequencing platforms, as discussed in Sec-
tion 3. Currently, first approaches for haplotype-
resolved local assembly are being developed [138].
More literature exists on the problem of phasing
from aligned long reads, e.g. [139, 140, 141]. In
practice, this technique is hampered by insufficient
alignment quality of long error-prone reads. Since
phasing is based on heterozygous loci, avoiding al-
lelic biases during read mapping by means of pan-
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genome data structures can contribute to solving
this problem. Combining the virtues of read-based
phasing with statistical information from reference
panels is an active area of research [87]. Leveraging
pan-genome data structures that encode reference
haplotypes towards this goal constitutes a promis-
ing research direction.

These problems are amplified when phasing or-
ganisms or mixtures of higher or unknown ploidy
such as plants, viral quasispecies or tumors. Al-
gorithms with manageable runtime on polyploid
organisms [142, 143] and for the reconstruction of
quasispecies [144, 145] require the use of specialized
techniques (especially when allele frequencies drop
below sequencing error rates). Extending these ap-
proaches to pan-genome data structures is another
challenging topic for future research.

5.4 Visualization

Pan-genomics introduces new challenges for data
visualization. Fundamentally, the problems relate
to how to usefully view a large set of genomes and
their homology relationships, and involve questions
of scale and useful presentation in the face of huge
volumes of information.

At a high-level of abstraction, pan-genome bag-
of-genes approaches can be visualized using meth-
ods for comparing sets, such as Venn diagrams,
flower plots, and related representations. For ex-
ample, the recent tool Pan-Tetris visualizes a gene-
based pan-genome in a grid [146], color-coding ad-
ditional annotation. For divergent genomes, as in
bacterial- and meta- pan-genomics, and where com-
plete assembly is not possible, such approaches pro-
vide useful summary information.

For the viewing of individual, assembled genomes
or sequences, genome browsers and applications fre-
quently display an individual sequence along a lin-
ear or circular axis upon which other genomics in-
formation is visualized, as reviewed in [147]. This
trope, which is popular and widely understood,
forces interpretation through the lens of one cho-
sen genome. When this genome is a distantly re-
lated reference genome there is a visual reference
bias which may lead to misinterpretation.

Pan-genome displays can potentially help to al-
leviate this visual bias. One option is to aim to im-
prove linear visualizations: either the chosen indi-
vidual reference sequence can be replaced by a more

visually useful imputed pan-genome reference, or
the pan-genome data structures which relate dif-
ferent genomes in the population can be used to
translate information to the most closely related
genome possible for the display. In the former case,
a pan-genome display can be made more inclusive
than any single genome [148]. At the base level such
inclusive displays are somewhat analogous to pop-
ular multiple sequence alignment displays such as
Mauve [149] or Jalview [150] that focus on display-
ing all the differences between a set of sequences
as clearly as possible. The latter case, translation,
where a pan-genome alignment is used to show in-
formation on the most closely related genome possi-
ble, is likely to become more popular as the number
of available personal genomes grows, see [25] for an
early example of such an approach.

More adventurously than linear layouts, pan-
genome displays can attempt to visualize graphs
of variation. This has the flexibility of allowing
arbitrary genome variation within a clean seman-
tic model, but can prove visually complex for even
small, non-trivial examples. For example, a graph
of a few dozen bacterial strains contains tens to
hundreds of thousands of nodes and edges. So far
graph visualizations have proved popular for assem-
blies, and the visualization of heterozygosity, for
example DISCOVAR [151] contains a module that
allows you to visualize subsets of an assembly graph
in a figure. One popular tool is Cytoscape [152],
which is a generic biological graph/network visual-
ization tool, but lacks scalability and semantic nav-
igation. Another tool, Bandage [153], visualizes de
novo assembly graphs specifically.

A number of challenges exist moving forwards. In
a useful visualization it will be possible to navigate
and to zoom in and out on pan-genome structures.
Zooming should be done semantically, i.e. differ-
ent zoom levels can use different representations
of the data to convey biologically relevant infor-
mation. The upper scales should give information
about global genome structure. Zooming in the
visuals should focus on structural variants in a ge-
nomic region and the most zoomed in views should
enable exploration of local variants on nucleotide
level. Furthermore these visuals need to be put
in the context of the phylogeny, e.g. the relation of
the various samples that went into the pan-genome.
This will enable rapid identification and interpreta-
tion of observed variants. Finally, any pan-genome
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graph visualization should offer the same basic fea-
tures that current reference based genome browsers
have. There should be visual ways to indicate bi-
ologically interesting features such as gene annota-
tions and position based continuous valued signals
such as wiggle tracks in the UCSC genome browser.
Basic analytical capabilities would be beneficial to
visually highlight interesting biologically relevant
mutations. For example, it would be useful to have
different visual representations for different types of
mutations: indels, (non)-synonymous SNPs, struc-
tural variants, repeats etc.

5.5 Data Uncertainty Propagation

One of the computational (and modeling) chal-
lenges facing the field of pan-genomics is how to
deal with data uncertainty propagation through the
individual steps of analysis pipelines. In order to
do so, the individual processing steps need to be
able to take uncertain data as input and to provide
a ‘level of confidence’ for the output made. This
can, for instance, be done in the form of posterior
probabilities. Examples where this is already com-
mon practice include read mapping qualities [154]
and genotype likelihoods [155].

Computing a reasonable confidence level com-
monly relies on weighing alternative explanations
for the observed data. In the case of read mapping
for example, having an extensive list of alternative
mapping locations aids in estimating the probabil-
ity of the alignment being correct. A pan-genome
expands the space of possible explanations and can,
therefore, facilitate the construction of fairer and
more informative confidence levels.

As an illustration, consider a pipeline includ-
ing read mapping, variant calling and genotyp-
ing, phasing and association testing. Substantial
uncertainty and sequence composition biases are
already inherent to the input data generated by
next-generation sequencing [156]. The following
read alignment step adds ambiguity in read place-
ment, leading to uncertain coverage and fragment
lengths. As a result, this leads to uncertainties in
variant calling, genotyping, and phasing. This, fi-
nally, results in uncertainties in association testing
in genome-wide association studies. The precise
quantification of the propagation of these effects is
largely unclear. The advent of ever larger and re-
fined panels, supported by appropriate pan-genome

data structures, bears the promise of making quan-
tification and alleviation of such effects possible.

6 Conclusions

Already today, the DNA having been sequenced for
many biologically coherent ensembles—such as cer-
tain taxonomic units or virus populations—likely
captures the majority of their frequently occurring
genetic variation. Still, the pace at which genomes
are currently sequenced is on a steep rise, thanks to
accumulation of sequencers in laboratories and fre-
quent, significant advances in sequencing technol-
ogy. Therefore, capturing all of genomes, in terms
of genetic variation content and abundance, is no
longer wishful thinking, but will materialize soon
for many species, populations, and cancer genomes.
In other words, life sciences have entered the era
of pan-genomics, which is characterized by know-
ing all major genetic variation of a collection of
genomes of interest. In this paper, we addressed
the question of how to arrange and analyze this in-
credible wealth of knowledge and also how to deal
with some of the consequences in downstream anal-
yses.

6.1 Present Status

The computational aspects that need to be consid-
ered fan out across a large variety of particular chal-
lenges, usually governed by the realm of application
they stem from. We have listed the many facets
of pan-genomes in terms of functionality, annota-
tional detail, computational efficiency issues and vi-
sualization. We have discussed how the availability
of well-arranged pan-genomes will affect population
genetics, cancer genomics, pathogen research, plant
breeding, phylogenomics, functional genomics as
well as genetic disease research and genome-wide
association studies. We have surveyed the im-
pact of sequencing technology advances on the field
of pan-genomics, and we have considered also the
complications that come along with these advances.
We have put particular emphasis on data structures
and supporting algorithms that make it possible to
consistently work with pan-genomes. One of the
currently most evident processes in computational
pan-genome research is the move away from linear
reference genomes towards reference systems that
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are rooted in graph theory in some form. The effort
of the Data Working Group of the Global Alliance
for Genomics and Health (GA4GH) is a prominent
example for this. We have also discussed how the
transition in terms of data structures will affect op-
erations such as read mapping, variant discovery,
genotyping and phasing, all of which are at the core
of modern genomics research. Last but not least,
we have analyzed the issues that arise in visualizing
pan-genomes, and we have also briefly discussed fu-
ture issues in uncertain data handling, recently an
ever recurring theme in genome data analysis, of-
ten arising from the repetitive structure of many
genomes.

We have concentrated on computational chal-
lenges of pan-genomics in this survey. We are aware
that there are also political challenges that have to
be addressed that concern data sharing and privacy.
Clearly, the usefulness of any pan-genomic repre-
sentation will increase with the number of genomes
it represents, strengthening its expressive and sta-
tistical power. Unfortunately, however, only a frac-
tion of the sequenced data is currently publicly
available. This is partly due to the confidential
nature of human genetic data, but also, to a large
extent, by missing policies and incentives to make
genomic data open access or to prevent intentional
withholding of data. Funding agencies like the Na-
tional Institutes of Health (NIH) in the US have
started to address these issues [157]12.

6.2 Future Directions

Overall, we have provided a broad overview of com-
putational pan-genomics issues, which we hope will
serve as a reference for future research proposals
and projects. However, so far, we have mostly been
addressing how to deal with genomes as sequences,
that is from a “one-dimensional” point of view, and
so we have been focusing on storing and analyzing
sequences and the mutual relations of particular
subsequence patches, like variant alleles and their
interlinkage, genes and/or transcriptomes. We have
done this because we believe that at this point in
genomics history, only the consistent exploration
and annotation of exhaustive amounts of sequence

12see also
http://www.nih.gov/news-events/news-releases/

nih-issues-finalized-policy-genomic-data-sharing

information can lay the solid foundation for addi-
tional “pan-genomics oriented” steps.

Yet, even after having resolved the correspond-
ing issues—and we are hopeful that, at this point,
our summary has helped to consistently structure
these—there is more to follow. New approaches
have already appeared on the horizon that will
benefit from the cornerstone provided by primar-
ily sequence-driven pan-genomics. For example, it
can be expected that one can lift pan-genomes into
three dimensions in the mid-term future, thanks
to rapidly developing techonolgies that allow to in-
fer their three-dimensional conformation. This will
mean that future, three-dimensional pan-genomes
will not only represent all sequence variation ap-
plying for species or populations, but also encode
their spatial organization as well as their mutual
relationships in that respect.

Epigenomics topics have not been exhaustively
addressed here either, but will need to be addressed
as soon as the first “primary” pan-genomes stand.
Technologies that do not only map sequential and
three-dimensional arrangement, but also additional
biochemical modifications have likewise been on a
steep rise recently. Most importantly, we will be
in position to link sequential pan-genomes to maps
that indicate hypo- and hypermethylated regions
relatively soon. Likely, the integration of such basic
biochemical modifications will serve as template for
further, often more complex elements of biochemi-
cal genomic maps.

In summary, the emergence of computational
pan-genomics as a field is a major advance in con-
temporary genomics research. We have entered an
era that holds the promise to close large gaps in
global maps of genomes and to draw the full pic-
ture of their variability. We therefore believe that
we can expect to witness amazing, encompassing
insights about extent, pace, and nature of evolu-
tion in the mid-term future.
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Key points

• Many disciplines, from human genetics
and oncology to plant breeding, micro-
biology and virology, commonly face the
challenge of analyzing rapidly increasing
numbers of genomes.

• Simply scaling up established bioinfor-
matics pipelines will not be sufficient for
leveraging the full potential of such rich
genomic datasets.

• Novel, qualitatively different computa-
tional methods and paradigms are needed
and we will witness the rapid extension of
computational pan-genomics, a new sub-
area of research in computational biology.

• The transition from the representation of
reference genomes as strings to represen-
tations as graphs is a prominent example
for such a computational paradigm shift.
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[19] Thorvaldsdóttir H, Robinson JT, and Mesirov JP. In-
tegrative genomics viewer (igv): high-performance ge-
nomics data visualization and exploration. Briefings
in bioinformatics, 2013;14(2):178–192.

[20] Kafarski P. Rainbow code of biotechnology. Chemik,
2012;66(8):811–816.

[21] Hall RJ, Draper JL, Nielsen FGG et al. Beyond
research: a primer for considerations on using viral
metagenomics in the field and clinic. Frontiers in Mi-
crobiology, 2015;6(224).

[22] Liti G, Carter DM, Moses AM et al. Population ge-
nomics of domestic and wild yeasts. Nature, 2009;
458(7236):337–341.

[23] Dutilh BE, Thompson CC, Vicente ACP et al. Com-
parative genomics of 274 Vibrio cholerae genomes re-
veals mobile functions structuring three niche dimen-
sions. BMC genomics, 2014;15(1):654.

[24] Xiao J, Zhang Z, Wu J et al. A Brief Review of Soft-
ware Tools for Pangenomics. Genomics, Proteomics
& Bioinformatics, 2015;13(1):73–76.

[25] Nguyen N, Hickey G, Raney BJ et al. Comparative as-
sembly hubs: Web-accessible browsers for comparative
genomics. Bioinformatics, 2014;30(23):3293–3301.

[26] Doolittle WF. Phylogenetic Classification and the
Universal Tree. Science, 1999;284(5423):2124–2128.

[27] Crisp A, Boschetti C, Perry M et al. Expression of
multiple horizontally acquired genes is a hallmark of
both vertebrate and invertebrate genomes. Genome
Biology, 2015;16(1):50.

[28] Huson DH and Scornavacca C. A Survey of Combi-
natorial Methods for Phylogenetic Networks. Genome
Biology and Evolution, 2011;3:23–35.

[29] Dutilh BE, Backus L, Edwards RA et al. Explaining
microbial phenotypes on a genomic scale: GWAS for
microbes. Briefings in Functional Genomics, 2013;
12(4):366–380.

[30] Read TD and Massey RC. Characterizing the genetic
basis of bacterial phenotypes using genome-wide as-
sociation studies: a new direction for bacteriology.
Genome Medicine, 2014;6(11):109.

[31] Li J, Jia H, Cai X et al. An integrated catalog of
reference genes in the human gut microbiome. Nature
Biotechnology, 2014;32(8):834–841.

[32] Williamson SJ, Rusch DB, Yooseph S et al. The Sor-
cerer II Global Ocean Sampling Expedition: Metage-
nomic Characterization of Viruses within Aquatic Mi-
crobial Samples. PLoS ONE, 2008;3(1):e1456.

[33] Brum JR, Ignacio-Espinoza JC, Roux S et al. Patterns
and ecological drivers of ocean viral communities. Sci-
ence, 2015;348(6237):1261498.

24

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/043430doi: bioRxiv preprint first posted online Mar. 12, 2016; 

http://dx.doi.org/10.1101/043430


[34] Howe AC, Jansson JK, Malfatti SA et al. Tack-
ling soil diversity with the assembly of large, complex
metagenomes. Proceedings of the National Academy
of Sciences, 2014;111(13):4904–4909.

[35] Qin J, Li Y, Cai Z et al. A metagenome-wide as-
sociation study of gut microbiota in type 2 diabetes.
Nature, 2012;490(7418):55–60.

[36] Loman NJ, Constantinidou C, Christner M et al.
A culture-independent sequence-based metagenomics
approach to the investigation of an outbreak of shiga-
toxigenic escherichia coli o104:h4. JAMA, 2013;
309(14):1502–1510.

[37] Dutilh BE, Huynen MA, and Strous M. Increasing the
coverage of a metapopulation consensus genome by
iterative read mapping and assembly. Bioinformatics,
2009;25(21):2878–2881.

[38] Allen LZ, Ishoey T, Novotny MA et al. Single Virus
Genomics: A New Tool for Virus Discovery. PLoS
ONE, 2011;6(3):e17722.

[39] Malboeuf CM, Yang X, Charlebois P et al. Complete
viral RNA genome sequencing of ultra-low copy sam-
ples by sequence-independent amplification. Nucleic
Acids Research, 2013;41(1):e13–e13.

[40] Loman NJ, Quick J, and Simpson JT. A complete bac-
terial genome assembled de novo using only nanopore
sequencing data. Nature Methods, 2015;12(8):733–
735.

[41] Wang J, Moore NE, Deng YM et al. MinION nanopore
sequencing of an influenza genome. Virology, 2015;
6:766.

[42] Beerenwinkel N, Günthard HF, Roth V et al. Chal-
lenges and opportunities in estimating viral genetic
diversity from next-generation sequencing data. Vi-
rology, 2012;3:329.

[43] Falconer E, Hills M, Naumann U et al. DNA tem-
plate strand sequencing of single-cells maps genomic
rearrangements at high resolution. Nature Methods,
2012;9(11):1107–1112.

[44] Lengauer T and Sing T. Bioinformatics-assisted anti-
HIV therapy. Nature Reviews Microbiology, 2006;
4(10):790–797.

[45] Bartha I, Carlson JM, Brumme CJ et al. A genome-
to-genome analysis of associations between human ge-
netic variation, HIV-1 sequence diversity, and viral
control. eLife, 2013;2:e01123.

[46] Carlson JM, Brumme CJ, Martin E et al. Correlates of
Protective Cellular Immunity Revealed by Analysis of
Population-Level Immune Escape Pathways in HIV-1.
Journal of Virology, 2012;86(24):13202–13216.

[47] Daugherty MD and Malik HS. Rules of Engagement:
Molecular Insights from Host-Virus Arms Races. An-
nual Review of Genetics, 2012;46(1):677–700.

[48] Edwards RA and Rohwer F. Viral metagenomics. Na-
ture Reviews Microbiology, 2005;3(6):504–510.

[49] Mokili JL, Rohwer F, and Dutilh BE. Metagenomics
and future perspectives in virus discovery. Current
Opinion in Virology, 2012;2(1):63–77.

[50] Barabaschi D, Guerra D, Lacrima K et al. Emerging
knowledge from genome sequencing of crop species.
Molecular Biotechnology, 2012;50(3):250–266.

[51] Huang X, Kurata N, Wei X et al. A map of rice genome
variation reveals the origin of cultivated rice. Nature,
2012;490(7421):497–501.

[52] Jiao Y, Zhao H, Ren L et al. Genome-wide genetic
changes during modern breeding of maize. Nature Ge-
netics, 2012;44(7):812–815.

[53] Mace ES, Tai S, Gilding EK et al. Whole-genome
sequencing reveals untapped genetic potential in
Africa’s indigenous cereal crop sorghum. Nature Com-
munications, 2013;4:2320.

[54] Exome Aggregation Consortium, Lek M, Karczewski
K et al. Analysis of protein-coding genetic variation
in 60,706 humans. bioRxiv, 2015;.

[55] MacArthur DG, Manolio TA, Dimmock DP et al.
Guidelines for investigating causality of sequence vari-
ants in human disease. Nature, 2014;508(7497):469–
476.

[56] The International HapMap Consortium. A haplo-
type map of the human genome. Nature, 2005;
437(7063):1299–1320.

[57] Marchini J and Howie B. Genotype imputation for
genome-wide association studies. Nature Reviews Ge-
netics, 2010;11(7):499–511.

[58] van Rheenen W, Shatunov A, Dekker AM et al.
Genome-wide association analyses identify new risk
variants and the genetic architecture of amyotrophic
lateral sclerosis. Nature Genetics, 2016;advance online
publication.

[59] Alkan C, Coe BP, and Eichler EE. Genome structural
variation discovery and genotyping. Nature Reviews
Genetics, 2011;12(5):363–376.

[60] Chaisson MJP, Huddleston J, Dennis MY et al.
Resolving the complexity of the human genome
using single-molecule sequencing. Nature, 2015;
517(7536):608–611.

[61] Stratton MR, Campbell PJ, and Futreal PA. The can-
cer genome. Nature, 2009;458(7239):719–724.

[62] Kandoth C, McLellan MD, Vandin F et al. Muta-
tional landscape and significance across 12 major can-
cer types. Nature, 2013;502(7471):333–339.

[63] Lawrence MS, Stojanov P, Polak P et al. Mutational
heterogeneity in cancer and the search for new cancer-
associated genes. Nature, 2013;499(7457):214–218.

[64] Marusyk A, Almendro V, and Polyak K. Intra-tumour
heterogeneity: a looking glass for cancer? Nature
Reviews Cancer, 2012;12(5):323–334.

[65] McGranahan N and Swanton C. Biological and Ther-
apeutic Impact of Intratumor Heterogeneity in Cancer
Evolution. Cancer Cell, 2015;27(1):15–26.

[66] Dutilh BE, van Noort V, van der Heijden RTJM
et al. Assessment of phylogenomic and orthology ap-
proaches for phylogenetic inference. Bioinformatics
(Oxford, England), 2007;23(7):815–824.

25

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/043430doi: bioRxiv preprint first posted online Mar. 12, 2016; 

http://dx.doi.org/10.1101/043430


[67] Snel B, Huynen MA, and Dutilh BE. Genome trees
and the nature of genome evolution. Annual Review
of Microbiology, 2005;59:191–209.

[68] Ciccarelli FD, Doerks T, von Mering C et al. Toward
automatic reconstruction of a highly resolved tree of
life. Science (New York, NY), 2006;311(5765):1283–
1287.

[69] Menconi G, Battaglia G, Grossi R et al. Mobilomics
in saccharomyces cerevisiae strains. BMC Bioinfor-
matics, 2013;14:102.

[70] Boeckmann B, Marcet-Houben M, Rees JA et al.
Quest for Orthologs Entails Quest for Tree of Life:
In Search of the Gene Stream. Genome Biology and
Evolution, 2015;7(7):1988–1999.

[71] de Been M, Lanza VF, de Toro M et al. Dissemina-
tion of Cephalosporin Resistance Genes between Es-
cherichia coli Strains from Farm Animals and Humans
by Specific Plasmid Lineages. PLoS Genet, 2014;
10(12):e1004776.

[72] Williams TA, Foster PG, Cox CJ et al. An archaeal
origin of eukaryotes supports only two primary do-
mains of life. Nature, 2013;504(7479):231–236.

[73] Moroz LL, Kocot KM, Citarella MR et al. The
ctenophore genome and the evolutionary origins of
neural systems. Nature, 2014;510(7503):109–114.

[74] Zhong B, Sun L, and Penny D. The origin of land
plants: A phylogenomic perspective. Evolutionary
Bioinformatics Online, 2015;11:137–141.

[75] Eppinger M, Pearson T, Koenig SSK et al. Genomic
Epidemiology of the Haitian Cholera Outbreak: a Sin-
gle Introduction Followed by Rapid, Extensive, and
Continued Spread Characterized the Onset of the Epi-
demic. mBio, 2014;5(6):e01721–14.

[76] Holden MTG, Hsu LY, Kurt K et al. A genomic por-
trait of the emergence, evolution, and global spread
of a methicillin-resistant Staphylococcus aureus pan-
demic. Genome Research, 2013;23(4):653–664.

[77] Greenman CD, Pleasance ED, Newman S et al.
Estimation of rearrangement phylogeny for cancer
genomes. Genome Research, 2012;22(2):346–361.

[78] Cooper CS, Eeles R, Wedge DC et al. Analysis of the
genetic phylogeny of multifocal prostate cancer identi-
fies multiple independent clonal expansions in neoplas-
tic and morphologically normal prostate tissue. Nature
Genetics, 2015;47(4):367–372.

[79] Glusman G, Cox HC, and Roach JC. Whole-genome
haplotyping approaches and genomic medicine.
Genome Medicine, 2014;6(9):73.

[80] Allhoff M, Schönhuth A, Martin M et al. Discovering
motifs that induce sequencing errors. BMC Bioinfor-
matics (Proceedings of RECOMB-seq), 2013;14(Suppl
5):S1.

[81] Ross MG, Russ C, Costello M et al. Characterizing
and measuring bias in sequence data. Genome Biol-
ogy, 2013;14(5):R51.

[82] Snyder MW, Adey A, Kitzman JO et al. Haplotype-
resolved genome sequencing: experimental methods
and applications. Nature Reviews Genetics, 2015;
16(6):344–358.

[83] Schneider GF and Dekker C. DNA sequencing with
nanopores. Nature Biotechnology, 2012;30(4):326–
328.

[84] Laver T, Harrison J, O’Neill PA et al. Assessing
the performance of the Oxford Nanopore Technologies
MinION. Biomolecular Detection and Quantification,
2015;3:1–8.

[85] Ashton PM, Nair S, Dallman T et al. MinION
nanopore sequencing identifies the position and struc-
ture of a bacterial antibiotic resistance island. Nature
Biotechnology, 2015;33(3):296–300.

[86] Madoui MA, Engelen S, Cruaud C et al. Genome
assembly using Nanopore-guided long and error-free
DNA reads. BMC Genomics, 2015;16(1):327.

[87] Kuleshov V, Xie D, Chen R et al. Whole-genome hap-
lotyping using long reads and statistical methods. Na-
ture Biotechnology, 2014;32(3):261–266.

[88] Zheng GX, Lau BT, Schnall-Levin M et al. Hap-
lotyping germline and cancer genomes with high-
throughput linked-read sequencing. Nature Biotech-
nology, 2016;AOP.

[89] Burton JN, Adey A, Patwardhan RP et al.
Chromosome-scale scaffolding of de novo genome as-
semblies based on chromatin interactions. Nature
Biotechnology, 2013;31(12):1119–1125.

[90] Teague B, Waterman MS, Goldstein S et al. High-
resolution human genome structure by single-molecule
analysis. Proceedings of the National Academy of Sci-
ences, 2010;107(24):10848–10853.

[91] Hastie AR, Dong L, Smith A et al. Rapid genome
mapping in nanochannel arrays for highly complete
and accurate de novo sequence assembly of the com-
plex aegilops tauschii genome. PLoS One, 2013;
8(2):e55864.

[92] Mak ACY, Lai YYY, Lam ET et al. Genome-wide
structural variation detection by genome mapping on
nanochannel arrays. Genetics, 2016;202(1):351–362.

[93] Kersey PJ, Allen JE, Armean I et al. Ensembl
Genomes 2016: more genomes, more complexity. Nu-
cleic acids research, 2016;44(D1):D574–80.

[94] Pertea M, Kim D, Pertea GM et al. Transcript-
level expression analysis of RNA-seq experiments with
HISAT, StringTie and Ballgown. Nature Protocols,
2016;pp. 1650–1667.

[95] Edgar RC and Batzoglou S. Multiple sequence align-
ment. Current Opinion in Structural Biology, 2006;
16(3):368–373.

[96] Notredame C. Recent Evolutions of Multiple Sequence
Alignment Algorithms. PLoS Comput Biol, 2007;
3(8):e123.
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