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Amplicon sequencing generates chimeric reads which can cause spurious inferences 

of biological variation. I describe UCHIME2, an update of the popular UCHIME 

chimera detection algorithm with new modes optimized for high-resolution 

biological sequence reconstruction ("denoising") and other applications. I show that 

chimera frequency correlates inversely with divergence, that error-free chimera 

prediction from sequence is impossible in principle, and that UCHIME2 achieves 

higher detection accuracy than previous methods. 

  

Amplicon sequencing is widely used to survey biological sequence variation in applications 

including marker gene metagenomics1, immune system repertoire analysis2 and cancer 

genomics3. In such experiments, chimeric amplicons form when an incomplete DNA strand 

anneals to a different template and primes synthesis of a new template derived from two 

different biological sequences4. Recent chimera detection methods include ChimeraSlayer4, 

UCHIME5, DECIPHER6 and CATCh7. UCHIME classifies a query sequence by making a model 

from a concatenated pair of sub-sequences (segments) in a reference database. The query 

is predicted to be chimeric if the score of its alignment to the model exceeds a threshold. 

The reference database is provided by the user or constructed de novo from the reads. 

UCHIME2 modifies the original UCHIME algorithm by classifying a query as unknown if 

uncertainty is high due to missing reference data. Such queries would be classified, perhaps 

misleadingly, as "non-chimeric" by UCHIME. UCHIME2 also adds heuristics with parameter 

values optimized for different applications and introduces a new strategy designed for 

filtering denoised (error-corrected) amplicon sequences. 
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To investigate chimeras encountered in practice, I used Illumina reads of the currently 

popular V4 region of the 16S ribosomal RNA (16S) gene from high- and low-diversity 

microbial communities (soil and human vagina, respectively) and from two artificial 

communities (mock1 and mock2); see Supp. Note 1 for details. I extracted reads with < 1 

expected errors8 and made OTUs at 97% identity using UCLUST9. Using its recommended 

16S reference (the ChimeraSlayer Gold database), UCHIME predicted 9% of soil and 39% of 

vagina OTUs to be chimeric, while using SILVA10 predicted 57% and 53% respectively. The 

lower sensitivity of Gold vs. SILVA is explained by its smaller size (5.1k vs. 1.4M 

sequences), and the relatively better performance of Gold on vagina vs. soil is explained by 

the higher frequency of well-known species in vagina. The frequencies predicted using 

SILVA are probably underestimates and are surely better than using Gold (Supp. Notes 2 

and 3), showing that at least half the soil and vagina OTUs are chimeric. 

 

Earlier work4–6 characterized chimeras by parent divergence because detection is harder 

when parents are similar. However, a chimera can be arbitrarily close to one parent, e.g. if 

the other's segment is short. A better indication of detectability is the number of 

differences compared to the closest known non-chimeric sequence (reference divergence, 

D). Measured frequencies of chimeras with 1 ≤ D ≤ 20 are reported in Fig. 1, showing that 

frequency correlates inversely with D and a majority have D < 10. I also considered the 

identity of a segment with its closest reference sequence (segment identity, S). S is <100% 

when a parent is missing from the database, which reduces detectability. 

 

Previously published tests of reference-based chimera detection methods4–6 use 

simulations which assume, unrealistically, that parent sequences are known, i.e. S = 100%. 

To investigate the dependence of prediction accuracy on both D and S, I designed a new 

benchmark, CHSIMA, with simulated 16S and ITS chimeras with D = 1 to 10 and S = 90% to 

100% (Supp. Note 5). False positives (FPs) were measured by dividing a chimera-free 

database into pairs (splits) with identities from 90% to 100%. I calculated sensitivity as the 

fraction of simulated chimeras that were correctly predicted and, unlike previously 

published tests, included false negatives (FNs) as well FPs in the error rate because both 
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may be comparably harmful, especially when D > 3% where FNs cause spurious OTUs and 

FPs discard valid biological sequences. For assessments of DECIPHER and CATCh see Supp. 

Notes 4 and 6, which show DECIPHER to have very low sensitivity. CHSIMA results are 

given in Table 1 and Supp. Note 12.  The balanced and sensitive modes of UCHIME2 have 

higher sensitivity than previous methods, with balanced having the lower overall error 

rate, and the high-confidence mode reports fewer false-positives. 

 

The sensitivity of all tested methods falls rapidly with decreasing segment similarity. This 

is explained by chimeric models (fakes) of non-chimeric queries (Supp. Note 7), which are 

common and in the most challenging cases are exact matches (perfect fakes). Remarkably, I 

found that a large majority of non-chimeric sequences in the 99% identity splits have 

perfect fake models for the V4 region of 16S and the ITS1 and ITS2 fungal Internal 

Transcribed Spacer regions, and a third to a half in the 97% identity splits. Introducing 

heuristics to reduce FPs due to fakes therefore unavoidably causes an increase in FNs, 

especially for low-divergence chimeras. Error-free chimera/non-chimera classification 

from sequence is therefore impossible in principle, even in an ideal scenario where the 

reference database is complete and correct and the query sequence has no errors (Supp. 

Note 9). The problem of fakes is exacerbated when there are sequence errors or the 

database is incomplete, as is typically the case, noting that when S ≲ 100%, the probability 

of a non-chimera having a perfect fake model is very high (Supp. Note 7). These results, 

combined with the rapid increase in FNs with lower segment identities (Table 1), show that 

the choice of Gold as default for UCHIME was misguided; much better accuracy will usually 

be achieved with a large database such as SILVA due to the reduction in FNs. 

Methods 

Given a query sequence Q, UCHIME2 uses the UCHIME algorithm to construct a model (M), 

then makes a multiple alignment of Q with the model and top hit (T, the most similar 

reference sequence). The following metrics are calculated from the alignment: number of 

differences dQT between Q and T and dQM between Q and M, the alignment score (H) using 

eq. 2 in Edgar et al. 2011. The fractional divergence with respect to the top hit is calculated 
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as divT = (dQT – dQM)/|Q|. If divT is large, the model is a much better match than the top hit 

and the query is more likely to be chimeric, and conversely if divT is small, the model is 

more likely to be a fake. If divT > 3%, the chimera would cause a spurious OTU. 

 

Deep sequencing enables resolution of amplicons with as few as one difference11,12. In 

marker gene applications, this can be accomplished by error-correction (denoising) using 

algorithms such as DADA212 and UNOISE8 which predict the set of unique amplicon 

sequences from which the reads are derived. Many amplicons will be chimeric, and a post-

processing step is therefore required to identify the non-chimeric subset. With this 

application in mind, I designed a denoised de novo (DDN) mode of UCHIME2 using a 

strategy similar to the de novo mode of UCHIME. Each sequence is compared with all 

amplicons having greater abundance on the assumption that parents are more abundant 

than chimeras because they undergo more rounds of amplification. If a perfect model is 

found (dQM=0, dQT > 0), the amplicon is classified as chimeric. This method is not heuristic in 

the sense that a perfect model will always be reported if one exists. Unlike UCHIME de novo, 

DDN will detect chimeras with divergences as low as a single difference. DDN compares an 

amplicon with all higher-abundance sequences, including those with chimeric models 

(which would be discarded by UCHIME), enabling detection of chimeras with three or more 

segments which form13 when a parent is itself chimeric. State-of-the-art denoisers achieve 

very low error rates12, giving amplicon sequences close to the ideal scenario described in 

the main text: error-free sequences and a complete reference database. Even in this 

scenario, false positives are possible because a valid biological variant with one difference 

has a perfect fake de novo model with a probability of a few percent (Supp. Note 9). 

However, given that this probability is low and that D=1 chimeras are common (Fig. 1) I 

considered it preferable to classify any query with a perfect model as chimeric, allowing a 

few FPs due to perfect fakes rather than the many FN D=1 chimeras that would typically 

result from imposing more stringent criteria. 

 

Accurate de novo chimera detection for high-resolution applications requires denoised 

amplicon sequences. Even if read quality filtering is applied, for example by requiring that 

the most probable number of errors implied by Phred scores is zero, many reads with one 
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or more errors remain8. De novo chimera detection would then be severely degraded by the 

explosion in perfect fake models when S < 100% (Supp. Note 7).  

 

For lower-resolution (OTU) clustering of quality-filtered (but not denoised) reads at 97% 

identity, UPARSE was shown14 to generate dramatically fewer chimeric OTUs on mock 

community data than pipelines which use UCHIME for chimera filtering. This was achieved 

despite the inherent limitations of chimera detection because UPARSE does not need to 

distinguish between low-divergence chimeras, reads with base call errors and biological 

variants with <3% differences—all are assigned to the closest OTU and their sequences per 

se are discarded. An OTU pipeline should therefore use UPARSE for clustering and chimera 

filtering unless reads are denoised, in which case using UCHIME2 DDN followed by OTU 

clustering with UCLUST is a reasonable alternative. 

 

Results in the main text show that 100% segment similarity is needed for accurate 

detection with a user-supplied database, but this will rarely be possible in practice because 

reads often have errors and reference databases are incomplete and contain sequence 

errors and ambiguous bases. Noting that chimeras with D=1 are common, UCHIME2 

classifies queries as non-chimeric only when there is a 100% identical reference sequence 

and otherwise as chimeric or unknown. I designed four different sets of parameters for 

reference-based chimeric classification, as follows. Denoised mode reports all chimeras 

when query sequences are error-free and the reference database is complete and correct. 

Balanced mode attempts to minimize both FPs and FNs, giving the lowest overall error rate. 

Specific mode prioritizes reducing FPs at the expense of increased FNs, with results similar 

to UCHIME. (Here, unknown is considered to be a FN if the query is a chimera). High-

confidence mode further reduces FPs, at the cost of the highest overall error rate. Sensitive 

mode is designed to reduce FNs at the expensive of a higher FP rate. Parameter values for 

each mode are specified in Supp. Note 10. Noting that users rarely set non-default 

parameters even when command-line options are available, I did not set a default mode for 

UCHIME2, hoping that this would make users more aware of the limitations of reference-

based chimera filtering by asking them to choose a compromise between sensitivity, false-
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positive and false-negative error rates that is most appropriate for addressing their 

biological questions.  
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Display items 

 

 

 

Fig. 1. Chimera frequency as a function of divergence. Measured distributions for four 

communities with a wide range of diversities: soil (very high diversity), human vagina 

(low), and two mock communities (very low), which nevertheless exhibit similar 

distributions with an inverse correlation between divergence and frequency. See Supp 

Note 2 for methods. The horizontal axis is divergence, i.e. the number of differences 

between a chimera and the closest known non-chimeric sequence (which is almost 

certainly one of its parents in this analysis). The vertical axis is frequency (top) or 

accumulated frequency (bottom) calculated as a fraction of all chimeras found in a sample.. 

In all samples, a majority of chimeras have divergence < 10.  
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Method 
SegId=90% 
Sens (Err) 

SegId =95% 
Sens (Err) 

SegId =97% 
Sens (Err) 

SegId =99% 
Sens (Err) 

SegId =100% 
Sens (Err) 

U2-Denoised 0.0 (50.0) 0.0 (50.2) 0.4 (52.0) 6.6 (55.6) 99.9 (0.1) 

U2-Balanced 47.3 (28.8) 77.6 (18.1) 87.3 (10.8) 93.5 (4.2) 98.0 (1.0) 

U2-Sensitive 76.6 (23.4) 89.7 (26.2) 93.6 (22.6) 95.8 (12.2) 99.4 (0.3) 

U2-Specific 12.7 (44.0) 55.4 (23.4) 75.1 (13.5) 87.7 (6.3) 95.5 (2.2) 

U2-HighConf. 0.7 (49.7) 23.7 (38.5) 52.7 (23.6) 72.5 (13.8) 86.2 (6.9) 

UCHIME 14.6 (43.2) 58.5 (21.9) 77.2 (12.8) 88.3 (6.0) 94.2 (2.9) 

ChSlayer 2.8 (48.6) 29.7 (35.5) 54.4 (23.6) 68.9 (16.6) 87.8 (6.5) 

ChSlayer-kmer 3.6 (48.2) 32.1 (34.4) 54.0 (23.5) 65.7 (18.1) 87.9 (6.5) 

 

Table 1. CHSIMA test results on the 16S V4 region. See Supp. Note 5 for details of the 

CHSIMA implementation, Note 11 for specifications of the methods and Note 12 for 

detailed results. SegId is the segment identity. Table entries are sensitivity (%) and total 

error rate (%) including both FPs and FNs. The highest sensitivity and lowest error rate for 

each SegId are underlined.   
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Note 1. Reads of soil, vagina and mock communities 

Reads for soil, human vagina and artificial community mock1 were taken from Kozich et 

al.1. The reads were downloaded from http://www.mothur.org/MiSeqDevelopmentData/, 

accessed 3rd Sept 2015. 

 

Mock2 is MiSeq dataset 2 from Bokulich et al.2 The reads were kindly provided by Dirk 

Gevers at the Broad Institute. There is now a link to the data from the QIIME resource page 

(http://qiime.org/home_static/dataFiles.html, accessed 23rd June 2016). 
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Note 2. Measuring chimera divergences and frequencies 

In order to measure chimera divergence frequencies reliably, it is necessary to align 

sequences which can be classified as chimeric or not with high confidence against error-

free parent sequences using a method that is unbiased with respect to divergence. This is 

challenging because it is not possible to identify sequencing error with 100% certainty, and 

error-free chimera detection is not possible, especially with noisy reads, and especially 

when divergence is low, as shown in the main text. This note describes a method which 

overcomes these challenges to make an accurate measurement of divergence frequencies.  

 

Reference database. 

For the mock1 and mock2 communities, I used the known 16S sequences for the species in 

the samples. For the soil and vagina samples, I used the 100 most abundant error-corrected 

amplicons generated by UNOISE3 as the reference database. The top 100 sequences are 

almost certainly correct (because denoising is most effective at high abundances) and a 

large majority of chimeras have parents in the top 100. Regardless, the subset of chimeras 

with top-100 parents is surely unbiased with respect to divergence frequencies. 

 

Query set 

I searched for chimeras in reads after filtering at maximum one expected error3. I did not 

use error-correction because many chimeras are singletons, which are discarded by 

denoising methods including DADA24 and UNOISE.  

 

Chimera detection algorithm. 

I used the denoised mode of UCHIME2 which is not heuristic in the sense that it is 

guaranteed to report all perfect models, i.e. all models with dQM = 0 and dQT > 0 (see 

Methods in main text) and will therefore identify all error-free chimeric sequences with 

parents in the reference database. Sequencing error in a chimeric read will almost certainly 

result in a false negative (because then dQM = (number of base call errors) > 0 except in 

pathological cases where errors reproduce a chimera by chance). The false-positive rate for 
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error-free reads against error-free parents is estimated in Note 9 and found to be a few 

percent for D=1 and vanishingly small for D > 1. 

 

Despite known sources of error, divergence frequencies are accurately measured. 

This method has a number of well-understood sources of error. A measurement of 

divergence frequencies will be degraded only if these errors are biased with respect to 

divergence, otherwise they are benign. False negatives are caused by (1) unfiltered 

sequencing error and (2) parents missing from the reference database, neither of which is 

biased w.r.t. chimera divergence. False positives are rare and the causes should again have 

no bias w.r.t. divergence with the possible exception of D=1. Therefore, the method 

described in this note gives an accurate measurement of the chimera divergence 

distribution except that D=1 may be overestimated. 
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Note 3. SILVA gives the best chimera frequency estimate 

To investigate the coverage of the SILVA and Gold databases on the human vagina and soil 

samples, I measured the identities of the top hits of the 100 most abundant denoised 

amplicons (Fig. SN3.1). SILVA has ≥99% identity for 96% of the vagina amplicons and 75% 

of the soil amplicons, while Gold has ≥99% identity top hits for 50% and 6% of the 

amplicons, respectively. Referring to Table 1 in the main text, UCHIME2 in balanced mode 

has sensitivity 87% for identities of 97% or higher with an approximately equal number of 

FPs and FNs. Chimera frequencies from UCHIME2-balanced predictions with SILVA should 

therefore be superior to Gold, especially for soil, though will probably give an 

underestimate due to the lack of high identity reference sequences for ~25% of the high-

abundance amplicons in soil. 

 

 

Fig. SN3.1. Top-hit identity distribution of the 100 most abundant denoised 

amplicons in soil and human vagina against the SILVA and Gold databases. SILVA top 

hits have ≥99% identity for 96% of the vagina amplicons and 75% of the soil amplicons, 

while Gold has ≥99% identity top hits for only 50% and 6%, respectively. 
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Note 4. Assessment of DECIPHER and CATCh 

CATCh5 is an ensemble classifier that generates a consensus result from predictions by 

UCHIME6, DECIPHER7 and other algorithms. I was unable to install the stand-alone version 

of DECIPHER or to configure DECIPHER to use a non-default reference database, which 

precluded running DECIPHER or CATCh on most benchmark tests including the 

ChimeraSlayer8 benchmark, the CHSIMA test described in the main text, or the SIM2 and 

CHSIM tests described in the UCHIME paper. 

 

I tested DECIPHER and CATCh using the length-300 ChimeraSlayer test sequences 

(https://sourceforge.net/projects/microbiomeutil/files/ChimeraTestRegime/, retrieved 

2nd Feb 2016). These include 2,500 length-300 two-segment chimeras (Ch300) 

constructed from parents in the Gold database and 4,770 length-300 segments (Ctl300) of 

Gold sequences, which are named isolates and thus known to be non-chimeric. I chose this 

test because it uses published benchmark data, the length is close to the currently popular 

V4 region (~250nt) and because it is reasonable to assume that all the Gold sequences are 

present in the reference databases used by DECIPHER and CATCh, noting that if parent 

sequences were not present, this would bias a test in favor of UCHIME and UCHIME2. For 

DECIPHER, I used its web server (http://decipher.cee.wisc.edu/FindChimeras.html, data 

submitted 1st Jul 2016). CATCh predictions were kindly provided by Mohamed Mysara. 

 

In the ChimeraSlayer benchmark, divergence (PDiv) is measured between parents rather 

than the distance (D) between the chimera and its closest parent. PDiv provides an 

approximate upper bound D ≤ PDiv/2 because the closer parent is probably the one with 

the longer segment, which covers at least half of the chimera. Thus, PDiv ≤ 6% corresponds 

approximately to D ≤ 3%, the "harmful range" where chimeras will cause spurious OTUs in 

a typical analysis. Low-divergence chimeras are common (main text), so the "abundant 

range" D ≤ 5% or PDiv ≤ 10% is the most important in practice. Above PDiv = 10%, 

chimeras are relatively rare and are detected with high sensitivity by all tested methods 

except DECIPHER.  
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Results are shown in Table SN4.1 and in Figs. SN4.1 and SN4.2. The sensitivity of 

DECIPHER was found to be much lower than the other methods, while CATCh had 

sensitivity slightly higher than UCHIME . Both CATCh and DECIPHER reported several false 

positives despite that fact that all of the control sequences are segments of named isolate 

sequences, while UCHIME and all UCHIME2 modes reported no false positives as expected 

for known sequences. Note that this is not the same procedure used for the false positive 

tests described in the ChimeraSlayer and UCHIME papers which used a "leave-one-out" 

strategy (i.e., the query sequence was omitted from the database). In this case, I could not 

change the databases for DECIPHER or CATCh so I tested all methods using "leave-all-in", 

i.e. without deleting the query sequence, as in the CHSIMA false positive tests with 

SegId=100% (Note 5). 

 

UCHIME2 in denoised mode is not heuristic in the sense that it will report all query 

sequences not found in the reference database for which a perfect chimeric model can be 

constructed. Its sensitivity is <100% on Ch300 (Fig. SN4.2) because 38 of the simulated 

chimeras have hits to Gold with 100% identity, e.g. L300chmraD1_S000440923_5642-

6199:6200-6518_S000382508 matches S000842173, illustrating that error-free prediction 

is impossible in principle (Note 8). 
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Fig SN4.1. Sensitivity on the Ch300 set. The chart shows sensitivity of UCHIME2 in 

sensitive mode (U2-sensitive), CATCh, UCHIME and DECIPHER as a function of parent 

divergence (PDiv).  
  

Harmful → 

 ← Abundant 
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Fig. SN4.2. Sensitivity on low-divergence chimeras in Ch300. Results showing only 

chimeras with PDiv ≤ 10% as these are the most abundant, hardest to detect, and most 

harmful in a typical analysis. U2-m is UCHIME2 in mode m. UCHIME2 in denoised mode is 

guaranteed to find all perfect chimeras; its sensitivity is nevertheless <100% because 38 

chimeras in the Ch300 set are 100% identical to reference sequences. 

 

  

Harmful → 

 ← Abundant 
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Method FPs FP (Pct) 

CATCh 154 3.2% 

DECIPHER 43 0.9% 

UCHIME 0 0% 

UCHIME2 (all modes) 0 0% 

 

Table SN4.1. False positives on the Ctl300 test. The table shows the number of false 

positives reported by each method on 4,770 length-300 segments of high-quality named 

isolate sequences. UCHIME and UCHIME2 report no false positives because all of the 

segments have 100% identical full-length matches in the reference database.  
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Note 5. Design of the CHSIMA benchmark 

My goal with CHSIMA was to implement a benchmark for reference-based methods that 

measures accuracy with varying chimera divergence (D) and varying segment similarity 

(S). Previous benchmarks tested variation with D but made the unrealistic assumption that 

parent sequences are always known, i.e. S=100%. 

 

For a given region (e.g., V4 or ITS1), I extracted the region from the reference database, 

giving sequence set R. For each S, I constructed two subsets (splits XS and YS) of R with 

approximately equal numbers of sequences such that each sequence in one split had a top 

hit with identity S in the other split (Fig. SN5.1). In the special case S=100%, X100 = Y100 = a 

random subset of 1,000 sequences from R.  

 

For each pair of splits, I constructed a set of two-segment simulated chimeras CS from 

parent sequences in YS, generating 100 chimeras for each D = 1, 2 ... 10 for a total of 1,000. 

 

True positives (TPs) are measured with XS as the reference database and CS as the query 

set. Sensitivity is the fraction of chimeras that are successfully detected and the false-

negative (FN) rate is the fraction not detected. 

 

False positives (FPs) are measured with a random subset of 1,000 sequences from YS as the 

query and XS as the database. This measures the FP rate with a known distance (S) between 

the database and the query sequences, in contrast to the leave-one-out method used in the 

ChimeraSlayer and UCHIME papers where the distance has varying values <100% but is 

not otherwise characterized. 

 

I defined sensitivity and error rates for a given S as follows: 

 

 Sensitivity = (Number of TPs) / (|YS| = Number of chimeras),  (Eq.SN5.1) 

 

 FP rate = (Number of FPs) / (|XS| = Number of non-chimeras),   (Eq.SN5.2) 
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 FN rate = (Number of FNs) / (Number of chimeras),     (Eq.SN5.3) 

 

 Error rate = (Number of FPs + Number of FNs) / (|XS| + |YS| = number of queries). 

             (Eq.SN5.4) 

 

In most cases, |XS| = |YS| = 1,000, in which case the overall error rate is the mean of the FP 

rate and FN rate: 

 

 Error rate = (FP rate + FN rate)/2  if |XS| = |YS|.   (Eq.SN5.5) 

 

Sensitivity and error rates may be given for each D or averaged over all D = 1, 2 ... 10. 

 

Previous benchmarks5–8 did not include false negatives in reported error rates. While the 

false negative rate is readily calculated as FN rate = (100% – Sensitivity), I felt it was more 

informative to include false negatives in reported total error rates because of the atypical 

importance of false-negative chimera predictions. A sensitivity of 90% and false-positive 

error rate of 2% would sound pretty good for a typical informatics algorithm, but here if 

you have 1,000 OTUs then you will end up with 10% = 100 spurious OTUs due to false-

negative chimeras in addition to the 20 good OTUs lost due to false positives. In my 

opinion, it is more informative to express this as a 12% error rate so that a casual reader or 

user does not overlook the importance of FNs. For another example, the sensitivity of 

DECIPHER for 300nt chimeras with S=100% and PDiv ≤ 10 is 5% (Fig. SN4.2) with a FP rate 

of 1% (Table SN4.1) so the large majority of harmful chimeras will be missed by 

DECIPHER. In my opinion, quoting the overall error rate per query (95% + 1%)/2 = 48% 

gives a better indication of the poor performance of the algorithm on this data. 
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Fig. SN5.1. Construction of the CHSIMA benchmark. The figure shows the method used 

to construct a typical subset of CHSIMA using the V4 region and S=95% as an example. 
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Note 6. Comments on the DECIPHER benchmark test 

I was not able to reproduce results in the DECIPHER paper because some details are not 

specified and I was unable to install the stand-alone version of DECIPHER. 

 

The DECIPHER paper does not fully explain how false positives were measured, in 

particular which reference database was used for each algorithm. The authors state "[t]he 

2,000 parent sequences in the data set were ... evaluated to estimate the rate of false-

positive detections ... with fs_DECIPHER having the lowest false positive rate (0.15%), 

followed by ChimeraSlayer (0.70%), WigeoN (0.85%), Uchime (1.5%), and ss_DECIPHER 

(1.6%)." UCHIME has a zero false positive rate for query sequences having a 100% identical 

full-length match, so the database used for UCHIME was missing at least 1.5% = 30 of the 

full-length sequences for the 2,000 parents; in fact, probably many more, given its low FP 

rate. The Gold database does not contain all of the parents, and if Gold was used with 

UCHIME this could explain why its FP rate is >0  and raises the question of whether 

DECIPHER was run with its own default database which does include all the parent 

sequences and would bias the results in favor of DECIPHER.  

 

Another issue with the DECIPHER benchmark arises from reference sequences with 

missing bases at the 5' and 3' terminals. While the RDP isolate and Gold sequences are 

sometimes considered to be "full-length", in fact they often do not cover the complete gene 

(see Fig. SN6.1 for an example). With default settings, UCHIME allows terminal gaps in 

query sequences but not reference sequences (see discussion of Global-X alignments and 

Fig. 1 in Edgar et al. 2011). This may partly explain the anomalously low sensitivity of 

UCHIME on the DECIPHER benchmark test. 
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GGTGAACGCTGGCGGCGTGCCTAACACATGCAAGTCGAGCGGGTA  Chimera 7413 1..45 

GGTGAACGCTGGCGGCGTGCCTAACACATGCAAGTCGAGCGGGTA  S000383208 1..45 

---------------------------------------------  S000137585 

 

CCCGCAAGGGTACCAGCGGCGAACGGGTGAGTAACGCGTGGGTAA  Chimera 7413 45..90 

CCCGCAAGGGTACCAGCGGCGAACGGGTGAGTAACGCGTGGGTAA  S000383208 45..90 

-----------CACGGATCCGGACGGGTGAGTAACACGTGGGCAA  S000137585 1..34 
 

 

Fig. SN6.1 Missing reference sequence bases. Chimera 7413 in the TwoPart-1-

Chimeras.txt subset of the DECIPHER benchmark is constructed from two segments of 

length 639 and 104 which are substrings of parent sequences S000383208 and 

S000137585 in the Gold database. The alignment has terminal gaps in S000137585 due to 

the incomplete sequence of S000137585, and is therefore rejected by UCHIME with default 

settings (see Edgar et al. 2011, Fig. 1 and discussion of Global-X alignments). I interpret this 

apparent false negative as an artifact of the benchmark implementation rather than a 

defect of the algorithm per se because in practice query sequences are usually next-

generation reads which are fully covered by reference sequences. Applications where 

terminal gaps in a reference sequence might be expected, such as screening a reference 

database for chimeras, are much less common and are supported by UCHIME by setting 

appropriate non-default options. 
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Note 7. Fake and perfect fake models are common 

Given a query sequence Q, a chimeric model is a pair of reference sequence segments (A, B) 

concatenated together that have divergence > 0, i.e. are more similar to Q than the most 

similar sequence in the database (the top hit, T). If Q is not chimeric, the model is fake. A 

perfect fake model is a fake model that is identical to Q. 

 

To give an indication of the frequency of fake models found by UCHIME2 I counted the 

number of alignments with a positive score, ignoring all other thresholds. Results are 

shown in the "Fakes" column in Table SN7.1. These are underestimates of the number of 

fake models that could be constructed, noting for example that this method fails to find 

many perfect fake models with S=99% found by UCHIME2-denoised (Table SN7.1). 

 

All queries with at least one perfect fake model are identified by UCHIME2 in denoised 

mode because the algorithm is not heuristic, in the following sense: if one or more chimeric 

models exist, and the query sequence is not present in the database, then a model will be 

reported. Results for CHSIMA are shown in Table SN7.2 (see Note 5 for explanation of 

CHSIMA). This table can be interpreted as giving the false-positive error rate of UCHIME2-

denoised, or equivalently as giving the frequency of perfect fake models for each segment 

identity (SegId, S). For all regions except full-length 16S, a large majority of sequences have 

a perfect fake model with S=99% and between a third and a half with S=97%. At S=99%, 

10% of full-length 16S sequences have a perfect fake model. 

 

The observation that both fakes and perfect fakes are very common implies that chimeras 

cannot be reliably distinguished from non-chimeras by any conceivable reference-based 

algorithm. In the de novo case, sequence abundances provide additional evidence which is 

predictive but not definitive. Similarly, it is not possible to screen large reference databases 

such as SILVA9 and Greengenes10 for chimeras with high accuracy. Low-divergence 

chimeras are common, and if the parents of a low-divergence chimera are present in the 

database, an algorithm such as UCHIME2-denoised can discover the model, but would not 

be able to reliably determine whether the model was fake because there is no evidence 
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either way in the sequence. If its parents are not present, then the sensitivity and/or error 

rate of all algorithms necessarily increase rapidly with decreasing S and again, if a model is 

found, a chimera cannot be reliably distinguished from a correct biological sequence with a 

perfect or imperfect fake model. 
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Region SegId Nr seqs in XS Fakes Perfect Fakes 
     

V4 
(~250nt) 

99% 1000 640 (64%) 972 (97%) 

97% 1000 775 (78%) 483 (48%) 

95% 1000 830 (83%) 78 (8%) 

90% 462 419 (91%) 0 
 

    

V3-V5 
(~550nt) 

99% 1000 620 (62%) 613 (61%) 

97% 1000 755 (76%) 374 (37%) 

95% 1000 851 (85%) 0 

90% 483 432 (89%) 0 
 

    

16S (full) 

99% 1000 642 (64%) 99 (10%) 

97% 1000 783 (78%) 0 

95% 1000 888 (89%) 0 

90% 655 607 93%) 0 
 

    

ITS1 

99% 1000 201 (20%) 679 (68%) 

97% 1000 366 (37%) 340 (34%) 

95% 1000 553 (55%) 303 (30%) 

90% 890 580 (65%) 7 (8%) 
 

    

ITS2 

99% 1000 177 (18%) 761 (76%) 

97% 1000 413 (41%) 504 (50%) 

95% 1000 594 (59%) 237 (24%) 

90% 969 726 (75%) 85 (9%) 
 

    

ITS (full) 

99% 1000 302 (30%) 688 (69%) 

97% 1000 594 (59%) 496 (50%) 

95% 1000 713 (71%) 0 

90% 1000 808 (81%) 0 

Table SN7.1. Fake and perfect fake models are common. Number of fake models found 

by UCHIME-sensitive and number of perfect fake models found by UCHIME2-denoised. For 

all regions except full-length 16S, a large majority of sequences have a perfect fake model 

with S=99% and between a third and a half with S=97%. 
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Note 8. Probability of a de novo perfect fake model 

A de novo detection algorithm constructs a reference database from sequences found in the 

reads. The observation that perfect fake models are common (Note 7) raises the question of 

how often true biological variants with a few substitutions could cause false positives due 

to perfect fake models in a de novo database. To investigate this, I extracted the top 100 

denoised amplicons for the soil and vagina samples and generated 100,000 random 

variants of these amplicons with 1, 2 ... 5 substitutions. I then used UCHIME2-denoised with 

the variants as a query and the top 100 denoised amplicons as a reference to determine the 

fraction of variants which had a perfect chimeric model. This simulates the problem faced 

by the post-processing step in a denoising pipeline which attempts to predict which of the 

error-correct amplicon sequences are chimeric. 

 

Results are shown in Table SN8.1, which show that a biological variant with one difference 

has a probability of a few percent of having a perfect fake model while a variant with two or 

more differences is very unlikely to have a perfect fake model. This shows that a few 

percent of low-abundance biological variants with a single substitution will be discarded as 

false positive chimeras. Biological variants with two or more substitutions are very unlikely 

to have perfect fake models. 
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Sample 1 sub 2 subs 3 subs 4 subs 

Soil 2.5% 0.02% 0 0 

Vagina 5.5% 0.1% 0 0 

 

Table SN8.1. Probability that a biological variant has a perfect fake model. Columns 

show the measured frequency of random variants with a given number of substitutions 

that have a perfect fake model. This shows that a biological variant with one difference has 

a probability of a few percent of having a perfect fake model. 
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Note 9. Error-free chimera detection is impossible in principle 

As discussed in Note 7, a perfect fake model is a pair of reference sequence segments (A, B) 

concatenated together that reproduce a query sequence Q which is known to be a correct 

biological sequence. If the reference database contains A and B but not Q, then it is 

impossible in principle for a reference-based algorithm to distinguish a chimeric amplicon 

CAB = A+B from an amplicon derived from the correct biological sequence Q because the 

sequences of CAB and Q are identical. Perfect fake models are surprisingly common (Note 7). 

 

A sequence which is found in the reference database and also has a perfect chimeric model 

constructed from two other reference sequences cannot be reliably classified for 

essentially the same reason -- the sequences of a potential chimera and a correct biological 

sequence are identical. The results of Note 7 show that such cases are very common, 

especially for the currently popular regions V4 and ITS. Consider R99 = X99 + Y99 for the V4 

region. 97% of the sequences in X99 have a perfect fake model in Y99, which implies that 

conversely ~97% of the sequences in Y99 have perfect fake models in X99. Combining the 

two splits, it follows that at least ~97% of the sequences in R99 have perfect fake models 

constructed from other sequences in R99. The problem of perfect fake models is thus not 

solved in the ideal case where all biological sequences are known, noting that a set of 

denoised amplicons is a good approximation to this scenario. 

 

In the de novo case, the unique sequence abundances of A, B and Q provide additional 

evidence which is predictive but not definitive because low-abundance variants with 

perfect chimeric models may be due to correct biological sequences with fake models (Note 

8), to chimeric amplicons, or reads with incorrect bases due to uncorrected sequencing 

error, or polymerase copying mistakes. Since perfect fake models are relatively rare in the 

de novo case, especially when there multiple substitutions, UCHIME2-denoised-de-novo 

(DDN) classifies a sequence as chimeric if it has a perfect model and the parent sequences 

are more abundant. 
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Note 10. Default parameters for UCHIME2 modes 

 

 minh mindiffs mindivt xa xn mindqt maxdqm 

denoised n/a n/a n/a n/a n/a 1 0 

high_confidence 0.80 3 1.0% 1 8 n/a n/a 

specific 0.35 3 1.0% 1 8 n/a n/a 

balanced 0.30 3 1.0% 1 5 n/a n/a 

sensitive 0.15 2 0.5% 1 4 n/a n/a 

Table SN10.1. Default parameters. 
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Note 11. Method names, versions and command lines 

Source code and Linux binary for UCHIME2 is provided in the supplementary files. 

Command line options are given in the README.TXT file. 

 

ChSlayer is the mothur11 implementation of ChimeraSlayer with default parameters. I used 

v1.36.1 of mothur. Typical commands: 

 

mothur "#align.seqs(candidate=q.fasta, template=gold.align, processors=6)" 

mothur "#chimera.slayer(fasta=q.align, template=gold.align, processors=6)" 

 

ChSlayer-kmer is the same as ChSlayer plus the search=kmer option. 

 

DECIPHER was run using its web server http://decipher.cee.wisc.edu/FindChimeras.html. 

selecting the "short-length sequences" option for sequences < 1,000nt, "full-length 

sequences" for sequences ≥ 1,000nt. Data was submitted 1st Jul 2016. 

 

CATCh results were kindly provided by M. Mysara. 
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Note 12. CHSIMA results 

 
===== 16S (full) ===== 

                 |           S=90         |           S=95         |           S=97         |           S=99         |          S=100         

            Algo |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN 

---------------- | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ 

     U2-Denoised |    0.0     0.0   100.0 |    0.0     0.0   100.0 |    0.0     0.0   100.0 |    0.0     9.9   100.0 |   94.3     0.0     5.7 

    U2-Sensitive |    4.4     0.6    95.6 |   36.1     2.0    63.9 |   64.0     1.4    36.0 |   83.4     0.1    16.6 |   98.2     0.0     1.8 

     U2-Balanced |   29.5     4.6    70.5 |   72.8     7.9    27.2 |   84.1     5.5    15.9 |   94.1     0.2     5.9 |   98.9     0.0     1.1 

     U2-Specific |    6.6     0.7    93.4 |   51.3     2.7    48.7 |   73.8     2.1    26.2 |   90.3     0.2     9.7 |   98.8     0.0     1.2 

       U2-HiConf |    0.4     0.1    99.6 |   14.1     0.7    85.9 |   43.2     0.8    56.8 |   70.3     0.0    29.7 |   98.3     0.0     1.7 

          UCHIME |   14.3     0.4    85.7 |   66.5     1.7    33.5 |   84.3     3.3    15.7 |   92.9     0.3     7.1 |   96.0     0.0     4.0 

        ChSlayer |   17.7     0.4    82.3 |   67.3     2.5    32.7 |   81.4     2.1    18.6 |   88.6     0.6    11.4 |   92.5     0.6     7.5 

   ChSlayer-kmer |   23.8     0.4    76.2 |   70.3     2.6    29.7 |   83.0     2.7    17.0 |   90.1     0.6     9.9 |   93.4     0.8     6.6 

 

===== V3-V5 ===== 

                 |           S=90         |           S=95         |           S=97         |           S=99         |          S=100         

            Algo |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN 

---------------- | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ 

     U2-Denoised |    0.0     0.0   100.0 |    0.0     0.0   100.0 |   11.5    37.4    88.5 |   38.8    61.3    61.2 |  100.0     0.0     0.0 

    U2-Sensitive |   11.2     0.1    88.8 |   63.6     1.9    36.4 |   82.4     5.0    17.6 |   92.9     1.2     7.1 |   98.5     0.0     1.5 

     U2-Balanced |   38.1     1.0    61.9 |   76.4    10.7    23.6 |   89.1    10.9    10.9 |   94.8     2.3     5.2 |   98.6     0.0     1.4 

     U2-Specific |   11.2     0.1    88.8 |   63.6     1.9    36.4 |   82.4     5.0    17.6 |   92.9     1.2     7.1 |   98.5     0.0     1.5 

       U2-HiConf |    2.2     0.0    97.8 |   37.7     0.7    62.3 |   65.9     1.8    34.1 |   86.9     0.5    13.1 |   97.9     0.0     2.1 

          UCHIME |   15.7     0.2    84.3 |   68.6     4.1    31.4 |   84.5    13.3    15.5 |   92.3     5.2     7.7 |   95.8     0.0     4.2 

        ChSlayer |   13.9     0.4    86.1 |   62.6     3.2    37.4 |   77.1     6.5    22.9 |   84.8     3.9    15.2 |   92.5     2.5     7.5 

   ChSlayer-kmer |   20.6     1.4    79.4 |   65.6     3.0    34.4 |   65.8     4.0    34.2 |   86.6     5.2    13.4 |   93.0     3.0     7.0 

 

===== V4 ===== 

                 |           S=90         |           S=95         |           S=97         |           S=99         |          S=100         

            Algo |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN 

---------------- | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ 

     U2-Denoised |    0.0     0.0   100.0 |    0.0     0.5   100.0 |    0.4     4.5    99.6 |    6.6    17.8    93.4 |   99.9     0.0     0.1 

    U2-Sensitive |   76.6    23.4    23.4 |   89.7    42.1    10.3 |   93.6    38.8     6.4 |   95.8    20.1     4.2 |   99.4     0.0     0.6 

     U2-Balanced |   47.3     4.9    52.7 |   77.6    13.8    22.4 |   87.4     8.9    12.6 |   93.5     2.1     6.5 |   98.0     0.0     2.0 

     U2-Specific |   12.7     0.6    87.3 |   55.4     2.3    44.6 |   75.1     2.1    24.9 |   87.7     0.3    12.3 |   95.5     0.0     4.5 

       U2-HiConf |    0.7     0.1    99.3 |   23.7     0.6    76.3 |   52.6     0.0    47.4 |   72.5     0.1    27.5 |   86.3     0.0    13.7 

          UCHIME |   14.6     1.0    85.4 |   58.5     2.3    41.5 |   77.2     2.9    22.8 |   88.3     0.2    11.7 |   94.2     0.0     5.8 

        ChSlayer |    2.8     0.0    97.2 |   29.7     0.8    70.3 |   54.4     1.5    45.6 |   68.9     2.0    31.1 |   87.8     0.7    12.2 

   ChSlayer-kmer |    3.6     0.1    96.4 |   32.1     0.8    67.9 |   54.0     1.0    46.0 |   65.7     1.9    34.3 |   87.9     0.8    12.1 

 

===== V5 ===== 

                 |           S=90         |           S=95         |           S=97         |           S=99         |          S=100         

            Algo |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN 

---------------- | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ 

     U2-Denoised |    0.1     0.2    99.9 |    2.3     5.0    97.7 |   10.1    14.2    89.9 |   44.5    47.3    55.5 |   98.8     0.0     1.2 

    U2-Sensitive |   69.4    20.0    30.6 |   82.4    40.6    17.6 |   85.0    25.6    15.0 |   88.4     6.3    11.6 |   93.7     0.0     6.3 

     U2-Balanced |   31.2     2.7    68.8 |   63.1     8.6    36.9 |   71.9     3.1    28.1 |   79.7     0.2    20.3 |   84.7     0.0    15.3 

     U2-Specific |    6.3     0.0    93.7 |   31.6     1.4    68.4 |   45.8     0.4    54.2 |   59.6     0.0    40.4 |   71.5     0.0    28.5 

       U2-HiConf |    1.0     0.0    99.0 |    7.2     0.0    92.8 |   14.5     0.0    85.5 |   29.4     0.0    70.6 |   42.5     0.0    57.5 

          UCHIME |    7.3     0.0    92.7 |   30.6     0.7    69.4 |   45.0     0.0    55.0 |   57.9     0.0    42.1 |   65.2     0.0    34.8 

        ChSlayer |    0.8     0.0    99.2 |    5.8     0.2    94.2 |   14.3     0.6    85.7 |   24.5     0.0    75.5 |   28.2     0.1    71.8 

   ChSlayer-kmer |    0.6     0.0    99.4 |    6.0     0.1    94.0 |   15.9     0.3    84.1 |   25.2     0.1    74.8 |   32.7     0.1    67.3 

 

===== ITS1 ===== 

                 |           S=90         |           S=95         |           S=97         |           S=99         |          S=100         

            Algo |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN 

---------------- | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ 

     U2-Denoised |   11.0     0.7    89.0 |   23.9    30.3    76.1 |   40.6    34.0    59.4 |   44.5    67.9    55.5 |   95.1     0.0     4.9 

    U2-Sensitive |    7.9     3.7    92.1 |   29.1     9.2    70.9 |   46.7     7.1    53.3 |   64.6     2.6    35.4 |   82.7     0.0    17.3 

     U2-Balanced |   26.6    10.9    73.4 |   53.3    15.6    46.7 |   66.9    10.6    33.1 |   78.2     3.1    21.8 |   92.7     0.0     7.3 

     U2-Specific |    7.9     3.6    92.1 |   31.6     9.3    68.4 |   47.6     7.5    52.4 |   65.4     2.7    34.6 |   85.7     0.0    14.3 

       U2-HiConf |    2.0     1.4    98.0 |   12.4     5.4    87.6 |   23.5     4.4    76.5 |   48.2     1.4    51.8 |   67.6     0.0    32.4 

          UCHIME |    8.3     1.9    91.7 |   29.7     3.3    70.3 |   49.2     1.6    50.8 |   67.8     0.4    32.2 |   78.2     0.0    21.8 

        ChSlayer |  (ChimeraSlayer does not support ITS) 

   ChSlayer-kmer |  (ChimeraSlayer does not support ITS) 

 

===== ITS2 ===== 

                 |           S=90         |           S=95         |           S=97         |           S=99         |          S=100         

            Algo |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN |   Sens      FP      FN 

---------------- | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ | ------  ------  ------ 

     U2-Denoised |    0.0     8.5   100.0 |   15.2    23.7    84.8 |   46.8    50.4    53.2 |   50.4    76.1    49.6 |   97.0     0.0     3.0 

    U2-Sensitive |    3.9     1.0    96.1 |   22.7     2.5    77.3 |   43.0     2.4    57.0 |   65.4     0.3    34.6 |   76.7     0.0    23.3 

     U2-Balanced |   17.2     5.4    82.8 |   50.4     8.0    49.6 |   67.8     6.1    32.2 |   82.3     0.9    17.7 |   90.1     0.0     9.9 

     U2-Specific |    3.5     1.2    96.5 |   24.4     2.9    75.6 |   44.3     2.7    55.7 |   67.6     0.5    32.4 |   81.1     0.0    18.9 

       U2-HiConf |    0.6     0.1    99.4 |    6.7     1.3    93.3 |   19.8     1.3    80.2 |   45.1     0.1    54.9 |   63.3     0.0    36.7 

          UCHIME |    4.4     0.6    95.6 |   28.4     0.9    71.6 |   46.5     0.6    53.5 |   65.9     0.1    34.1 |   74.2     0.0    25.8 

        ChSlayer |  (ChimeraSlayer does not support ITS) 

   ChSlayer-kmer |  (ChimeraSlayer does not support ITS) 
 

Table SN12.1. Summary of CHSIMA results for each region. Sensitivity, FP and FN rates 

are given as percentages. 
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Fig. SN12.1. Variation of sensitivity on the V4 region with D and S. The charts show 

sensitivity as a function of divergence for the V4 region measured on CHSIMA with segment 

identity S = 100, 99, 97, 95 and 90% and divergence D = 1, 2 ... 10. Sensitivities are given as 

percentages while divergences are substitutions, so e.g. D = 10 corresponds to a fractional 

divergence of (10 / |V4|) = 10/250 = 4%, 
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