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Abstract

Motivation: Variant calling from next-generation sequencing (NGS) data is suscepti-
ble to false positive calls due to sequencing, mapping and other errors. To better dis-
tinguish true from false positive calls, we present a method that uses genotype array
data from the sequenced samples, rather than public data such as HapMap or dbSNP,
to train an accurate classifier using Random Forests. We demonstrate our method on
a set of variant calls obtained from 642 African-ancestry genomes from the The Con-
sortium on Asthma among African-ancestry Populations in the Americas (CAAPA),
sequenced to high depth ( 30X).
Results: We have applied our classifier to compare call sets generated with different
calling methods, including both single-sample and multi-sample callers. At a False
Positive Rate of 5%, our method determines true positive rates of 97.5%, 95% and
99% on variant calls obtained using Illumina’s single-sample caller CASAVA, Real
Time Genomics’ multisample variant caller, and the GATK Unified Genotyper, re-
spectively. Since most NGS sequencing data is accompanied by genotype data for the
same samples, our method can be trained on each dataset to provide a more accu-
rate computational validation of site calls compared to generic methods. Moreover,
our method allows for adjustment based on allele frequency (e.g., a different set of
criteria to determine quality for rare vs. common variants) and thereby provides in-
sight into sequencing characteristics that indicate data quality for variants of different
frequencies.
Availability: Code will be made available prior to publication on Github.
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1 Introduction

Whole-genome sequencing has become increasingly common as a method to query ge-
netic differences between individuals, both for population genetic studies and studies
of genetic factors contributing to clinical phenotypes (Koboldt et al., 2013). Methods for
translating sequenced fragments into individual genotype calls have gone through a pe-
riod of active development, and many different options are available (DePristo et al.,
2011; Liu et al., 2013; Cleary et al., 2014). Each of them must account for the occurrence
of sequencing errors in determining whether a genetic variant is present in a particular
sample, a condition that becomes especially challenging with lower sequencing depth, or
in the case of a variant that has either never been seen in a given population or which is
very rare.

One key decision researchers make when choosing a variant caller is whether to use a
single-sample or multi-sample calling algorithm, with the argument in favor of multi-
sample calling including the fact that information can be borrowed across individuals at
sites of shared genetic variation. However, little work has been done to characterize the
differences between the sets of variants generated by different calling algorithms, making
it challenging for researchers to make a principled choice when designing an analysis
pipeline. The increased computational burden of performing multi-sample calling across
a large cohort means that benefits of such a calling method should be understood before
carrying out this phase of a study. In addition, while genotype callers usually include
some measure of quality or call confidence as part of their output, room for improvement
remains in terms of better characterizing true variant calls from false positives.

In this manuscript, we present a method for characterizing variant call sets produced with
different calling algorithms, in order to better select a call method suited to a particular
project. We also present a method for assessing variant call quality that incorporates
external genotyping array data for each subject, in order to build and train a classifier
which distinguishes true variant calls from false positives. Such external array data is
quite often generated either to accompany whole-genome sequencing data for sample
quality control purposes, and we leverage this additional resource to improve sequencing
call quality. We demonstrate our method on a set of variant calls obtained from 642 high-
coverage African-ancestry genomes from the The Consortium on Asthma among African-
ancestry Populations in the Americas (CAAPA), sequenced to high depth ( 30X).

2 Results

To illustrate our method, we first identified SNPs on chromosome 22 from 642 high-
coverage samples of African-American ancestry from The Consortium on Asthma among
African-ancestry Populations in the Americas (CAAPA) (Mathias et al., 2016) using three
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variant calling algorithms:

1. CASAVA from Illumina

2. Population caller from Real Time Genomics (RTG)

3. HaplotypeCaller from the Genome Analysis Toolkit (GATK)

For Illumina, variants were called on each sample individually and then merged into
a combined-sample callset whereas for RTG and GATK, variants were identified jointly
across all 642 samples. In all cases, the same set of 642 aligned read files (BAM files) was
used. The filters used to obtain the final callsets from the raw calls are described in more
detail in the Methods section.

Experimental validation of putative variants is expensive and difficult to perform for
thousands of variants. Therefore, we focus on variants identified in a single sample for
which we have a technical replicate, allowing variants to be partially validated.

2.1 Differentiating between callsets from different algorithms

Figure 1 shows a Venn diagram of the overlap between the three callsets for a single
individual. From the figure, we can see that about 65.3% of all variants are (43,291 out of
66,335) are found by all three methods. Nearly 19.1% of all variants (10,385 out of 66,335)
are found by only two out of three methods while 15.6% (12,658 out of 66,335) are found
by only one method. To determine if any genomic features affected the ability of methods
to detect a given variant, we trained a Random Forest classifier to identify which subset of
methods would identify a variant with given genomic features. A detailed description of
the genomic features used can be found in the Methods section and in the Supplementary
Information.

Table 1 shows the result of the classifier on the entire variant set. The classifier overall has
1.2% error rate, suggesting that it is possible to predict with very high accuracy which
methods will find a given variant given its genomic features. Figure 2 shows which ge-
nomic features are important for classifying a given variant. We can see that the frequency
of the variant in the combined-sample callset is important for determining whether a vari-
ant is found in an indivdidual callset or not. Other genomic features such as the variant
quality score, mapping quality, quality by depth and allele count also affect the accu-
racy of the classifier. The accuracy of the classifier depends not only on the coverage in
the chosen individual but also on the total coverage at the given variant across all indi-
viduals. We found that using strictly genomic features without frequency information
produced an error rate of 22.85%, which is lower than the error rate of a classifier that
always predicts the majority class (error rate 34.7%), indicating that even without the im-
portant differentiator of how many other people in a specific call set carry a variant, there
are differences in features that distinguish the call sets.
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Figure 1. Overlap between the three callsets consisting of variants on chromosome 22 for
our individual of interest.

Figure 2. Feature importance for the Random Forest classifier distinguishing calls made
by different calling algorithms. Scale on the x-axis is unitless but indicates relative
importance of the different features.
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Table 1. Confusion matrix for classifying variants. Rows show the “true” labels of
variants depending on which methods find a variant. Columns show the predictions
from our Random Forest classifier. The overall error rate of the classifier is 1.2%.

Illumina Illumina Illumina Illumina RTG only RTG GATK Error Rate
only + RTG + RTG + GATK + GATK + GATK only

Illumina only 4787 44 4 15 79 0 0 3%
Illumina+RTG 4 3326 1 0 229 0 0 7%

Illumina+RTG+GATK 0 0 43290 1 0 0 0 0%
Illumina+GATK 0 0 16 6019 0 0 10 0%

RTG only 19 201 0 0 6424 0 0 3%
RTG+GATK 0 0 95 0 4 681 0 13%
GATK only 0 0 0 73 3 2 1007 7%

2.2 Identifying true variant sites within a single callset

One feature of our data set is that in addition to whole-genome sequencing data, we ob-
tained genotype microarray data from the Illumina HumanOmni2.5 BeadChip (Omni).
For each of the three callsets, we used the Omni genotype data to learn a Random Forest
classifier that could predict whether or not a variant site detected in a callset was truly
variable or not. Using the Omni data, we declare a site to be truly variable if it is variable
in both the sequencing call set and based on the Illumina array data; if the site is only
variable in the sequencing data set but not based on the array data, we declare it to be
a false positive. For this task, we used a larger set of features than that used earlier (see
Methods). Figure 3 shows the importance of various features for the three Random For-
est classifiers trained. As before, allele frequency was the most important determinant for
the Illumina callset and the second most important for the GATK callset, while haplotype
score, a measure of sequence complexity around the site, was the most important fea-
ture for the RTG callset. Features of just slightly less importance were allele balance (AB,
highest relative importance for GATK), total coverage, haplotype score, GC content and
coverage. Figure 4 shows the receiver-operating characteristic (ROC) curves for the three
classifiers. We see that all three classifiers have high sensitivity and specificity (true pos-
itive rate > 0.95 with false positive rate =0.05), with area under the curve (AUC) greater
than 0.99. This suggests that truly variant sites for each callset can be determined statisti-
cally using a machine-learning algorithm (similar to the Gaussian mixture model used by
GATK’s variant quality score recalibration (VQSR) scoring scheme, but on an individual
basis).

We evaluated the validity of our classifier scores by stratifying sites by the callsets they
were found in to compare score distributions for sites with varying degrees of concor-
dance across callsets. Figure 5 shows the results of this analysis. Considering the results
for the Illumina classifier (left panel in Figure 5), we can see that sites found in all three
callsets have higher classifier scores (n=43291, median score = 0.96) than sites found in
two of three callsets (n=9605, median score = 0.92), with p < 2 × 10−16 for a one-sided
t-test comparing these groups. Sites found only by the Illumina callset have the lowest
classifier scores (n=4929, median score = 0.78), with p < 2 × 10−16 for both one-sided
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Figure 3. Feature importance for callset-specific classifiers based on Omni genotype
data. Note that the frequency features refer to the estimates of the allele frequency from
the callset being studied.

Figure 4. ROC curves for callset-specific classifiers based on Omni genotype data.
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Figure 5. Callset-specific classifier scores for all sites, stratified by the callsets in which
the site was found. Shown are calls from Illumina (left), RTG (center) and GATK (right).
Colors represent the number of callsets a particular variant was observed in.

Figure 6. Callset-specific classifier scores for all sites stratified by whether the site was
found in both replicates or only one replicate. Shown are calls from Illumina (left), RTG
(center) and GATK (right). Colors represent the number of replicates a particular variant
was observed in.

t-tests comparing them to the other two categories. Assuming discovery by many variant
callers to be a signal that a site is truly variable, this suggests that our learned classifiers
can predict truly variable sites accurately.

For orthogonal validation, we used a technical replicate and generated variants using
the three variant callers. For each site in the original callset, we were therefore able to
ascertain whether it was found in both the original and replicate callsets or just one of the
two. Figure 6 shows the results of this analysis. We can see that sites appearing in both
replicates have a higher classifier score than those appearing only in one replicate (for the
one-sided t-test, p = 1.063 × 10−5 for illumina, p < 2.2 × 10−16 for RTG and GATK).

For each callset, we used the fitted callset-specific classifer to predict whether all discov-
ered sites within the callset were variable. Table 2 shows the results of this prediction.
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Table 2. Predicted number of true variant sites from three different callsets using fitted
callset-specific classifiers.

Variant caller Total sites Predicted variant sites Rate
Illumina 57825 54023 93%

RTG 54275 45297 83%
GATK 51201 49485 97%

We see that of the three methods, the Illumina callset has the largest number of sites pre-
dicted to be variable. The GATK callset has the highest proportion of sites predicted to be
variable, which is expected since the callset was filtered using VQSR before our analysis.
Overall, all three callsets have a high proportion of variants predicted to be true calls by
our classifier.

3 Methods

For our analyses, we used alignment files (BAMs) that we received from Illumina after
sequencing for the 642 samples. Variant calls were obtained from the alignment files using
three different pipelines as follows:

• Illumina: Raw calls were filtered first by removing any variants near centromeres
or other high copy regions by filtering based on depth of coverage, and second
by removing variants falling into regions of segmental duplication. In addition,
individual genotype calls were set to missing which had call quality scores below
20 or depth of coverage below 7. The merged multi-sample VCF was then filtered
for SNPs that failed Hardy-Weinberg equilibrium (HWE, p < 10−6). Calling was
performed at Illumina, where the sequencing was performed.

• RTG: We used the population caller from RTG (version 3.2) to jointly obtain variant
calls for the 642 samples. The multisample VCF was filtered using the Adapative
Variant Rescoring scheme (minAVR = 0.025). The resulting VCF was then filtered
for SNPs that failed HWE with p < 10−6.

• GATK: We used the GATK UnifiedGenotyper (version 2.7.4) to jointly obtain vari-
ant calls for the 642 samples. The multisample VCF was filtered using VQSR (sen-
sitivity=94%). The resulting VCF was then filtered for SNPs that failed HWE with
p < 10−6.

Illumina also provided us with genotype microarray data from the Illumina HumanOmni2.5
BeadChip (Omni). There are 33234 SNPs on the Omni array for chromosome 22. Of those,
4123 SNPs (12%) have MAF < 0.01, 10221 SNPs (31%) have MAF < 0.05 and 23012 (69%)
have MAF ≥ 0.05.
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3.1 Distinguishing between callsets

To distinguish between the three callsets, we used a random forest classifier implemented
in the “randomForest” package (Liaw and Wiener, 2002) written in R (R Core Team, 2014).
Random forest classifiers are collections of decision trees that allow non-linear interac-
tions between features and are robust to over-fitting (Breiman, 2001). We used 1000 trees
for our analysis due to the large number of variants.

3.1.1 Features selected

We used a number of genomic features for the callset-specific classifiers. Many of them
were chosen to be among the features used in GATK’s VQSR scoring scheme. Supple-
mentary Table 1 describes the features used.

3.2 Call-set specific classifiers

3.2.1 Features selected

We used a number of genomic features for the callset-specific classifiers. Supplementary
Table 2 describes the features used. Based on results from the previous analysis, read
allele imbalance measured using a RankSum test (such as BaseQualityRankSum) were
not very informative for classification and were replaced by a Fisher test score of allele
balance for this analysis.

3.2.2 Ground truth data

For our classification task, we used the Omni genotype calls as ground truth. Therefore,
we were able to use the sites overlapping between the Omni SNPs and the variant calling
output from the sequencing data as our labeled set. Sites that were heterozygous or ho-
mozygous alternate in the Omni genotype calls for the chosen individual were lableled
‘1’ while sites which were homozygous reference were lableled ‘0’.

3.2.3 Unbalanced class problem

On intersecting the sequencing variant calls with Omni genotype data to obtain labeled
sites, we observed that the ratio of the number of sites lableled ‘1’ to those labeled ‘0’ was
nearly 100:1 (11506:184 for illumina, 10376:170 for RTG and 11465:184 for GATK). In clas-
sification tasks, this can be problematic since it can bias the classifier towards increasing
accuracy by always predicting the majority class.
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To avoid this problem we used the SMOTE method (synthetic minority over-sampling
technique) by Chawla et al. (2002) implemented in the R software (Torgo, 2010). This
method oversamples the minority class by creating synthetic examples of the minority
class from existing examples. It also undersamples the majority class for improved per-
formance.

4 Discussion

Here, we present a method of using random forests to both characterize different variant
call sets and to assess call quality taking into account a wide variety of data features in a
flexible way. We show that for sequencing data like ours, e.g., with relatively deep (30x)
coverage, both single-sample and multi-sample calling methods provide calls with very
good accuracy. We illustrate our method on a single sample for which we had a technical
replicate to provide further insight into the behavior of our classifier.

To further explore differences between the callsets, we also looked at results stratified
by allele frequency bin. Here there were some differences in performance, with different
thresholds chosen for classifying rare and common sites resulting in nearly 800 additional
sites being predicted as variant (Supplementary Table 3). In light of these results, we con-
clude that the optimal calling method to apply may depend on what the intended use of
the variant calls is, with different applications (e.g., population level vs variant specific
analyses) best served by different calling methods. For example, recent work (Han, Sin-
sheimer, and Novembre, 2014) discusses potential biases in site-frequency spectrum esti-
mation that can result from low-coverage sequencing data where rare variants are more
likely to be missed. For an application like this, multi-sample calling would be most ap-
propriate to leverage information from many samples. However, in general applications
or when sequencing coverage is high as it is in our data set, we have not observed a large
impact on downstream results comparing the different call sets. As part of the analysis in
the CAAPA flagship publication, we compared some downstream results generated with
both the Illumina single-sample callset and the RTG multi-sample callset and found no
difference in the overall patterns seen in the count of deleterious alleles by individual or
by group (see Supplementary Information of (Mathias et al., 2016)). We do note that our
false positive rate of 5% may be considered high for applications to disease genetics, and
suggest that the standard practice of validating any interesting findings either through
replication or through further genotyping should still be used. Finally, modifications to
the method presented here to target a particular allele frequency class, such as modifying
the quality threshold for different frequency bins, or potentially retraining the classifier
on different subsets of the data split by frequency bin, are also possible if variants in a
particular frequency range are of special interest in a particular application.

While collecting genotype array data is common practice to accompany whole-genome
sequencing data generation for the purpose of sample verification, our work indicates

11

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2016. ; https://doi.org/10.1101/078642doi: bioRxiv preprint 

https://doi.org/10.1101/078642
http://creativecommons.org/licenses/by-nc-nd/4.0/


that it is also valuable to have array data as an orthogonal validation data set for QC
purposes and to assess overall call quality of the variant calls from the sequencing data.

As an alternative to the SMOTE method, weighting the observations in the different
classes to give a more balanced training set is a possibility. We also implemented this
and found that performance was not as good as what we present here (data not shown).

A potential extension to the work presented here would be to develop a method of pro-
ducing a consensus call set based on the results of the classifier output for each set of
variant calls. We could produce a combined result from the different calling methods us-
ing a weighted combination (e.g., weighted by the quality score assigned by our classifier)
or a latent variable model. This would be similar to work presented in (DePristo et al.,
2011) but with a more flexible approach to assigning weights to the various possible calls.

5 Conclusion

We demonstrate that differences between callsets generated by different variant callers
can be explored and interpreted using machine learning methods like Random Forests.
In addition, we show that Random Forests can be used to identify which variant calls
from a specific callset are likely to be true.
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