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Abstract5

Adaptations may require multiple mutations that are beneficial only in combination. To

adapt, a lineage must acquire mutations that are individually neutral or deleterious before

gaining the beneficial combination, thereby crossing a plateau or valley, respectively, in the

mapping from genotype to fitness. Spatial population structure can facilitate plateau and

valley crossing by allowing neutral and deleterious lineages to survive longer and produce10

more beneficial mutants. Here, we analyze adaptation across a two-mutation plateau or

valley in an asexual population that is subdivided into discrete subpopulations, or demes,

connected by migration. We describe how subdivision alters the dynamics of adaptation

from those in an equally sized unstructured population and give a complete quantitative

description of these dynamics for the island migration model. Subdivision can significantly15

decrease the waiting time for the adaptation if demes and migration rates are small enough

that single-mutant lineages fix in one or more demes before producing the beneficial double

mutant. But, the potential decrease is small in very large populations and may also be

limited by the slow spread of the beneficial mutant in extremely subdivided populations.

Subdivision has a smaller effect on the probability that the population adapts very quickly20

than on the mean time to adapt, which has important consequences in some applications,

such as the development of cancer. Our results provide a general and intuitive framework

for predicting the effects of spatial structure in other models and in natural populations.
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1 Introduction

Adaptations that give rise to new biological functions are often complex, emerging from

the interactions of multiple mutations. Examples include the evolution of aerobic citrate

utilization in experimentally evolving populations of Escherichia coli (Blount et al. 2012)45

and the evolution in vertebrates of a ligand-activated transcription factor to bind a new

target ligand (Ortlund et al. 2007) or new target DNA sequence (McKeown et al. 2014).

The acquisition of drug resistance in pathogenic bacteria (Wang et al. 2002; Weinreich et al.

2006) and immune system escape in influenza (Gong et al. 2013) and HIV (Silva et al. 2010)

can also be complex adaptations.50

The mutations involved in complex adaptations have effects on function and fitness that

depend on which other mutations are present. As a result, some or all of the sequences of

mutations that lead from the ancestral to the adapted genotype may have steps that are

neutral or deleterious. Such sequences are said to cross a plateau or valley, respectively,

in the map from genotype to fitness. Determining how a species can adapt via such a55

sequence of mutations (in both cases generically referred to as valley crossing) is crucial to

understanding how and when complex adaptations evolve.

Valley crossing also has implications for the evolution of human pathogens and in the

development of cancer. Persistence of drug resistance in bacteria and viruses has been

explained by the observation that, in the absence of drugs, drug-resistant and drug-sensitive60

strains are separated by a fitness valley, making reversion to drug sensitivity difficult (Levin

et al. 2000; Trindade et al. 2009). The evolution of Human Immunodeficiency Virus-1 (HIV-

1) to use an alternate host co-receptor, seen in roughly one-half of HIV-1 patients, may

also require crossing a valley (Regoes and Bonhoeffer 2005; Silva et al. 2010; Silva and

Wyatt 2014). Finally, cancer usually results from a sequence of mutations (often called hits)65

accumulating within an individual cell that give the cell’s lineage an increased growth rate.

For example, loss of function (LOF) mutations may be needed in both copies of a particular

tumor-suppressor gene (TSG) before a lineage begins growing into a tumor (Knudson 2001;
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Frank 2007). If both LOF mutations are needed for cells to have a competitive advantage

over cells with no mutations, then inactivating the TSG requires crossing a valley or plateau.70

In asexual populations, valley crossing requires a clonal lineage to sequentially acquire all

of the necessary mutations. Large asexual populations typically cross plateaus and valleys

by a process in which a lineage acquires the mutations while still rare in the population.

This process also occurs in sexual populations if the mutations are closely linked (Weissman

et al. 2010), as is likely if the mutations occur in the same gene. Komarova et al. (2003)75

used the term tunneling to distinguish this process from the typical mode of adaptation in

small populations by which the mutations fix sequentially. They were also the first to analyze

tunneling where two mutations are required and the single-mutant genotype is either neutral

or deleterious. Gillespie (1984) first analyzed tunneling for strongly deleterious intermediate

mutants and Kimura (1985) analyzed tunneling as a form of neutral evolution, where the80

single mutant is deleterious and the double mutant is neutral. Later studies analyzed asexual

tunneling under new regimes or provided additional details (e.g., Iwasa et al. 2004,Weinreich

and Chao 2005, Durrett and Schmidt 2008, and Proulx 2011; see Weissman et al. (2009) for

the most complete account of valley crossing and tunneling in asexual populations). Genomic

evidence suggests that tunneling occurred repeatedly in the evolution of mitochondrial tRNA85

genes (Meer et al. 2010). Theory, observations, and experiments suggest that tunneling

occurs during co-receptor switch in HIV (Regoes and Bonhoeffer 2005; Silva and Wyatt

2014). The large size of stem cell populations also suggests that tunneling will often be

involved in the acquisition of multiple hits leading to some cancers. Even in cases where

intermediate genotypes offer a small fitness advantage, tunneling may be a more likely mode90

of adaptation that sequential fixation of individual mutations (Weissman et al. 2009).

Tunneling studies typically assume that the population is completely unstructured, with

all individuals competing equally with one another; however, natural populations are spa-

tially structured to various degrees, such that individuals disperse and compete within a

region smaller than the population’s total range. Spatially structured populations can be95
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subdivided into distinct subpopulations, or demes; distributed continuously in space; or

fall somewhere in between these extremes. Early on, Sewall Wright suggested that spa-

tial structure should facilitate valley crossing (Wright 1932). Wright was mainly concerned

with sexual species having high rates of recombination between loci and, in these species,

spatial structure reduces the rate at which sex breaks up beneficial combinations of muta-100

tions. This idea forms the backbone of Wright’s famous shifting balance theory of evolution

(Wright 1970; Charlesworth and Charlesworth 2010). However, the extensive literature on

the shifting balance theory says little about how spatial structure might affect valley crossing

in asexual species.

We aim to understand how spatial structure affects valley crossing in asexual populations105

for the simplest scenario, where the adaptation requires two mutations. Spatial structure

can have qualitatively different effects on evolutionary dynamics depending on assumptions

about how competition and demography interact with space. We set out to describe the

consequences of perhaps the most basic aspect of spatial structure, that individuals tend to

compete and reproduce within a local region that is small compared to the population’s total110

geographic range. This basic feature of space can affect asexual tunneling in the following

way. If migration is sufficiently limited, mutant lineages that segregate in the population will

tend to be unevenly spatially distributed, and mutant individuals will tend to have a greater

than average proportion of mutants nearby. As a result, mutants tend to compete more with

other mutants than they would if the population were unstructured. This phenomenon,115

which we call positive competitive assortment, reduces the ability for selection and drift to

purge deleterious and neutral mutant lineages from the population. Single-mutant lineages

are therefore more likely to survive long enough to successfully tunnel across the valley by

producing a double mutant than in unstructured populations.

Komarova (2006) showed that spatial structure can accelerate tunneling across valleys120

and plateaus by this mechanism. Structure was modeled in the form of a population where

each each individual occupies a unique site on a one-dimensional lattice, competes with its
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nearest neighbors, disperses to adjacent sites, and does not migrate. In this model, single-

mutant lineages form contiguous colonies that change slowly in size since genetic change

occurs only at the colony’s two edges. As a result, single-mutant lineages survive longer and125

produce more double mutants, which can lead to faster tunneling on average. In contrast,

Takahasi (2007) found no effect of population subdivision on plateau crossing in the absence

of recombination; however, their mutation model differs from that of Komarova (2006) by

allowing each mutation to occur only once in the history of the population.

The results of Komarova (2006) show that structure can in principle accelerate valley130

crossing; however, questions remain about when this effect will be significant, which we

address in the present study. First, how do the effects of spatial structure on valley crossing

vary with the type of structure (e.g., subdivided versus continuous habitats) and the degree

of structure (e.g., migration rates)? Second, do limits exist for the extent to which spatial

structure can accelerate valley crossing? In other words, are there situations where increasing135

the degree of structure does not decrease the waiting time for the population to adapt?

For certain applications, the rare times when the valley is crossed very quickly are of

primary importance; examples include the development of cancer within a human lifetime

(Weissman et al. 2010) or if crossing the valley before a mutually exclusive beneficial mutation

occurs could lead the population down a divergent long-term evolutionary trajectory. In140

unstructured populations, the dynamics associated with quickly crossing the valley differ in

important ways from those associated with crossing the valley in a roughly average amount

of time (Weissman et al. 2010). Therefore, we also ask how spatial structure affects the

probability that the population crosses the valley within a period of time that is much

shorter than the average.145

To address these questions, we analyzed how population structure affects the dynamics

of adaptation across a two-mutation valley or plateau in an asexual population that is sub-

divided into discrete subpopulations, or demes, with occasional migration between demes.

Subdivision may have particularly large effects on tunneling, since a rare lineage that becomes
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fixed within a deme only competes with itself and not with other genotypes. Subdivision150

is also relevant for the evolution of pathogens and cancer development, as human tissues

create subdivided habitats. The population of stem cells from which colon cancers arise, for

example, are subdivided into ∼ 107 crypts (Tomasetti and Vogelstein 2015), each with an in-

dependently evolving subpopulation of ∼ 5 stem cells that are susceptible to developing into

cancer (Baker et al. 2014; Vermeulen and Snippert 2014), and populations of cells carrying155

HIV are subdivided into pulps within the spleens of infected patients (Frost et al. 2001).

We first describe the general mechanism by which subdivision affects valley crossing

and then give a complete description of valley-crossing dynamics for the finite island model

of subdivision, in which migration between any pair of demes occurs equally frequently.

We consider the effects of varying the degree of spatial structure in the island model by160

varying the size of demes or the migration rates between them. Though the island model

is unrealistic for many species, many of our results are general and provide fundamental

insights into how subdivision, and spatial structure more generally, affect valley crossing.

Section 7 considers how the results, methods, and intuition we present can be extended to

models where migration occurs primarily between nearby demes.165

2 Model

We consider the process by which a subdivided asexual population obtains an adaptation that

requires two mutations before any fitness benefit is gained. The mutations leading to such

adaptations can be of a variety of types. For example, two point mutations might be required

in the same or different genes. Alternatively, for the case of inactivation of a tumor-suppressor170

gene in a clonally reproducing diploid cell, a nonsense or frameshift mutation may inactivate

one copy of the gene and be followed by gene conversion to inactivate the second copy. We

analyze how subdivision changes how the population adapts by a particular sequence of two

mutations while ignoring the possibility of other mutations. This assumption simplifies our
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analysis by allowing us to consider just three types of individuals—wild-type individuals175

that carry zero mutations and individuals carrying either one or two mutations. Wild types,

single mutants, and double mutants have relative fitnesses of 1, 1−δ, and 1+s, respectively,

with δ ≤ 0 and s > 0 (Figure 1). Wild types mutate to single mutants at rate µ0 and single

mutants mutate to double mutants at rate µ1; for simplicity, we ignore back mutations. In

general, a population can adapt by multiple mutational pathways; valley-crossing dynamics180

can then be found from our results using the method described in Weissman et al. (2009).

The population consists of NT individuals subdivided into L demes, with each individual

competing and reproducing locally, that is, within its own deme. The number of individuals

within a deme is constant and independent of the average fitness of the deme. Migration

exchanges individuals between demes but does not alter deme size or the total frequency185

of genotypes within the population; thus, in our model selection is soft and migration is

conservative (Nagylaki 1980; Whitlock 2004; Charlesworth and Charlesworth 2010). With

these assumptions, subdivision affects tunneling by the same general mechanism as in the

lattice model of Komarova (2006). We describe how subdivision qualitatively affects valley

crossing under a general model where demes may differ in size and allowing for any pattern190

of migration, so long as each deme can be reached from any other in a finite time. Our

quantitative analysis assumes the finite island model, for which each deme has N individuals

that each migrate at rate m per generation to a different, randomly chosen deme.

The rate of genetic drift is controlled by a parameter, α, which we call the drift coefficient,

defined as one-half of the variance in the number of descendants left by an individual after one195

generation. This definition is equivalent to α ≡ N/2Ne, where Ne is the variance effective

population size of a deme of size N . Larger values of α correspond to smaller effective

population sizes and faster stochastic changes in genotype frequencies with a deme for a

given N . Our inclusion of the parameter α serves two purposes. First, in many cases the

effects of subdivision on the evolution of a mutant lineage can be understood as decreasing200

the effective drift and selection coefficients. Second, our model can represent a variety of
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reproduction models by appropriately choosing α; for example, the Moran reproduction

model corresponds to α = 1 and the Wright-Fisher model to α = 1/2. Table 1 summarizes

our model parameters.

We make several additional assumptions in order to facilitate our analysis and discussion.205

First, we assume that s � α/NT so that the double mutant has a significant selective

advantage over wild type. Second, we assume that µ1 � max{δ, s}, which, for reasons

described below, is required for spatial structure to accelerate valley crossing. Third, we

assume that the dynamics of genotype frequencies within demes can be described using the

standard diffusion approximation from population genetics (Ewens 2004). In practice, this210

assumption requires that the census and effective sizes of demes are large (N � 1 and

N/α � 1), selection has a small effect on an individual’s reproductive success (δ � α and

s� α), and that third and higher moments of the distribution of the number of descendants

per individual per generation are negligible (i.e., the distribution is characterized only by its

mean and variance). Finally, unless otherwise stated we assume that the population is large215

enough that valley crossing occurs by tunneling—that is, single mutants remain rare in the

total population until the double mutant begins to sweep.

We verified our predictions using computer simulations of a Wright-Fisher population.

Additional details for our simulations are given in Supplementary Appendix A. Source code

for simulations and figures is available at https://github.com/mmclaren42/valley-crossing-220

subdivided.

3 Summary of results

Our goal is to find the average and probability distribution of the time T when, starting from

an entirely wild-type population, a double mutant first arises whose lineage is destined to

sweep through the population, as well as the average time for the double mutant to become225

fixed within the population.
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For the population to adapt across the valley, a single-mutant lineage must survive long

enough to produce a double-mutant lineage that is destined to survive and sweep to fixation.

We refer to the single and double mutants that give rise to such lineages, and the lineages

themselves, as successful. Figure 2 illustrates the process of adaptation in a population230

that is not too large or too heavily subdivided. We let T0 be the waiting time for the first

successful single mutant; the drift time, T1, be the time that the first successful single-mutant

lineage drifts before producing a successful double mutant; and the sweep time, Tsw, be the

time for the successful double-mutant lineage to sweep to fixation. This and other notation

is reviewed in Table 2.235

In Figure 2, the first successful single-mutant lineage produces the first successful double

mutant, which in turn becomes the most recent common ancestor of the population once

the double-mutant genotype is fixed. Therefore, the time when the first successful double

mutant occurs is T = T0 +T1 and the time for the population to become fixed for the double

mutant is T0 +T1 +Tsw. We call this scenario stochastic tunneling to distinguish it from other240

tunneling scenarios that can occur in very large or very heavily subdivided populations. A

sufficient condition for stochastic tunneling is that the average time 〈T0〉 is much larger than

both 〈T1〉 and 〈Tsw〉. In this case, the total time for the population to adapt is typically

dominated by T0. Let p1 be the probability that a single mutant is successful. Successful

single mutants are produced as a Poisson process with rate NTµ0p1, and so the average245

waiting time for the first successful single mutant is

〈T0〉 ≈
1

NTµ0p1
. (1)

Subdivision accelerates stochastic tunneling by increasing p1 above its corresponding value

in unstructured populations, p1,wm (the subscript “wm” stands for “well-mixed”). Increases

in p1 are primarily attributable to the effects of competitive assortment, which reduces the

rates of selection and drift experienced by single-mutant lineages and so allows them to250
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survive longer and produce more double mutants.

The quantitative effect subdivision has on a given single-mutant lineage depends roughly

on the average degree of competitive assortment experienced by the lineage before producing

a successful double mutant. We measure competitive assortment with a statistic F that

quantifies how much more likely a pair of individuals from the same deme are to share255

a genotype than a pair drawn at random from the total population. The statistic F is

equivalent to a version of Wright’s fixation index FST defined in Whitlock (2002); it varies

between zero and one, with F = 0 when a lineage has equal frequency across all demes

and F = 1 when a lineage is either fixed or absent in each deme. Increasing the degree of

subdivision by decreasing the size of demes or the migration rate increases the typical values260

of F experienced by single-mutant lineages and thus increases p1. Large increases in p1, of

an order of magnitude or more, only occur if successful single-mutant lineages typically fix in

one or more demes before producing a successful double mutant and so have average values

of F close to 1.

Successful single-mutant lineages will only tend to fix within a deme if both N and265

m are small. Demes must have substantially fewer than N× individuals, where N× is the

size of an unstructured population in which valley crossing is equally likely to occur by

tunneling or sequential fixation. If N � N×, then p1 ≈ p1,wm, since, even at low migration

rates, successful single-mutant lineages remain at low frequency within individual demes

and always have small assortments. If N � N× and m is sufficiently small, then successful270

lineages typically fix within their initial deme and p1 � p1,wm.

When N � N×, the probability p1 increases over a wide range of decreasing migration

rates, to a maximum limm→0 p1 = ψ0→1θ, where ψ0→1 is the probability that a single-mutant

lineage fixes in a wild-type deme and θ is the probability that a double-mutant lineage that

has fixed within a deme goes on to fix in the total population. A sufficient condition for275

p1 ≈ ψ0→1θ is that migration is rare enough that a single-mutant deme always transitions

into a double-mutant deme before being displaced by a wild-type migrant.
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Variation in p1 for higher migration rates depends critically on whether selection against

single mutants is strong enough to inhibit their fixing within individual demes. If δ � α/N ,

then single mutants are locally neutral—they have a neutral probability ≈ 1/N of fixing280

within a deme when migration is rare. (Such mutants are still deleterious with respect to

fixation in the total population if δ � α/NT.) If δ � α/N , then single mutants are locally

deleterious, and are much less likely than a neutral mutation to fix within a deme due to

selection.

If single mutants are locally neutral and the number of demes is large, the effects of285

subdivision can be found by substituting effective drift and selection parameters into results

for unstructured populations. These effective parameters are αT ≡ (1 − F̂ )α and δT ≡

(1 − F̂ )δ, where F̂ ≈ 1/(1 + Nm/α) is the equilibrium assortment in the infinite neutral

island model. Subdivision has a large effect for small migration rates m � α/N , for which

the effective parameters are greatly reduced below their unstructured values.290

If single mutants are locally deleterious, successful single-mutant lineages will either,

depending on the migration rate, drift to ∼ α/δ � N copies before producing a successful

double mutant, and so never fix within a deme, or drift to ≈ N copies and fix within their

initial deme. The latter dominate for migration rates m� ηα/N , where η is a constant that

is � 1 if δ � α/N .295

Finding the extent to which subdivision accelerates valley crossing requires that we also

consider the drift and sweep times. We find that subdivision always increases the average

drift and sweep times, by factors at least as large as p1. Extreme subdivision therefore makes

it much more likely for tunneling to be limited by the drift and sweep times. Moreover,

these increases in the drift and sweep times can greatly limit the degree to which subdivision300

accelerates tunneling. The drift time limits how much subdivision can decrease the waiting

time for the successful double mutant. We find that subdivision can decrease the average

waiting time for a successful double mutant to a minimum of
√
πα/2NTµ0µ1s. This minimum

value is already obtained by an unstructured population if NTµ0/α � max{1, δ2/µ1s}; in
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such cases, subdivision has no effect on the average (or on the distribution) of T . The sweep305

time is proportional to α/Nm for small migration rates m� α/N , and so will dominate the

waiting time for the double mutant to fix in heavily subdivided populations.

Increases in the drift time also limit the degree to which subdivision can increase the

probability that the valley is crossed unusually quickly. The probability that a successful

double mutant appears by time t can only be increased by subdivision to a maximum of310

1 − exp[−NTµ0µ1st
2/2α]. For t less than min{1/√µ1s, 1/δ}, the average drift time in an

unstructured population, this maximum occurs even without subdivision and subdivision

has no effect on the probability, even if it greatly decreases the average, 〈T 〉.

4 Fate of a single-mutant lineage

This section describes how subdivision affects the fate of a single-mutant lineage—in partic-315

ular, the probability that the lineage is successful and the drift and sweep times. Sections

5 and 6 use these results to find the average and distribution of the waiting time for the

population to adapt, including cases where the time is not dominated by the waiting time

for a successful single mutant.

4.1 Qualitative effects of subdivision320

Before presenting our quantitative results for the island model, we first describe the general

mechanism by which subdivision increases the probability that a single-mutant lineage is

successful as well as the drift and sweep times.

Subdivision and lineage dynamics: To see how subdivision affects the dynamics of

the total copy number of a mutant lineage, we consider a mutant lineage with selection325

coefficient f segregating in an otherwise wild-type population. We let n(t) be the number

of mutant individuals at time t, ni be the number of mutants in the i-th deme, and Ni be
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the size of the i-th deme, so that NT = ∑
iNi and n = ∑

i ni. It is often useful to consider

frequencies instead of numbers, and so we also let x ≡ n/NT be the frequency of mutants in

the total population and xi ≡ ni/Ni be the frequency of mutants in the i-th deme, so that330

x = ∑
i(Ni/NT)xi. Our goal is to understand how competitive assortment in subdivided

populations influences how n(t) (or x(t)) changes over time.

We quantify the competitive assortment at time t with a measure F describing the

increase in probability that a pair of competing individuals in the population share a genotype

over the probability for a random pair of individuals. First, we consider sampling two335

individuals with replacement from the total population, and let JT be the probability that

the two individuals share a genotype, or are identical by state. Therefore,

JT = x2 + (1− x)2 (2)

where x is the current frequency of the mutation. Next, we consider sampling two individuals

by sampling the first from the total population and the second from the set of individuals

that compete with the first. For the subdivision models we consider, this set includes all340

individuals within the deme of the first individual, including the first individual itself. By

conditioning on which deme the first individual is chosen from, we can see that

JS =
L∑

i=1

(
Ni

NT

) [
x2
i + (1− xi)2

]
. (3)

It follows by Jenson’s inequality that if mutants are evenly spatially distributed—that is, if

xi = x for all i—then JS = JT , but if mutants are unevenly distributed, then JS > JT . (This

fact is equivalent to the well-known Wahlund effect by which subdivision leads to departures345

from Hardy-Weinberg proportions in randomly mating diploid species (Charlesworth and

Charlesworth 2010).) Intuitively, if mutants are unevenly distributed, they tend to be found

in demes with a greater than average frequency of mutants. We define the competitive
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assortment F as the difference between JS and JT normalized so that 0 ≤ F ≤ 1, or

F ≡ JS − JT
1− JT

. (4)

By definition, F = 0 when mutants are evenly distributed and F = 1 when mutants are350

either fixed or absent in every deme.

We briefly mention some similarities and differences between the definition (4) and related

quantities used in other evolutionary studies. The quantity F is equal to GST as defined in

Nei (1973) for a biallelic locus if demes are weighted by their size and is also equal to FST as

defined in Whitlock (2002) and Whitlock (2003). We emphasize, however, that our definition355

differs from other quantities also called FST and more general “relatedness” or “inbreeding”

coefficients (sensu Rousset (2002)) in important ways. These quantities as typically defined

are deterministic and as such are effectively parameters of the model (Rousset 2002). In

contrast, here F is a summary statistic of the current state of the population. Some, but

not all, of the theoretical knowledge relating to these other quantities carries over when360

considering the values of F that are experienced by mutant lineages. Our reason for the

definition of F used here is that it provides a direct way of understanding, with minimal

assumptions, how competitive assortment affects the evolution of x(t).

The change in x over a short period of time due to selection and drift is characterized

by the mean and variance of the change in x over one generation. The mean, Mx, describes365

the action of selection, or the deterministic change in x, while the variance, Vx, describes the

action of drift, or the stochastic change in x. Given the current state of the population, the

mean and variance can be expressed in terms of x and F (Supplementary Appendix B) as

Mx = (1− F )fx(1− x) (5)
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and

Vx = (1− F ) 2α
NT

x(1− x). (6)

When F = 0, Equations (5) and (6) reduce to the familiar expressions for the mean and370

variance in an unstructured population with mutant frequency x. In general, however, both

Mx and Vx are reduced by a factor 1 − F below their respective unstructured values. This

reduction occurs because the fraction of competitive interactions in the population that take

place between individuals with different genotypes is reduced by a factor 1 − F relative to

in an unstructured population.375

Even without saying anything about how F evolves, we can use Equations (5) and (6)

to make some general conclusions about how subdivision affects the long term evolution of

the total frequency of the lineage. Starting from a initial frequency x(0), whether x(t) first

reaches a frequency A before a frequency B (with A < x(0) < B) is determined byMx/Vx in

the interval between A and B, and is therefore independent of subdivision (Supplementary380

Appendix B). This is a more general statement of Muruyama’s well-known result (Maruyama

1970; Maruyama 1974) that the probability that the lineage reaches fixation is independent of

subdivision. If we consider the trajectories of x that reach A from x(0) (or B from x(0)), the

frequency will tend to change more slowly in subdivided than in unstructured populations

at every intermediate frequency. Compared to an equivalent trajectory in an unstructured385

population, the time taken to reach A (or B) will be longer by a factor of 1/(1− F̄ ), where

F̄ is the average value of F over the trajectory (Supplementary Appendix B).

Given our above observations, we can define the probability that a lineage with selec-

tion coefficient f initially present in n0 copies reaches k copies before going extinct (with

0 ≤ n0 ≤ k ≤ NT), which we denote Pf (n0, k), independently of population structure.390

This probability can be approximated using standard diffusion methods for unstructured
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populations (reviewed in Ewens (2004)) and is

Pf (n0, k) ≈ 1− e−n0f/α

1− e−kf/α . (7)

The specific case n0 = 1 and k = NT corresponds to the familiar diffusion approximation for

the probability of fixation of a mutant lineage when initially present in a single copy.

Fate of a single-mutant lineage: Subdivision can potentially affect the probability that395

the single-mutant lineage is successful both through the number of double mutants it pro-

duces and through the probability that a double-mutant lineage is successful.

A double-mutant lineage is successful if it is destined for fixation instead of going extinct.

The probability that a double-mutant lineage is successful, which we denote p2, is not entirely

independent of subdivision due to the presence of single mutants in the population. If400

the population were all wild-type, then p2 = Ps(1, NT) independently of subdivision. For

s � α/NT, this probability is ≈ s/α, which is usefully interpreted as the reciprocal of the

number α/s above which the double-mutant lineage is established, or very likely to survive

drift and sweep through the population (Desai and Fisher 2007). Since single mutants are

rare in the total population, in unstructured populations the probability p2 remains ≈ s/α.405

In subdivided populations, however, single mutants may be frequent in one or more demes

and double mutants in primarily single-mutant demes will have a significant extra advantage

if δ & s. In addition, new double-mutant lineages in subdivided populations usually occur in

demes with greater than average frequencies of single mutants—if x and F are the frequency

and assortment of single mutants, then the expected frequency of single mutants in the deme410

where a double mutation occurs is F + (1− F )x. As a result, subdivision may increase p2,

although we will see that the effect this has on p1 is usually fairly small.

The number of double mutants produced by a single-mutant lineage is proportional to

the total number of single mutant descendants of the lineage, or its weight (Weissman et al.

2009). The weight W is equal to
∫∞

0 n(t) dt, where n(t) is the number of single mutants at415
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time t, and a single-mutant lineage with weightW on average producesWµ1 double mutants.

Subdivision increases the weights of single-mutant lineages, since a lineage is equally likely

to reach a maximum of k copies in subdivided and unstructured populations, but those in

subdivided populations drift for longer in the population. The increase in weight for a given

lineage that can be attributable to subdivision grows with the assortment experienced by420

the lineage, particularly during times when n(t) is larger.

Overall, subdivision increases the probability p1 that a single-mutant lineage is successful

by increasing W without decreasing p2. The magnitude of the increase in p1 depends on the

assortments experienced by single-mutant lineages; significant increases can only occur if

successful lineages tend to have assortments F ∼ 1. Since F is bounded from above the425

largest frequency of mutants within any individual deme, large assortments require that the

lineage has become frequent in at least one deme. Increases in p1 by an order of magnitude

or more require F ≈ 1—in other words, successful lineages must typically fix in one or more

demes.

Competitive assortment also causes the drift and sweep times to increase in subdivided430

populations. The drift time increases because single-mutant lineages with high assortments

can survive longer and are also less likely to grow very large and produce many double

mutants very quickly. The sweep time increases because double-mutant lineages can also

have high assortments and so take longer to spread through the population.

4.2 Unstructured populations435

This section provides the results for unstructured populations needed to describe tunneling

in subdivided populations. Previous studies of tunneling in unstructured populations have

assumed either the Wright-Fisher model of reproduction, for which α = 1/2, or the Moran

model of reproduction, for which α = 1. Supplementary Appendix C uses an analytical

approach similar to Weissman et al. (2009) and Weissman et al. (2010) to account for general440

variation in α. Here, we summarize the main results and explain the intuition using heuristic
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arguments also adapted from these earlier studies.

It will be useful later on to distinguish between two ways the drift coefficient, α, influences

the fate of a single-mutant lineage. First, the drift coefficient determines how quickly the

number of single mutants changes by drift. Conditional that a lineage, initially present445

in a single copy, reaches a number k . α/δ before going extinct, it will typically do so

in ∼ k/α generations. The lineage will typically then go extinct over an additional ∼ k/α

generations, thereby accumulating a weight ∼ k2/α over its lifetime. A single-mutant lineage

has a probability ≈ 1/k of reaching a number k � α/δ, but is much less likely to drift to

a number k � α/δ; we can understand this observation by noting that the time required450

to drift to k � α/δ is much greater than the time ∼ 1/δ for selection to significantly

reduce the lineage number. In order to be able to translate between the time a lineage has

survived and the number of the lineage, we also note that a lineage that has survived for

t . 1/δ generations will typically have grown to a number ∼ αt. These observations follow

by extending those of Fisher (2007) and Weissman et al. (2009), given for α = 1, to general455

α.

The second effect of the drift coefficient occurs in determining the probability p2 that a

double mutant produced by the single-mutant lineage is successful. Recall that the proba-

bility p2 that a double-mutant lineage is successful in an unstructured population is ≈ s/α,

the reciprocal of the number at which the lineage becomes established. Intuitively, a double-460

mutant lineage that has drifted to a number � α/s is unlikely to drift to extinction within

∼ 1/s generations, by which time the lineage will have grown substantially from selection.

To distinguish the effect of α on p2 from its effect on the rate of stochastic changes in single-

mutant lineages, we initially treat the probability p2 as a new parameter of our model. Later,

we substitute p2 ≈ s/α to find results in terms of our original parameters. Meanwhile, our465

assumption that µ1 � max{δ, s} is taken to be equivalent to µ1 � max{δ, αp2}.

Tunneling dynamics qualitatively differ depending on the strength of selection against
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single mutants. The probability that a single mutant is successful is

p1 ≈





√
µ1p2
α

for δ � √αµ1p2,

µ1p2
δ

for δ � √αµ1p2.

(8)

For δ � √αµ1p2, single mutants are (effectively) neutral for tunneling—the probability p1

does not depend on the strength of selection δ. In contrast, if δ � √αµ1p2, then mutants470

are deleterious for tunneling and p1 is inversely proportional to δ. The average drift time for

neutral and deleterious single mutants is

〈T1〉 ≈





ln 2√
αµ1p2

for δ � √αµ1p2,

1/δ for δ � √αµ1p2.

(9)

The full distribution of T1 is found in Supplementary Appendix C. The critical feature of this

distribution is that a successful lineage is very unlikely to drift for much fewer or much more

than 〈T1〉 generations. Instead, successful lineages typically drift for ∼ 〈T1〉 generations and475

reach a number ∼ α〈T1〉, before producing a successful double mutant.

We can understand the expressions for p1 and 〈T1〉 in (8) and (9) in terms of the be-

havior of typical successful lineages when single mutants are either neutral or deleterious.

Conditional on a single-mutant lineage having weight W , it produces at least one successful

double mutant with probability 1 − e−Wµ1p2 . Lineages typically become successful in one480

of two ways (Weissman et al. 2009; Weissman et al. 2010): either they have a large weight

W & 1/µ1p2 and thus are nearly assured to produce at least one successful double mutant, or

they have a small weight W � 1/µ1p2, yet manage to produce exactly one successful double

mutant. Which strategy is used depends on whether or not selection is strong enough to

limit the single-mutant lineages to small numbers and thus to small weights.485

Successful neutral lineages follow the first strategy of having a large weight: they drift
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to numbers ∼
√
α/µ1p2 over ∼ 1/√αµ1p2 generations, reaching a weight ∼ 1/µ1p2. The

probability p1 in (8) corresponds to the probability of drifting to such a number, while 〈T1〉

in (9) roughly corresponds to the time required to do so. These lineages strike a sweet spot for

producing a successful double mutant; lineages that only reach smaller numbers have much490

smaller weights, while lineages that reach larger numbers have larger weights but are not

significantly more likely to produce a successful double mutant. The condition δ � √αµ1p2

ensures that the lineages can drift to a number ∼
√
α/µ1p2 neutrally (equivalently, it ensures

that the time 1/√αµ1p2 required to do so is smaller than the time ∼ 1/δ for selection to

purge the lineage (Weissman et al. 2009)).495

If δ � √αµ1p2, selection limits single-mutant lineages to much smaller numbers and

weights, forcing successful deleterious lineages to follow the second strategy. Since almost

all deleterious lineages have weights � 1/µ1p2, we can approximate the probability that a

lineage produces a successful double mutant as 〈W 〉µ1p2, where 〈W 〉 is the average weight of

a deleterious lineage and is approximately 1/δ. The dominant contribution to 〈W 〉, and thus500

to p1, comes from lineages that drift to numbers ∼ α/δ over periods of ∼ 1/δ generations.

Although lineages that drift to larger numbers tend to have larger weights, these lineages

are so unlikely that they make a negligible contribution p1. These observations explain the

expressions p1 ≈ µ1p2/δ in (8) and 〈T1〉 ≈ 1/δ in (9).

Substituting p2 = s/α into (8) and (9) gives expressions for p1 and 〈T1〉 in terms of our505

basic model parameters. These expressions are

p1,wm ≈





√
µ1s
α

for δ � √µ1s,

µ1s
αδ

for δ � √µ1s,

(10)
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and

〈T1,wm〉 ≈





ln 2√
µ1s

for δ � √µ1s,

1/δ for δ � √µ1s.

(11)

We have used the notation p1,wm in (10) and 〈T1,wm〉 in (11) to enable comparison between

these expressions and our results for p1 and 〈T1〉 in subdivided populations (the subscript

“wm” stands for “well-mixed”).510

We conclude our discussion of tunneling in unstructured populations by returning to our

assumption that µ1 � max{δ, s} (or that µ1 � max{δ, αp2}). Equations (10) and (11)

show that this assumption is equivalent both to p1 � s/α and to 〈T1〉 � 1/µ1. If instead

µ1 � max{δ, s}, then p1 ≈ s/α and 〈T1〉 ≈ 1/µ1; in other words, p2 ≈ s/α forms an upper

bound for p1 and 1/µ1 an upper bound for 〈T1〉. By assumption, these upper bounds are515

not met if the population is unstructured, but we will see that they can be reached if the

population is sufficiently subdivided.

Sequential fixation in small populations: In sufficiently small populations, successful

lineages are likely to fix in the population before producing a successful double mutant

and valley crossing will occur by sequential fixation. More generally, we can compare the520

probabilities that a single mutant is successful by the tunneling and sequential pathways to

determine which is more likely. Since we do not allow back mutation, a single-mutant lineage

that reaches fixation always produces a successful double mutant. Therefore, the probability

that a single-mutant lineage is successful by sequential fixation is simply the probability that

the lineage drifts to fixation, equal to P−δ(1, NT) or approximately525

P−δ(1, NT) ≈





1
NT

for NT � α
δ

δ
αeNTδ/α for NT � α

δ
.

(12)
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After previous authors (Weinreich and Chao 2005; Weissman et al. 2009), we define the

threshold population size N× as the size where the probability p1 of success by tunneling

equals P−δ(1, NT). If NT � N×, then p1 � P−δ(1, NT) and tunneling is much more likely

than sequential fixation, while the opposite is true if NT � N×. The threshold size if single

mutants are neutral or deleterious for tunneling, found by assuming the approximation (10)530

for p1, is

N× ≈





α√
µ1s

for δ � √µ1s

α
δ

ln
(
δ2

µ1s

)
for δ � √µ1s.

(13)

Equation (13) is valid if N× � α/s, so that p2 ≈ s/α for NT ∼ N×. This requirement is

always met if δ . s, but in general may not be; see Supplementary Appendix D for the general

solution for N×. For neutral single mutants, N× equals the typical copy number α/√µ1s

reached by successful lineages in the tunneling pathway. For deleterious single mutants, N×535

is smaller than α/√µ1s, but is still substantially larger than the typical number α/δ reached

by successful tunneling lineages. When NT ≈ N× in the deleterious case, the fact that

selection greatly limits the probability that a lineage drifts to NT copies is exactly offset by

the assurance of producing a successful double mutant if it does so.

4.3 Limit as m→ 0 and the isolated-demes regime540

Demes must be small enough for subdivision to increase the probability that a single mutant

is successful. Otherwise, successful single-mutant lineages will produce a successful double

mutant without ever reaching high frequency in a deme, even under extremely restricted

migration. The only significant effect of subdivision in such cases is possibly increasing the

sweep time.545

Here, we determine how small demes must be for subdivision to potentially increase p1

by a large amount by considering the fate of single-mutant lineages in the limit m→ 0—the
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best case scenario for subdivision to increase p1. Valley-crossing dynamics are easily studied

in the limit, since a single-mutant lineage must either go extinct or produce a double mutant

that fixes in the initial deme before migration in or out of that deme can occur. Once fixed550

within the deme, a double-mutant lineage has a probability Ps(N,NT) ≡ θ of then fixing in

the total population, approximately equal to

θ ≈ 1− e−Ns/α. (14)

As in unstructured populations, we consider two ways a single-mutant lineage might produce

a successful double mutant—by tunneling within the deme, or by first reaching fixation in

the deme. The probability that a single mutant is successful by tunneling within the deme555

is approximately p1,wm, the probability of tunneling in an unstructured population of size

NT, while the probability the mutant is successful by first fixing in the deme is P−δ(1, N)θ.

The two are approximately equal when N = N×, and for demes with much more than

N× individuals, tunneling is much more likely, while for demes with much fewer than N×

individuals, fixation is much more likely.560

At least a fraction of demes must have sizes N � N× for subdivision to have a large

effect on single-mutant lineages at low migration rates. Since we are interested in determining

when subdivision can significantly accelerate valley crossing, we assume N � N× for the

remainder of our analysis. We will also assume that NT � N×, so that tunneling is the

dominant mode of valley crossing at high migration rates. This assumption simplifies our565

analysis by ensuring that single-mutant lineages remain rare in the total population across all

migration rates; we describe these lineages as tunneling with respect to the total population

even if they fix in one or more demes. It is also possible for subdivision to accelerate valley

crossing when NT � N×. Although we do not explicitly consider this situation, it can be

analyzed straightforwardly by combining our results for the rate of tunneling in subdivided570

populations to that of sequential fixation, which is unaffected by subdivision.
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Over the next two sections, we will determine how p1 and T1 vary as a function of

migration rate, m, while the size, N , of demes is fixed so that N � N× � NT, and find it

useful to keep in mind the above dynamics as occurring for sufficiently low migration rates.

These dynamics are characterized by new single-mutant lineages having a probability ψ0→1575

of fixing within their initial deme and, once fixed, being guaranteed to produce a double-

mutant deme before being replaced by a wild-type migrant or colonizing additional demes.

Since migration does not play a role in determining the fate of these lineages, we refer to the

range of parameters where such dynamics apply the isolated-demes regime.

In the isolated-demes regime, the probability that a single mutant is successful is approx-580

imately

p1 ≈ ψ0→1θ, (15)

and the drift time is approximately exponentially distributed with mean

〈T1〉 ≈
1

Nµ1ψ1→2
, (16)

which follows since the single-mutant deme produces double mutants at rate Nµ1 that each

have a probability ψ1→2 of fixing in the deme. These expressions for p1 and 〈T1〉 are decreasing

in N and are significantly greater than p1,wm and 〈T1,wm〉 if and only if N � N×. Both (15)585

and (16) become insensitive to N at small numbers—in particular, p1 ≈ s/α and 〈T1〉 ≈ µ1

for N � min{α/δ, α/s}. These values for p1 and 〈T1〉 are the maximum that occur as the

degree of subdivision is increased by decreasing N and m.

We conclude our discussion of the isolated-demes regime by determining the range of

migration rates for which it applies. To do so, we use the fact that when m and N are590

sufficiently small, we can approximate fixation or loss of a lineage that has entered a deme

by migration or mutation as being practically instantaneously. Therefore, we approximate a

single-mutant lineage that has fixed in its initial deme by a deme birth-death (DBD) process,
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in which single-mutant demes can give birth by colonizing a new deme, die by being replaced

by a wild-type migrant, and mutate into a double-mutant deme. To simplify notation for the595

rates of these events, we let ψi→j denote the probability that an individual with j mutations

fixes within a deme currently occupied by individuals with i mutations. For example, a

single-mutant lineage fixes in a wild-type deme with probability ψ0→1 = P−δ(1, N) and a

wild-type lineage fixes in a single-mutant deme with probability ψ1→0 = Pδ(1, N). So long

as single mutants are rare in the total population, each single-mutant deme gives birth at600

rate B ≡ Nmψ0→1, dies at rate D ≡ Nmψ1→0, and mutates at rate U1 ≡ Nµ1ψ1→2 into

a double-mutant deme. The isolated-demes regime corresponds to migration rates where

U1 � max{B,D}, ensuring that a single-mutant deme always mutates before dying or

giving birth; since D ≥ B, this condition is equivalent to U1 � D. We define m∗ as the

migration rate where U1 = D, given by605

m∗ = µ1ψ1→2

ψ1→0
. (17)

The isolated-demes regime corresponds to N � N× and m� m∗.

4.4 Locally neutral single mutants (δ � α/N)

How single-mutant lineages are impacted by low migration rates critically depends on whether

or not these lineages can fix neutrally within a deme, making valley-crossing dynamics most

easily understood by considering locally neutral and locally deleterious single mutants sep-610

arately. This section presents results for p1 and T1 when single mutants are locally neutral

and the next presents results when single mutants are locally deleterious. The intermediate

scenario that occurs when δ ∼ α/N is analyzed in Supplementary Appendix F.

Summary of methods: Analyzing valley crossing by modeling the frequency dynamics

within each deme is intractable; therefore, we must develop approaches for approximating615

lineage dynamics. We develop two primary methods for predicting valley crossing when sin-
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gle mutants are locally neutral by extending previous methods for approximating frequency

dynamics in the island model. The F̂ method, outlined below and detailed in Supplemen-

tary Appendix E, predicts p1 and T1 when single-mutant lineages are locally neutral and

typically drift to � N copies before producing a successful double mutant. The DBD620

method, described in Section 4.3 and Supplementary Appendix C, predicts p1 and T1 when

single-mutant lineages typically fix in their initial deme before producing a successful double

mutant. For α/δ � N � α/
√
µ1s, the two methods are valid for distinct but overlapping

ranges of migration rates, together predicting dynamics across the full range of m.

Before describing how these methods are used, we make some useful observations about625

successful single-mutant lineages. By assumption, the deme size N is smaller than the num-

ber ∼ α/
√
µ1s reached by successful neutral lineages and the number ∼ α/δ reached by

successful deleterious lineages in unstructured populations. Successful single-mutant lin-

eages therefore drift to numbers � N before producing a successful double mutant at high

migration rates. They only drift to ≈ N copies at migration rates m � m∗; however, lin-630

eages that reach fewer than N copies always have a negligible probability of being successful.

Consequently, so long as m� α/N , we can assume that successful single-mutant lineages fix

in their initial deme. In addition, we expect a wide range of migration rates m∗ � m� α/N

over which successful lineages fix in their initial deme, but drift to � N copies, fixing in

multiple demes, before producing a successful double mutant. (Note that this situation con-635

trasts with that for locally deleterious single mutants, which drift to numbers ∼ α/δ � N

at high migration rates.)

The F̂ method reduces the effects of subdivision to a constant reduction in the rates

of selection and drift experienced by single-mutant lineages. In particular, we model the

single-mutant lineage in the subdivided population by one in an unstructured population of640

equal total size, but with effective parameters αT ≡ (1− F̂ )α and δT ≡ (1− F̂ )δ, where F̂ is

a constant that approximates the long-run average assortment of locally neutrally lineages.

Meanwhile, since the establishment probability of the double mutant is approximately un-
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affected by subdivision for δ � α/N , we keep p2 = s/α. In this way, predictions for p1 and

T1 follow directly from the theory for unstructured populations described in Section 4.2 and645

Supplementary Appendix C.

Over sufficiently long periods, the average assortment of locally neutral lineages tends

towards a value that is independent of both the lineage frequency in the total population

and the strength of selection against the lineage. This value is approximately equal to

the equilibrium assortment at a polymorphic neutral locus with no mutation in the infinite650

island model, consisting of an infinite number of demes of N individuals. In the neutral

infinite island model, frequency at the locus remains constant in the population as a whole;

however, the frequency within each deme changes due to drift and migration, causing the

assortment to deterministically reach an equilibrium value, F̂ . The equilibrium value equals

the probability that a pair of alleles sampled from the same deme, looking backward in time,655

coalesce to a common ancestor before either migrates to a different deme. Intuitively, a

pair that coalesce must be identical, while a pair that migrates resembles a sample from the

total population at a short time in the past, but where the population has the same total

frequency as the present; thus, JS = F̂ + (1− F̂ )JT . The equilibrium F̂ is approximated by

Wright’s well-known formula (Wright 1951)660

F̂ ≈ 1
1 +Nm/α

, (18)

which follows immediately from the observation a pair of lineages coalesce within a deme at

rate 2α/N and migrate at rate 2m. Thus, large assortments of F ∼ 1 in the neutral, infinite

island model correspond to migration rates m . α/N .

Unlike in the infinite model, the assortment in the finite model is stochastic; however,

if L � 1, δ � α/N , and the lineage is large enough, then the average assortment of the665

lineage approximates F̂ . Recall that F is bounded by maximum local frequency of the

lineage; thus, mutant lineages with numbers n < NF̂ necessarily have assortments smaller
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than F̂ . However, the assortments of locally neutral lineages with numbers n > NF̂ tend to

fluctuate around a value ≈ F̂ , such that averaged over a increasing number of generations

the assortment becomes closer and closer to F̂ (Figure 3 and Supplementary Appendix E).670

Weak local selection does not affect the assortment of these lineages with n > NF̂ because

selection takes 1/δ generations to affect genealogies within demes, while assortment dynamics

are governed by the faster processes of coalescence and migration within demes (Roze and

Rousset 2003).

On the basis of similar observations, previous authors suggested approximating the dy-675

namics of frequency in the total population by taking F = F̂ (Cherry andWakeley 2003; Roze

and Rousset 2003; Wakeley 2003; Whitlock 2003; Wakeley and Takahashi 2004); however,

conditions for when the stochastic fluctuations in F can be ignored for predicting lineage

dynamics were not completely described. Several authors (Cherry and Wakeley 2003; Roze

and Rousset 2003; Wakeley 2003) argued the constant F approximation is valid when L680

is sufficiently large that fluctuations in F are negligible. However, small fluctuations in F

can require that the lineage is spread over an extremely large number of demes. Lineages

that begin as a single copy necessarily occupy a relatively small number of demes and have

significant variation in F even for large L (e.g., Figure 3 and Supplementary Figure S4). In

Supplementary Appendix E, we find that a constant F approximation accurately predicts685

lineage dynamics if n � N , but may not for smaller n. The condition n � N ensure that

even large fluctuations in F typically average out over the time periods required for signifi-

cant changes in n by selection or drift (Supplementary Appendix E). A single-mutant lineage

that drifts to a maximum number k � N typically spends a majority of its life-time (and

accumulates an even larger majority of its weight) at numbers � N . Thus, if successful690

lineages typically drift to � N copies, we can use the constant F approximation to model

tunneling dynamics.

A second method for approximating dynamics at low migration rates is suggested by the

fact that for m � α/N , fixation or loss of a migrant within a demes occurs approximately
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independently of further migration. If successful single-mutant lineages are likely to reach695

at least N copies and fix in their initial deme, then we can approximate lineage dynamics

by treating fixation and loss within a deme as instantaneous and model the number of

single-mutant demes by the DBD process described in Section 4.3. We assume that lineages

that reach fewer than N copies make a negligible contribution to p1, a valid assumption

since N � min{α/δ, α/√µ1s}. Predictions for valley-crossing dynamics under the DBD700

approximation are derived in Supplementary Appendix C. These predictions agree with

those for the isolated-demes regime for m < m∗. They also agree with predictions from

the F̂ method at migration rates m∗ � m � α/N—at these migration rates, successful

lineages always fix in their initial deme, but tend to reach numbers � N , fixing in multiple

demes, before producing a successful double mutant. Consequently, we use the F̂ method705

and isolated-demes approximation primarily for understanding the main quantitative and

qualitative effects of subdivision, and use the DBD method results mainly for verification

and for combining with the F̂ method to make numerical predictions across full range of

migration rates. Simulations show that numerical predictions for p1 and 〈T1〉 found by these

methods are very accurate across all migration rates for Nδ/α as large as 0.2 (Figure 5 and710

Supplementary Figure S1).

Results: The relationships of p1 and T1 with m depend on whether double mutants are

locally beneficial or neutral (s� α/N or s� α/N), and we first present results when they

are locally beneficial. When δ � α/N and s� α/N , tunneling dynamics fall into one of five

distinct parameter regimes. These regimes can be conveniently visualized in a phase diagram715

as a function of migration rate m and the single mutant selection coefficient δ (Figure 4).

The five regimes occupy the region δ < α/N in Figure 4; the two additional regimes with

δ > α/N are described in the next section. The probability that a single mutant is successful
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in these five regimes is approximately

p1 ≈





µ1s
αδ

for m� α
N

and δ � √µ1s

√
µ1s
α

for m� α
N

and δ � √µ1s

µ1s
Nmδ

for αµ1s
Nδ2 � m� α

N

√
µ1s
Nmα

for Nµ1s
α
� m� min

{
α
N
, αµ1s
Nδ2

}

1
N

for m� Nµ1s
α
,

(19)

and the average drift time is approximately720

〈T1〉 ≈





1
δ

for m� α
N

and δ � √µ1s

ln(2)√
µ1s

for m� α
N

and δ � √µ1s

α
Nmδ

for αµ1s
Nδ2 � m� α

N

ln(2)
√
α√

Nmµ1s
for Nµ1s

α
� m� min

{
α
N
, αµ1s
Nδ2

}

α
Nµ1s

for m� Nµ1s
α
.

(20)

Complete analytical predictions are given in Supplementary Appendix C. Figure 5 shows our

predictions for p1 and 〈T1〉 as a function of m, along with estimates from simulations, in a

case where δ � √µ1s, so that single mutants are deleterious for tunneling at high migration

rates, and Supplementary Figure S1 shows a case where δ � √µ1s. In these figures, the

range of migration rates corresponding to each regime is color coded according to Figure 4.725

These results show that p1 and 〈T1〉 show little variation withm at very high and very low

migration rates, and increase significantly with decreasing m over a range of intermediate

migration rates. For m � α/N , migration is sufficiently frequent that the population is

effectively unstructured for tunneling. The condition m� α/N corresponds to F̂ � 1; since
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single-mutant lineages have small assortments, subdivision has almost no effect on tunneling730

dynamics. The two regimes with m� α/N in (19) and (20) simply correspond to whether

single mutants are deleterious or neutral for tunneling in an unstructured population. Low

migration rates m� Nµ1s/α correspond to the isolated-demes regime described in Section

4.3. For α/δ � N � α/s, the various fixation probabilities described in Section 4.3 are

approximately ψ0→1 ≈ ψ1→01/N and θ ≈ 1, so that m∗ ≈ Nµ1s/α and p1 ≈ 1/N and735

〈T1〉 ≈ α/Nµ1s for m� m∗.

Over the range of intermediate migration rates α/Nµ1s� m� α/N , both p1 and 〈T1〉

increase with a decreasing migration rate from their unstructured values to their isolated-

demes values. The mathematical relationship of p1 and 〈T1〉 on m is easily understood

using the F̂ method, substituting the effective drift and selection coefficients αT and δT740

into Equation (8) for p1 and (9) for 〈T1〉. Noting that 1 − F̂ ≈ Nm/α for m � α/N , we

see that αT and δT are each reduced by a factor Nm/α as compared to their unstructured

values. Accordingly, for single mutants that are deleterious for tunneling, p1 and 〈T1〉 are

increased by a factor α/Nm relative to their unstructured values, while for single mutants

that are neutral for tunneling, p1 and 〈T1〉 are increased by a factor of
√
α/Nm. Whether745

single mutants are neutral or deleterious for tunneling is determined by whether δT is smaller

or larger than √αTµ1p2. Single mutants with δ � √µ1s are neutral across all migration

rates. Single mutants with δ � √µ1s are deleterious for m � αµ1s/Nδ
2 and neutral for

m � αµ1s/Nδ
2; intuitively, for migration rates below αµ1s/Nδ

2, subdivision has reduced

the number a lineage must reach to have a weight ∼ 1/µ1p2 to less than α/δ. Figure 5 shows750

p1 and 〈T1〉 in this second case where δ � √µ1s, so that, as m decreases, single mutants

transition from being deleterious to neutral for tunneling.

When s � α/N , we must modify the above results as follows. Equations (19) and

(20) continue to predict p1 and 〈T1〉 for migration rates m � µ1 min{α/Nδ, α/Ns}, but

not for lower migration rates. For rates m � µ1 min{α/Nδ, α/Ns}, we instead find that755

p1 ≈ s/α and 〈T1〉 ≈ 1/µ1; thus, both p1 and 〈T1〉 are approximately independent of further
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decreases in m. The isolated-demes regime corresponds to m � µ1. Therefore, when

s� α/N , p1 and 〈T1〉 reach their maximum values at migration rates outside of the isolated-

demes regime and where single-mutant lineages still reach � N copies before becoming

successful. This observation contrasts with what we observed when s � α/N , where p1760

and 〈T1〉 increased with decreasing m until m∗. Intuitively, this difference is because for

s� α/N , both p1 and 〈T1〉 reach their theoretical upper bounds of p2 and 1/µ1, respectively,

once m� µ1 min{α/Nδ, α/Ns}, and so further decreases in αT and δT have no effect.

As Figure 5 makes apparent, when single mutants are locally neutral, subdivision in-

creases p1 and 〈T1〉 by similar proportions. Our analytical results show that if δ � α/N ,765

then p1/〈T1〉 ∼ µ1s/α across all regimes, and the same relationship between p1 and 〈T1〉

applies in unstructured populations. Therefore, increasing the degree of subdivision by de-

creasing either N or m has a near-constant trade-off between decreasing 〈T0〉 and increasing

〈T1〉 once N is smaller than α/δ. We consider the consequences of this trade-off for the mean

and distribution of the valley-crossing time in Sections 5 and 6.770

4.5 Locally deleterious single mutants (δ � α/N)

When single mutants are locally deleterious, at migration rates m � α/N , valley crossing

may still be dominated by successful lineages that never reach high frequency within a deme.

Our assumption that α/δ � N � α/
√
µ1s implies δ � √µ1s, so that single mutants are

deleterious for tunneling in unstructured populations. Therefore, successful lineages drift to775

∼ α/δ copies at high migration rates, not nearly enough to fix within a deme in the absence

of migration. And yet, our assumption that N � N× ensures that successful lineages reach

N copies and fix within a deme for sufficiently low migration rates. For lineages to fix within

their deme (and for subdivision to increase p1), the benefit of fixing in a deme—potentially

gaining a much larger weight than lineages that reach only ∼ α/δ copies—must outweigh780

the cost of a low probability of drifting to N copies.
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Summary of methods: To solve valley crossing dynamics when single mutants are locally

deleterious, we separately consider the contributions of lineages that drift to numbers . α/δ

and those that drift to at least N copies. Lineages that reach intermediate numbers k

such that α/δ � k � N do not contribute to valley crossing for the same reason as in785

large unstructured populations—compared to lineages reaching ∼ α/δ copies, their lower

probability of occurrence greatly outweighs their slightly higher weights. Only lineages that

reachN or more copies and fix within a deme have a sufficient weight advantage to potentially

offset their low probability. For brevity, we refer to single-mutant lineages that reach a

maximum number . α/δ as type A and those that reach N or more copies as type B. Note790

that type-B lineages only have a possibility of influencing valley crossing at migration rates

low enough that they will fix in their initial deme. We define p(A)
1 as the contribution to p1

from type-A lineages; i.e., the probability that a new lineage is type A, multiplied by the

probability that a type-A lineage is successful, and similarly define p(B)
1 . The probability

that a single-mutant is successful follows from the separate contributions as p1 ≈ p
(A)
1 + p

(B)
1 .795

In addition, we let 〈T (A)
1 〉 be the average drift time of successful type As and 〈T (B)

1 〉 be that

of type Bs. The overall average drift time 〈T1〉 is given by the average of 〈T (A)
1 〉 and 〈T (B)

1 〉

weighted by p(A)
1 and p(B)

1 , respectively.

Type-A lineages have small assortments and so act similarly to deleterious lineages in

unstructured populations. Successful type-A lineages have a maximum assortment of ∼800

α/Nδ, set by the maximum frequency a lineage present in ∼ α/δ copies can obtain in

any one deme. At migration rates m � δ, we expect successful lineages to remain within

their initial deme and thus have F ∼ α/Nδ. This small positive assortment leads to an

increase in p1 on the order of α/Nδ percent (Supplementary Appendix F analytically confirms

this prediction). To a good approximation, we can ignore this small effect of structure in805

determining the fate of a type-A lineage. Since the vast majority of single-mutant lineages

are type A, the approximate contribution to p1 and 〈T1〉 from type As are simply given by

p1 and 〈T1〉 for deleterious tunneling in an unstructured population; i.e., p(A)
1 ≈ µ1s/αδ and
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〈T (A)
1 〉 ≈ 1/δ.

Since significant contributions from type-B lineages are limited to low migration rates810

ensuring fixation in the initial deme, we approximate their dynamics using the DBD model

described in Section 4.3 and Supplementary Appendix C. The contribution to p1 from type

Bs equals the probability ψ0→1 that a lineage fixes in its deme, times the probability that

a single-mutant deme is successful via the DBD process, producing a successful double-

mutant deme before going extinct. The dynamics of the DBD process simplify, however, for815

δ � α/N , since the deme birth rate is much smaller than the deme death rate D, allowing us

to ignore the possibility that the lineage spreads beyond its initial deme before being driven

extinct by an immigrating wild-type lineage (Supplementary Appendix C). The probability

that a single-mutant deme is successful is thus approximately U1/(D + U1), the probability

that the deme mutates before going extinct, times the probability θ that the double-mutant820

deme is successful. The contribution to p1 from type-B mutants is therefore

p
(B)
1 ≈ ψ0→1U1θ

D + U1
. (21)

The drift time of successful type-B lineages is approximately exponentially distributed with

average

〈T (B)
1 〉 ≈ 1

D + U1
. (22)

We recall that the migration rate m∗ determining the boundary of the isolated-demes regime

is given by migration rate where D = U1. For migration rates m� m∗, where D � U1, the825

expressions (21) and (22) for p(B)
1 and T (B)

1 , respectively, reduce to the values of p1 and 〈T1〉

in the isolated-demes regime (i.e., p(B)
1 ≈ ψ0→1θ and 〈T (B)

1 〉 ≈ 1/(Nµ1ψ1→2). For migration

rates m � m∗, for which D � U1), these expressions can be approximately written as
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p
(B)
1 ≈ ηµ1s/Nmδ and 〈T (B)

1 〉 ≈ α/Nmδ, where

η ≡ αNψ0→1ψ1→2θ

s
(23)

is a constant that is � 1 for δ � α/N and ≈ 1 for δ � α/N .830

Results: Combining these predictions for the two types of lineages completely describes

the fate of single-mutant lineages across the full range of migration rates. The relative size

of s and α/N determines the maximum values of p1 and 〈T1〉 as m decreases by determining

θ, but, unlike when δ � α/δ, does not qualitatively change the relationships of p1 and T1

with m. Figure 6 shows predictions for p1 and 〈T1〉 and the contribution from the two types835

in a case where Nδ/α = 8 (large enough for a clear separation type-A and B lineages),

and Ns/α = 10 (large enough that θ ≈ 1). As expected, p1 and 〈T1〉 are driven by type-A

lineages at high migration rates and by type-B lineages at low migration rates. The two

types contribute equally to p1 (i.e., p(A)
1 = p

(B)
1 ) at a migration rate m ≈ ηα/N , so that

for p1 ≈ p
(A)
1 at migration rates m � ηα/N and p1 ≈ p

(B)
1 at rates m � ηα/N . The840

migration rate must therefore be significantly lower for subdivision to increase p1 than when

δ � α/N . Due to the much longer drift times of type Bs at rates m � α/N , type Bs

dominate 〈T1〉 over a wider range, m ≈ √ηα/N , than they do p1. In other words, for rates

ηα/N � m� √ηα/N , the average drift time approximates 〈T (B)
1 〉 and is much larger than

〈T (A)
1 〉, even though the majority of successful mutants are type A.845

There are three distinct regimes for the probability that a single mutant is successful,

mapped in the region δ > α/N in Figure 4 and colored in Figure 6. In these regimes, the
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probability that a single mutant is successful is approximately

p1 ≈





µ1s
αδ

for m� ηα
N

ηµ1s
Nmδ

for µ1(δ+s)
δ
� m� ηα

N

δθ
αeNδ/α

for m� µ1(δ+s)
δ

.

(24)

The regime m � ηα/N corresponds to migration rates where type-A mutants make the

dominant contribution to p1 and so tunneling dynamics are similar to deleterious tunneling850

in an unstructured population. In the other two regimes, type Bs dominate p1 such that

p1 ≈ p
(B)
1 and is significantly increased over its unstructured value. The regime m �

µ1(δ + s)/δ corresponds to the isolated-demes regime; here, the fraction ψ0→1 ≈ δ/(αeNδ/α)

of mutants that are type B are successful with probability θ. In the intermediate regime

µ1(δ + s)/δ � m � ηα/N , type-B mutants dominate but only have a probability U1/D855

of producing a double-mutant deme, causing p1 ∝ 1/m. The drift time has four regimes—

the three regimes for p1 plus the additional regime √ηα/N described above—in which the

average drift time is approximately

〈T1〉 ≈





1
δ

for m�
√
ηα

N

(
ηα
Nm

) (
α

Nmδ

)
for ηα

N
� m�

√
ηα

N

α
Nmδ

for µ1(δ+s)
δ
� m� ηα

N

α
Nµ1(δ+s) for m� µ1(δ+s)

δ
.

(25)

Subdivision tends to increase 〈T1〉 much more than p1 at migration rates low enough for

subdivision to have a significant effect. The larger increase can be traced to the fact that860

p1/〈T1〉 equals µ1s/α for type-A lineages but equals ηµ1s/α for type-B lineages. Therefore,

an even steeper trade-off between 〈T0〉 and 〈T1〉 occurs for locally deleterious single mutants

37

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2016. ; https://doi.org/10.1101/079624doi: bioRxiv preprint 

https://doi.org/10.1101/079624
http://creativecommons.org/licenses/by-nc-nd/4.0/


than for locally neutral.

We conclude this section with an observation about the distribution of drift times when

single mutants are locally deleterious. The distribution of T1 has two humps, centered at865

〈T (A)
1 〉 ≈ 1/δ and 〈T (B)

1 〉 ≈ α/Nmδ, for m � α/N . These humps can be seen most clearly

when m ≈ ηα/N , so that successful lineages are equally likely to be of either type (Figure

7). For m � ηα/N , the hump from successful type As forms a tiny fraction of the overall

distribution. But, if valley crossing is limited by the drift time, the shorter drift times of

type-A lineages may allow them to dominate valley crossing. We return to this point when870

considering the mean and distribution of T in the next two sections.

4.6 Sweep time

After a single-mutant lineage produces a successful double mutant, it takes an additional Tsw

generations for the double-mutant lineage to become fixed in the population. Supplemen-

tary Appendix G reviews sweep dynamics in unstructured populations and develops new875

approximations for sweeps in the island model. In unstructured populations, the average

sweep time is approximately

〈Tsw〉 ≈
2 ln(NTs/α)

s
. (26)

The dominant factor in this expression for 〈Tsw〉 is 1/s, the timescale over which selection

significantly increases the number of double mutants. In island populations at migration

rates m� α/N , the average sweep time is approximately880

〈Tsw〉 ≈





2α ln(NTs/α)
Nms

for s� α/N

2α ln(L)
Nms

for s� α/N.

(27)
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In (27), the dominant factor is α/Nms, which is sets the timescale for selection to significantly

increase the number of double mutants when m � α/N . See Supplementary Appendix G

for more detailed expressions and interpretations further showing how subdivision influences

the sweep. Equation (27) shows that heavy subdivision can lead to large sweep times even in

modestly sized populations. Comparing (27) to (26) and ignoring logarithmic terms shows885

that subdivision increases 〈Tsw〉 by a factor ∼ 1/(1 − F̂ ), which is always similar to or

larger than the factor of increase in p1. In Section 5, we consider how the long sweep times

in heavily subdivided populations can limit the ability for large amounts of subdivision to

accelerate adaptation.

5 Average waiting time for the population to adapt890

This section uses the results from Section 4 to describe the average waiting time T for

a successful double mutant to arise and start to spread and the average waiting time for

complete fixation of the double mutant. If these waiting times are typically dominated by

T0, then increases in p1 due to subdivision directly translate into decreases in the average

time for the population to adapt. However, in very large or heavily subdivided populations,895

the drift and sweep times can form a substantial fraction of the adaptation time. Since

subdivision increases the drift and sweep times, in such cases the decreases in the time to

adapt will be substantially less than the increase in p1. We first present our results for 〈T 〉 for

subdivided populations with δ � α/N (together with unstructured populations), then for

subdivided populations with δ � α/N , and finally consider the overall time for the double900

mutant to fix, accounting for the sweep.

Unstructured populations and subdivided populations with δ � α/N : The aver-

age waiting time for a successful double mutant in unstructured populations and in subdi-

vided populations for which single mutants are locally neutral are both approximately given

39

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2016. ; https://doi.org/10.1101/079624doi: bioRxiv preprint 

https://doi.org/10.1101/079624
http://creativecommons.org/licenses/by-nc-nd/4.0/


by (Supplementary Appendix C)905

〈T 〉 ≈





〈T0〉 for 〈T0〉 � 〈T1〉

√
πα

2NTµ0µ1s
for 〈T0〉 � 〈T1〉.

(28)

The effects of subdivision in (28) are encompassed solely by the determination of 〈T0〉 and

〈T1〉.

If 〈T0〉 � 〈T1〉, then the first successful single-mutant lineage that occurs in the population

will typically produce a successful double mutant before another successful single mutant can

arise. In this case, we will typically have that T = T0 + T1 and so 〈T 〉 ≈ 〈T0〉+ 〈T1〉 ≈ 〈T0〉.910

If 〈T0〉 � 〈T1〉, then the approximation 〈T0〉 significantly underestimates 〈T 〉 by ignoring the

drift time. But, since multiple successful single-mutant lineages are likely to appear before

the first successful double mutant, the approximation 〈T0〉+ 〈T1〉 significantly overestimates

〈T 〉—if many successful single-mutant lineages segregate simultaneously, the lineage that is

first to produce a successful double mutant must do so much more quickly than usual.915

Weissman et al. (2009) called the regime in unstructured populations with 〈T0〉 � 〈T1〉

the neutral semi-deterministic tunneling (NSD) regime. In the NSD regime, the total number

of single mutants in the population grows as ≈ NTµ0t until the time T when a successful

double mutant is produced. Our results from Section 4.2 show that the condition 〈T0〉 �

〈T1〉 corresponds to NTµ0/α� max{1, δ2/µ1s} in unstructured populations. The condition920

NTµ0/α� 1 ensures that the number of single mutants only shows small fluctuations about

its expectation, while NTµ0/α� δ2/µ1s ensures that a successful double mutant is produced

within 1/δ generations, before negative selection has an effect. In the NSD regime, the role

of drift only affects the probability p2 ≈ s/α that double mutants establish. From the fact

that successful double mutants are produced at rate ≈ NTµ0µ1st/α it is easily shown that925

the average waiting time for a successful double mutant is 〈T 〉nsd ≡
√
πα/2NTµ0µ1s.

In Supplementary Appendix C, we show if δ � α/N and 〈T0〉 � 〈T1〉, then NSD dynamics
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also occur in subdivided populations and 〈T 〉 ≈ 〈T 〉nsd. By decreasing 〈T0〉 and increasing

〈T1〉, subdivision greatly expands the situations where NSD dynamics occur. This finding

makes intuitive sense given our discussion in Section 4.1 of how subdivision reduces the rates930

of drift and selection acting on the number of single mutants in the population.

Since the approximation for 〈T 〉 in (28) is roughly given by the maximum of 〈T0〉 and

〈T 〉nsd, the time 〈T 〉nsd sets a lower bound on 〈T 〉 regardless of the degree of subdivision

in the population. One can imagine increasing the degree of subdivision by decreasing N

and/or m while keeping the total population size fixed, causing 〈T0〉 to decrease and 〈T1〉 to935

increase. If the population is small enough that NTµ0/α � µ1/s, eventually p1 will reach

its theoretical maximum of ≈ s/α and 〈T 〉 will reach ≈ α/NTµ0s while the drift time is still

negligible. However, if NTµ0/α� µ1/s, then 〈T 〉 can only decrease to a minimum of 〈T 〉nsd.

This minimum roughly occurs at the point where 〈T0〉 ∼ 〈T1〉 ∼ 〈T 〉nsd, which can be seen

as minimizing 〈T0〉 + 〈T1〉 subject to the constraint 〈T0〉〈T1〉 ∼ α/NTµ0µ1s that arises from940

the trade-off between p1 and 〈T1〉. Figure 8 shows 〈T 〉 in this scenario as the migration rate

is decreased and N is held fixed. The average 〈T 〉 reaches ≈ 〈T 〉nsd and stops decreasing

at a migration rate that is still much larger than the migration rate m∗ at which p1 stops

increasing.

We conclude our discussion of 〈T 〉 when δ � α/N by observing that if NTµ0/α �945

max{1, δ2/µ1s}, then NSD dynamics already occur in the absence of population structure,

and no degree of subdivision can effect a decrease in 〈T 〉.

Subdivided populations with δ � α/N : When single mutants are locally deleterious,

we find 〈T 〉 by separately considering the average waiting times for a successful double

mutant to first be produced by a type-A or a type-B lineage. If T (A) and T (B) are the950

waiting times for a successful double mutant to be produced by a type-A and by a type-B

lineage, respectively, then T = min{T (A), T (B)}. The averages and distributions of T (A) and

T (B) are derived in Supplementary Appendix C. For most parameter choices, one of 〈T (A)〉
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or 〈T (B)〉 will be significantly smaller than the other, and the type with the smaller average

almost always produces the first successful double mutant. In this case, the average waiting955

time 〈T 〉 is approximately given by the minimum of 〈T (A)〉 and 〈T (B)〉.

If the total waiting time is dominated by the waiting time for the first successful single

mutant, then the condition for 〈T (B)〉 � 〈T (A)〉 is simply that m� ηα/N . But, due to the

much longer drift times of type Bs, this condition is in general not sufficient. We let T (A)
0 be

the waiting time for the first successful type-A single mutant and T (B)
0 be the waiting time for960

the first successful type-B single mutant. Both T (A)
0 and T (B)

0 are exponentially distributed

with rates NTµ0p
(A)
1 and NTµ0p

(B)
1 , respectively, so that successful type Bs occur at a faster

rate when m < ηα/N . Since type-A lineages act like deleterious lineages in an unstructured

population, the average waiting time for a successful double mutant from a type-A lineage is

roughly given by the maximum of 〈T (A)
0 〉 and 〈T 〉nsd (see Equation (28)). The average waiting965

time for a successful double mutant from a type-B lineage is approximately (Supplementary

Appendix C)

〈T B〉 ≈





〈T (B)
0 〉 for 〈T (B)

0 〉 � 〈T (B)
1 〉

√
πα

2NTµ0µ1sη
, for 〈T (B)

0 〉 � 〈T (B)
1 〉.

(29)

The average waiting time in (29) is approximately given by the maximum of 〈T (B)
0 〉 and

〈T 〉nsd/
√
η.

Comparing these results for 〈T (A)〉 and 〈T (B)〉 shows that 〈T (B)〉 � 〈T (A)〉 if and only if970

NTµ0/α� ηδ2/µ1s and m� ηα/N . Since 〈T (A)〉 approximately equals 〈T 〉 in an unstruc-

tured population, these conditions are also the conditions for subdivision to significantly

decrease 〈T 〉 when δ � α/N . The requirement on NTµ0/α can be understood by noting

that if NTµ0/α� ηα/N , then 〈T 〉nsd/
√
η is much larger than 〈T (A)

0 〉. In this case, tunneling

by type-B lineages remains slower than by type-As even at migration rates m� ηα/N due975

to the much longer drift times of type-B lineages.
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Conditions for a significant reduction in 〈T 〉: These results show that for subdivision

to significantly decrease the average waiting time for a successful double mutant, not only

must demes and migration rates be small enough, but the scaled rate of new single mutants

entering the population, NTµ0/α, must not be too large. Explicit conditions for a significant980

decrease in 〈T 〉 across all regimes for the island model are that N � N× and m � ηα/N ,

which ensure that p1 � p1,wm, and that NTµ0/α � min{1, ηδ2/µ1s}, which ensures that

longer drift times do not completely offset larger values of p1 in the subdivided population.

Total time to fixation: For approximating the total time until complete fixation of the

double mutant, there are two scenarios to consider. The first scenario is that all or a vast985

majority of the final population traces its ancestry back to the first successful double mutant;

in this scenario, the sweep is said to be hard (Messer and Petrov 2013). If a hard sweep is

likely, the average waiting time until complete fixation of the double mutant is approximately

〈T 〉 + 〈Tsw〉. The second scenario is that multiple successful double-mutant lineages arise

and make significant contributions to the final population; in this scenario, the sweep is said990

to be soft (Messer and Petrov 2013). If a soft sweep is likely, the approximation 〈T 〉+ 〈Tsw〉

may substantially overestimate the total time to fixation since the contributions from later

successful double mutants tend to shorten the time between the arrival of the first successful

double mutant and fixation. A necessary (but insufficient) condition for soft sweeps is that

〈Tsw〉 � 〈T 〉 (Supplementary Appendix G). Supplementary Appendix G provides more995

details about the fixation process under both the hard and soft scenarios.

By decreasing 〈T 〉 and increasing 〈Tsw〉, subdivision makes the sweep time more likely to

limit the total time to fixation of the double mutant. The fastest rate of adaptation typically

occurs at intermediate levels of subdivision where 〈T 〉 ∼ 〈Tsw〉. An example is shown in

Figure 8, where both the average time to fixation is shown as a function of migration rate1000

in addition to 〈T 〉. The time to fixation begins increasing with decreasing m below the

point where 〈Tsw〉 ≈ 〈T 〉 (coincidentally, this happens to be near the migration rate where
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〈T0〉 ∼ 〈T1〉). This figure also illustrates the overestimation of the time to fixation by the

hard-sweep approximation at low migration rates.

6 Distribution of the waiting time1005

In biological applications such as the development of cancer or drug resistance, rare instances

where a population adapts atypically quickly may be of utmost importance. For these

applications, it is critical to consider not only the average but also the distribution of T ,

or the probability Pr[T < t] that a successful double mutant has occurred by a specific

time t. Supplementary Appendix C finds the probability distribution of T for unstructured1010

populations and subdivided populations with locally neutral or locally deleterious single

mutants. This section summarizes these results and uses them to find the conditions in which

subdivision significantly increases Pr[T < t] as well as the maximum values of Pr[T < t]

that can be obtained by subdividing a population.

Unstructured populations and subdivided populations with δ � α/N : As with1015

the mean, the distribution of T can be described similarly for unstructured populations

and subdivided populations when single mutants are locally neutral. When 〈T0〉 � 〈T1〉, so

that 〈T 〉 ≈ 1/NTµ0p1, the probability that a successful double mutant has occurred by t is

approximately

Pr[T < t] ≈





NTµ0µ1st2

2α for t� 〈T1〉

1− e−NTµ0p1t for t� 〈T1〉.
(30)

At times t � 〈T1〉, the distribution of T is approximately exponential with mean 〈T0〉, as1020

at these times, T is dominated by the waiting time for the first successful single mutant

(i.e., the drift time is negligible). However, the probability that a successful double mutant

appears by a time t � 〈T1〉 is much less than under the exponential approximation, since

44

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2016. ; https://doi.org/10.1101/079624doi: bioRxiv preprint 

https://doi.org/10.1101/079624
http://creativecommons.org/licenses/by-nc-nd/4.0/


tunneling at these times requires a single-mutant lineage that is extra lucky—not must the

lineage produce a successful double mutant, it must do so much more quickly than a typical1025

successful lineage.

The expression for the probability in (30) at times t � 〈T1〉 can be understood using a

simple argument. Let n1(t) be the total number of single mutants in the population at time

t and W1(t) ≡ ∫ t
0 n1(t) dt be the total weight from all single-mutant lineages up to t. Early

on, the total weight from single mutants tends to be small. If t is small enough that we can1030

safely assume that W1(t)� 1/µ1p2, then Pr[T < t] is approximately 〈W1(t)〉µ1p2. Initially,

the average number of single mutants grows simply as 〈n1(t)〉 ≈ NTµ0t, independently of

population structure. Thus, early on, the average total weight grows as NTµ0t
2/2 and the

probability of at least one successful double mutant as NTµ0µ1p2t
2/2. This argument fails for

t & 〈T1〉, at which point enough time has passed for selection and mutation to double mutants1035

have reduced the growth of 〈n1(t)〉 or for W1 to become & 1/µ1p2 (Supplementary Appendix

C). Weissman et al. (2010) gives an alternate informal derivation for the approximation for

Pr[T < t] for t� 〈T1〉 in unstructured populations based on the likely dynamics of lineages

that become successful within t generations.

Equation (30) shows that even if subdivision greatly reduces 〈T 〉 relative to an unstruc-1040

tured population, it only significantly increases Pr[T < t] for times much longer than the

average drift time in the unstructured population (Figure 9). The range of times in which

Pr[T < t] is unaffected by subdivision is substantial if single mutants are close to neutral (as

in the figure) and so have long drift times even when the population is effectively unstruc-

tured. This effect can be seen as another consequence of the trade-off between p1 and the1045

drift time. Subdivision increases p1 by causing lineages to survive longer than they otherwise

would, but also causes these lineages to grow more slowly in number and weight.

For unstructured populations and subdivided populations with δ � α/N that are in the

NSD regime (〈T0〉 � 〈T1〉 and 〈T 〉 ≈ 〈T 〉nsd), the probability of a successful double mutant
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by t is1050

Pr[T < t] ≈ 1− e−NTµ0µ1st2/2α. (31)

Equation (31) forms an upper bound on the probability of adaptation by time t regardless

of the level of subdivision, which is approximately met for t � 〈T1〉. As the degree of

subdivision is increased while NT is held fixed, the average drift time increases and along

with it the range of times for which Pr[T < t] is given by (31), as seen in Figure 9.

Subdivided populations with δ � α/N : When single mutants are locally deleterious,1055

we determine Pr[T < t] by separately considering the probabilities that a successful double

mutant has been produced by a type-A lineage or by a type-B lineage before t. In general,

due to their longer drift times, type-B lineages are less likely to contribute to Pr[T < t] at

very early times than at times ∼ 〈T 〉. If 〈T (B)〉 � 〈T (A)〉, then type-A lineages form the

dominate contribution to Pr[T < t] for all t and subdivision has no effect on the distribution.1060

Therefore, we assume that NTµ0/α� ηδ2/µ1s and m� α/N , so that 〈T (B)〉 � 〈T (A)〉 and

adaptation typically occurs by type-B lineages. If 〈T (B)
0 〉 � 〈T (B)

1 〉, then

Pr[T < t] ≈





NTµ0µ1st2

2α for t� 1
δ

NTµ0µ1st
αδ

for 1
δ
� t� 2

ηδ

NTµ0µ1sηt2

2α for 2
ηδ
� t� 〈T (B)

1 〉

1− e−NTµ0p
(B)
1 t for t� 〈T (B)

1 〉,

(32)

where p(B)
1 is given by (24) and 〈T (B)

1 〉 by (25). For t� 2/ηδ, the probability of adaptation

is determined solely from type-A lineages. The two regimes for t � 2/ηδ correspond to

whether t is shorter or longer than the average drift time ≈ 1/δ of a type-A lineage. For1065

t� 2/ηδ, the probability of adaptation is determined solely by type-B lineages. Again, the
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two regimes here correspond to t shorter or longer than 〈T (B)
1 〉. If instead 〈T (B)

0 〉 � 〈T (B)
1 〉,

then Pr[T < t] is given by (32) for t � 2/ηδ and by Pr[T < t] ≈ 1 − e−NTµ0µ1sηt2/2α for

t� 2/ηδ. In both cases, type-B lineages only make the dominant contribution to Pr[T < t]

at times t� 2/ηδ.1070

These results show that if δ � α/N , the range of times over which subdivision has hardly

any effect on Pr[T < t] extends beyond the average drift time in an unstructured population,

1/δ, to the much longer time 2/ηδ. For Pr[T < t] to be significantly increased by subdivision

when δ � α/N , it is necessary and sufficient both that 〈T 〉 is significantly decreased and

that t� 2/ηδ.1075

7 Discussion

We have described the general ways in which population subdivision affects valley crossing

in asexual species and given a complete analysis of valley-crossing dynamics for the island

subdivision model. The competitive assortment caused by subdivision allows single-mutant

lineages to have larger weights, with the result that single mutants have a greater proba-1080

bility p1 of being successful. Decreasing deme size or migration rate increases the level of

assortment and thus p1, though significant increases in p1 occur only if demes and migration

rates are small enough that successful single-mutant lineages fix in one or more demes before

producing a successful double mutant. Subdivision also increases the drift and sweep times,

which can greatly limit the extent to which subdivision will decrease the average time for1085

the population to adapt or increase the probability that the population has adapted by a

certain time.

In addition to the study of Komarova (2006), a number of additional studies on valley

crossing in spatially structured asexual populations were published during the preparation

of this manuscript. Komarova (2006) analyzed the cases of one neutral or deleterious inter-1090

mediate in a population structured as a one-dimensional integer lattice, where competition
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occurs between individuals on neighboring sites on the lattice. Durrett and Moseley (2015)

extended these results to include neutral intermediates on integer lattices of d ≥ 1 dimen-

sions. Komarova et al. (2014) used simulations to consider one or more neutral, deleterious,

or beneficial intermediates in a two-dimensional lattice, allowing for competition within a1095

fixed radius. These lattice-population studies sought the waiting time for the first beneficial

mutant to occur. Bitbol and Schwab (2014) considered the average time to fixation of the

double mutant from a wild-type population in subdivision model very similar to ours, but

only analyzed the limits of extremely frequent and extremely infrequent migration, while

using simulations to consider variation in the migration rate. Spatial structure affects val-1100

ley crossing by the same fundamental mechanism in all these studies (except in the second

model of Komarova et al. (2014), for which spatial structure leads to lower total population

sizes). Accordingly, all find that structure can accelerate valley crossing by increasing p1,

although our results significantly extend these works; we compare our results with these

works below. The seemingly contradictory finding of Takahasi (2007) that subdivision does1105

not affect the crossing of a plateau in the absence of recombination is a consequence their

unrealistic assumption that each mutation can occur only once in the population.

Ability for subdivision to increase p1: In order for subdivision to significantly increase

the probability that a single mutant is successful, we find the intuitive condition that suc-

cessful single-mutant lineages must typically fix within one or more demes before producing1110

a successful double mutant. This condition requires that both demes and migration rates are

sufficiently small. Demes must contain fewer than N× individuals to ensure that successful

lineages do not simply tunnel within demes at low migration rates; this requirement was also

found by Bitbol and Schwab (2014). In addition, we showed that for the island migration

model, the migration rate m must be less than a threshold migration rate ηα/N for p1 to be1115

significantly increased. If single mutants are locally neutral, the migration threshold simpli-

fies to α/N , which corresponds to Wright’s classic result that large values of FST at neutral
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loci occur in the island model when m . 1/Ne (Wright 1931). If single mutants are locally

deleterious, the migration threshold is significantly less than α/N , reflecting the role of se-

lection in limiting preventing locally deleterious lineages from obtaining large assortments1120

by fixing within a deme (Whitlock 2002).

If N � N×, then p1 increases with decreasing migration rates over a wide range. If double

mutants are sufficiently beneficial (such that s� α/N), then p1 increases until the maximal

increase is approximately met when m � m∗, corresponding to the isolated-demes regime

in which single-mutant lineages that fix within a deme always produce a double-mutant1125

deme. Bitbol and Schwab (2014) analyzed the isolated-demes regime and also estimated the

migration boundary m∗. However, for δ � α/N , the result in their Equation (10) (see also

their Equation 17) overestimates m∗ by a factor of ln(L) compared to the approximation

m∗ ≈ Nµ1s/α following from our (17). They estimate m∗ by comparing the time for a

single-mutant lineage that has fixed in a deme to produce a successful double mutant, versus1130

the average time for the lineage to go extinct. However, the latter time is not relevant for

single mutants that are neutral for tunneling, which is always the case for m near m∗ when

δ � α/N . As a result, the approximation for m∗ in Bitbol and Schwab (2014) overestimates

the range of migration rates where p1 takes its limiting value as m→ 0 when δ � α/N .

Consequences of the drift and sweep times: The effects that subdivision has on the1135

drift and sweep times can greatly limit the ability for subdivision to accelerate valley cross-

ing. Increases in the drift time caused by subdivision have two important consequences.

First, subdivision can only decrease 〈T 〉 to a minimum of
√
πα/2NTµ0µ1s, equal to the av-

erage waiting time for a successful double mutant under neutral semi-deterministic tunneling

dynamics. If NTµ0/α � max{1, δ2/µ1s}, then this minimum is met even in the absence of1140

subdivision and subdivision has no effect on either the mean or the distribution of T . Ko-

marova et al. (2014) observe a similar condition in their simulations for when structure does

not affect T in two-dimensional lattice populations. Natural populations are frequently large
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enough that we might expect that NTµ0/α � 1. This can often be expected for bacterial

and viral populations, and can also occur in cancer-susceptible stem-cell populations (see1145

discussion below). In these cases, significant decreases in T due to subdivision will only

occur if single mutants are sufficiently deleterious.

The second important consequence of the drift time that subdivision can only increase

Pr[T < t] to a maximum of 1 − e−NTµ0µ1st2/2α. As a result, subdivision has no affect on

Pr[T < t] at times earlier than the average drift time in an unstructured population, even if1150

it greatly reduces 〈T 〉.

These results for the minimum of 〈T 〉 and maximum of Pr[T < t] are both consequences

of the fundamental trade-off between how spatial structure affects p1 and 〈T1〉. As a result,

we expect them to apply in other types of spatial structure such as lattice population mod-

els. Other studies of tunneling have either only considered 〈T 〉 or assumed the exponential1155

approximation approximation for Pr[T < t] and so have failed to observe that the effects of

subdivision on the average are in general not representative of the effects on the probability

of adapting very quickly. This has critical implications for how the results of these studies

should be interpreted when considering the effects of subdivision on Pr[T < t] in applications

to cancer development, which we discuss in further detail below.1160

Extreme subdivision also greatly increases the sweep time, which may more than offset

any decreases in the time until the occurrence of a successful double mutant. Bitbol and

Schwab (2014) also emphasized this point and found a similar expression for the average

sweep time at low migration rates when s� α/N .

Other subdivision models: For many species, subdivision models where demes occupy1165

geographic locations and individuals migrate preferentially to nearby demes are more realistic

than the island model. Our results may also be used to predict valley-crossing dynamics in

such cases, provided that demes have equal sizes and all individuals migrate at a fixed rate

of m per generation. Our results for p1 and T1 in the isolated-demes regime and for locally
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deleterious single mutants are approximately independent of the migration pattern between1170

demes. Therefore, significant differences in our predictions are limited to regimes where

δ � α/N and m � m∗, the regime in the island model described by the F̂ method. In

general, single-mutant lineages that drift to � N copies will experience larger assortments

in models where migration is limited to nearby demes than in the island model. Thus,

locally neutral single mutants will tend to have larger values of p1 outside of the isolated-1175

demes regime, and may show significant increases in p1 at migration rates higher than α/N .

Further study is required to determine how variation in deme size (e.g., if only a fraction

of demes have fewer than N× individuals) or variation in migration rates in different demes

affect p1. We expect our results for the mean and distribution of T in terms of 〈T0〉 and 〈T1〉

to continue to hold in these other subdivision models.1180

Beneficial single mutants: When two mutations lead to a strongly beneficial complex

adaptation, the first mutation may often have a smaller but still significant fitness advan-

tage. We consider the effects of subdivision on the waiting time for such an adaptation in

Supplementary Appendix H. Suppose that single mutants have a fitness 1 + s1 and double

mutants have fitness 1 + s with 0 < s1 < s. If s1 � min{α/NT,
√
µ1s}, then single mutants1185

are effectively neutral for the purposes of adaptation in both unstructured (Weissman et al.

2009) and subdivided populations, and subdivision can accelerate adaptation by increasing

p1. On the other hand, if s1 � max{α/NT,
√
µ1s}, then in an unstructured population a

successful single-mutant lineage will begin to sweep in the population before producing a

successful double mutant. In such cases, subdivision can significantly increase the waiting1190

time for a successful double mutant by slowing the sweep of the single mutant. Komarova

et al. (2014) also observed this effect in simulations of two-dimensional lattice populations.

As with neutral and deleterious single mutants, extreme subdivision moves the mean and

distribution of T for beneficial single mutants towards the values predicted under neutral

semi-deterministic tunneling. We consider the potential implications of this finding for cancer1195
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incidence rates below.

Effects of subdivision in nature: To determine whether subdivision affects tunneling

dynamics in nature, we must first ask whether natural populations are sufficiently subdivided

that successful single-mutant lineages are likely to fix within a deme. Empirical measures

of FST and related statistics using polymorphism data can provide some insight into the1200

levels of competitive assortment in natural populations. Values of FST near 1 have been

found in some species, such as the nematode C. elegans and in plant species with limited

pollen dispersal (Charlesworth and Charlesworth 2010). Frost et al. (2001) found values of

FST ranging between 0.08 and 0.59 for subpopulations of HIV in pulps within the spleens of

infected patients. However, reported values of FST provide only limited insight into levels1205

of competitive assortment, since they typically consider assortment over spatial scales much

larger than the spatial scale at which individuals compete with one another. For example,

studies commonly report estimates of FST between large geographic regions that most likely

each consist of many smaller demes. Estimates of FST between regions likely underestimate

competitive assortment, since rare mutant lineages are more likely to fix within a small deme1210

than within a large geographic region.

Frequent local extinctions of demes followed by recolonization from a small number of

founder individuals may be an important driver of large assortments in natural populations.

For example, Frost et al. (2001) inferred that such dynamics drive the high values of FST in

HIV populations within the spleen. Strong genetic hitchhiking also occurs in HIV (Zanini1215

and Neher 2013; Zanini et al. 2015) and may act similarly by allowing a single-mutant

lineage to quickly hitchhike to fixation on a linked beneficial mutation. Founder effects and

hitchhiking may be particularly important in allowing locally deleterious lineages to reach

fixation within a deme, but introduce additional complications and so further study of how

these dynamics interact with subdivision to affect tunneling is needed.1220

Finally, we note that extreme subdivision occurs in two examples of tunneling in nature.

52

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2016. ; https://doi.org/10.1101/079624doi: bioRxiv preprint 

https://doi.org/10.1101/079624
http://creativecommons.org/licenses/by-nc-nd/4.0/


The mitochondrial population of a mammalian species is divided into subpopulations cor-

responding to separate germlines, each with a small effective population size of Ne . 200

(Howell et al. 1992; Jenuth et al. 1996) and no migration between them. These mitochondrial

populations regularly cross valleys involving changes in the two complementary nucleotides1225

that bind together to form the stems of tRNAs (Meer et al. 2010). In such cases, the first

mutation alone is deleterious while the two mutations together are neutral. Meer et al.

(2010) present genomic evidence that the deleterious single mutants remain at low frequency

in the species’ population of mitochondria. Given the low germline effective population size

and typical mitochondrial mutation rates, it is likely that the single-mutant lineage fixes1230

within the germline before gaining the second mutation. Subdivision may increase the rate

of tunneling by minimizing selection against single-mutant lineages within germlines. How-

ever, fixation within the germline is also thought to increase selection acting on mitochondrial

mutations at the level of competition between hosts (Bergstrom and Pritchard 1998; Neiman

and Taylor 2009), and so it is possible that subdivision may in fact reduces the rate of tun-1235

neling. Human tissues in which tunneling can give rise to cancer are also often extremely

subdivided, and we now consider the implications of our results to this process.

Applications to the development of cancer: Our results provide insight into how the

structure of human tissue might influence the development of cancer, which we illustrate

by considering the waiting time for a stem cell to gain a loss of function (LOF) mutation1240

in both copies of a tumor suppressor gene (TSG). Details for our parameter estimates and

calculations are given in Supplementary Appendix I. First hits to TSGs in healthy stem cells

have been estimated to occur at rates of ∼ 10−6 to ∼ 10−7 per generation, while second

hits are thought occur somewhat faster as loss-of-heterozygosity mutations may occur that

replace the functional with the non-functional copy. We suppose that the second hit has1245

a rate of µ1 = 10−6 per generation. Cellular reproduction within somatic tissues is similar

to that in the Moran model, so that α ∼ 1. If the first hit is neutral, then the average
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drift time if the population were unstructured is log(2)/√µ1 ≈ 700 generations if double

mutants always lead to cancer and longer if only a fraction do. The number of generations

experienced by stem cells in cancer-susceptible tissues over an 80 year human lifespan ranges1250

from a high of ∼ 6000 in the colon to . 80 for many tissues (Supplementary Appendix I).

Thus, if single mutants are typically neutral then the average drift time without structure

may be comparable to or longer than a typical human lifespan for many cancers, greatly

limiting the ability for structure to increase the probability of acquiring two hits. Komarova

(2006), Komarova et al. (2014), and Durrett and Moseley (2015) claim that spatial structure1255

should increase the probability of cancer when the first hit is neutral, but ignore the drift

time in their calculations and only account for the time until a successful single mutant

appears.

In the colon, where a relatively large number of stem-cell generations occur, the suscep-

tible stem-cell population is very large, at NT ∼ 8×107 (Supplementary Appendix I). Colon1260

cancer often begins by two hits to the APC gene, for which we estimate that NTµ0/α ∼ 50.

Thus, if the first hit is neutral, we predict neutral semi-deterministic tunneling regardless of

the level of subdivision. However, Vermeulen et al. (2013) recently showed that some single

LOF mutants carry a large fitness advantage over wild-types within a crypt. This advantage

is large enough that single mutants would likely sweep before producing a successful dou-1265

ble mutant if the population were unstructured, but instead are confined to a single crypt

due to the extreme subdivision present in the colon (Supplementary Appendix I). In reality,

different LOF mutations are likely to have different fitness effects and cannot necessarily

be lumped together into one mutation rate. However, if a large fraction of LOF mutations

have a similar selective advantage, then subdivision in the colon likely greatly limits the1270

appearance of stem cells with two LOF mutations.

Conclusion: Population subdivision likely has important but complex effects on valley

crossing in nature. Our results can be used to predict the effects of a broad range of different
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types of spatial structure on valley-crossing dynamics when recombination between muta-

tions can be ignored. Our assumptions about population dynamics will frequently be invalid1275

in nature due to processes we have ignored, such as extinction-recolonization dynamics, ge-

netic hitchhiking, and selection at levels of population structure higher than demes. These

require careful further consideration before we fully understand the effects of subdivision

on tunneling in nature. However, we hope that our results may provide a foundation for

studying these processes and for incorporating the effects of subdivision and spatial structure1280

more generally in future theoretical and empirical investigations of valley crossing.
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Tables

Table 1: Model parameters.

L Number of demes
NT Census population size of the total population
N Census population size of a deme in the island model
m Migration rate in the island model
α Drift parameter

µ0 Mutation rate of wild type to single mutant
µ1 Mutation rate of single to double mutant

δ Selective disadvantage of single mutant
s Selective advantage of double mutant

Table 2: Notation.

p1 Probability that a single mutant is successful
p2 Probability that a double mutant is successful
T0 Waiting time for the first successful single mutant
T1 Drift time of the first successful single mutant
T Waiting time for the first successful double mutant
Tsw Time for the first successful double mutant to sweep to fixation
p1,wm Value of p1 in an unstructured population of NT individuals
〈T1,wm〉 Value of 〈T1〉 in an unstructured population of NT individuals
F Measure of genetic assortment

Pf (i, k) Probability that a mutant lineage with fitness 1 + f
present in i copies reaches k copies before extinction

ψi→j
Probability that a lineage with j mutations
fixes in a deme of individuals with i mutations

θ Probability that a double mutant is successful after fixing in one deme
N× Threshold deme size
m∗ Migration boundary for the isolated-demes regime
η Compound parameter defined in Equation (23)
〈T 〉nsd 〈T 〉 under neutral semi-deterministic tunneling
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Figure 1: Genotype-to-fitness mapping for a two-mutation fitness valley (δ > 0) or plateau (δ = 0).
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Figure 2: When successful single mutants are infrequent, the time for the population to tunnel across the valley
is typically dominated by the time T0 until the first successful single mutant is produced.
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Figure 3: The assortment of a locally neutral lineage fluctuates around ≈ F̂ while the lineage is present in more
than NF̂ copies. Shown are the trajectories of n and F for a locally neutral lineage (Nδ/α = 0.2) at each of
two migration rates, corresponding to Nm/α = 1 (Panels A and C) and Nm/α = 10−2 (Panels B and D). Each
lineage began as a single copy and reached at least α/δ = 5N copies before going extinct. In Panels A and B,
the solid line shows n(t) while the dotted line marks the line n = NF̂ . In Panels C and D, the grey line shows F
and the dashed orange line indicates F̂ , while the black line in Panel D shows the centered moving average of F
over a window of 1/m generations. Note that assortments below 0.9 are not shown in Panel D. Parameters are
L = 100, N = 100, α = 0.5, and δ = 10−3, with m = 5×10−3 for A and C and m = 5×10−5 for B and D.
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Figure 4: The dynamics of successful single mutants separate into seven regimes depending on the migration rate,
m, and the selection coefficient of the single mutant, δ, when demes are intermediately sized with α/s� N �
α/
√
µ1s, so that effects of subdivision are possible and double mutants always spread after fixing within a deme.

Both axes are on a logarithmic scale, and W−1 is the negative real branch of the product-log function. To make
the figure, we fixed N = 103, α = 0.5, µ1 = 10−8, and s = 0.05 and varied m and δ.
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Figure 5: When single mutants are locally neutral (δ � α/N), our analytical predictions using the F̂ and DBD
methods accurately predict similar increases in the probability that a single mutant is successful, p1, and the
average drift time, 〈T1〉, as the migration rate, m, decreases. Here, single mutants are deleterious for tunneling
at high migration rates (δ � √µ1s) and double mutants are locally beneficial (s� α/N), so that there are four
regimes for p1 and 〈T1〉 depending on m. In each panel, the orange line shows the predictions for p1 and 〈T1〉 by
smoothly joining the F̂ and DBD approximations. The dots show estimates from simulations (95% confidence
intervals are smaller than the dots). Background colors correspond to the regimes labeled in Figure 4. Both axes
have a log scale, with orders of magnitude delineated by small tick marks. Large tick marks indicate the regime
boundaries on the x-axis and the limiting values of p1 and 〈T1〉 on the y-axis as given in Equations (19) and
(20). Parameters are L = 100, N = 100, α = 0.5, µ1 = 10−8, δ = 10−3, and s = 0.05, so that Nδ/α = 0.2,
Ns/α = 10, and δ2/µ1s = 2×103.
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Figure 6: When single mutants are locally deleterious (δ � α/N), increases in the probability that a single
mutant is successful, p1, and the average drift time, 〈T1〉, at low migration rates are due to the contributions
of type-B mutants. Solid orange lines show predictions for type-A lineages (p(A)

1 or 〈T (1)
A 〉) dashed orange lines

show predictions for type-B lineages (p(B)
1 or 〈T (1)

B 〉) and the dotted black line shows predictions for p1 and 〈T1〉
accounting for both types. Large black dots show estimates from simulations (95% confidence intervals are smaller
than the dots). Background colors correspond to the regimes labeled in Figure 4. Both axes have a log scale,
with orders of magnitude delineated by small tick marks. Large tick marks indicate the regime boundaries on the
x-axis and the limiting values of p1 and 〈T1〉 on the y-axis as given in Equations (24) and (25). Parameters are
L = 50, N = 100, α = 0.5, µ1 = 4×10−8, δ = 0.04, and s = 0.05, so that Nδ/α = 8 and Ns/α = 10.
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Figure 7: When single mutants are locally deleterious (δ � α/N), the distinct behavior of type-A and type-B
successful single mutants can be seen in the two distinct humps in the distribution of drift times when m ∼ ηα/N .
The hump at times ∼ 1/δ is from successful type-A mutants, while the hump at ∼ α/Nmδ is from successful
type-B mutants. The solid and dashed orange lines show predictions for the distributions for type-A and type-B
mutants, respectively, while the grey area is a histogram of simulation results. Parameters are as in Figure 6, but
with m = 2.4×10−5 ≈ ηα/N , so that a successful mutant is equally likely to be type A or type B.
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Figure 8: The drift and sweep times limit how much extreme subdivision decreases the average time for the
population to adapt. Shown is the average waiting time for a successful double mutant, 〈T 〉, (prediction: orange
line; simulation results: black dots) and the average waiting time for the double mutant to fix in the total
population (prediction: grey line; simulation results: white dots). Single mutants are locally neutral (Nδ/α =
0.2); parameters, x-axis, and background colors are the same as in Figure 5, while µ0 = 5×10−7, so that
NTµ0/α = 10−2. For these parameters, the migration rate where 〈T0〉 = 〈T1〉 is coincidentally near that where
〈Tsw〉 = 〈T 〉.
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Figure 9: The probability Pr[T < t] that a successful double mutant arises by time t is only increased by subdivision
for times later than the average drift time in an unstructured population (here, approximately ln(2)/√µ1s). The
grey line shows Pr[T < t] for an unstructured population, while grey triangles show estimates from simulations.
The orange line shows Pr[T < t] for a subdivided population of equal total size in which 〈T 〉 is approximately
five times smaller, while black dots show estimates from simulations. The dashed grey line shows the prediction
for Pr[T < t] under neutral semi-deterministic dynamics. Here, single mutants are neutral for tunneling in the
unstructured and subdivided populations. Parameters are NT = 5×105, µ0 = 10−8, µ1 = 10−7, α = 0.5, δ = 0,
and s = 0.05; the subdivided population is split into L = 103 demes of N = 500 individuals each, with migration
rate m = 10−5.
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