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ABSTRACT 24 

 Missing data and genotyping errors are common in microsatellite data sets.  We used 25 

simulated data to quantify the effect of these data aberrations on the accuracy of population 26 

structure inference.  Data sets with complex, randomly-generated, population histories were 27 

simulated under the coalescent.  Models describing the characteristic patterns of missing data and 28 

genotyping error in real microsatellite data sets were used to modify the simulated data sets.  29 

Accuracy of ordination, tree-based, and model-based methods of inference was evaluated before 30 

and after data set modifications.  The ability to recover correct population clusters decreased as 31 

missing data increased.  The rate of decrease was similar among analytical procedures, thus no 32 

single analytical approach was preferable.  For every 1% of a data matrix that contained missing 33 

genotypes, 2–4% fewer correct clusters were found.  For every 1% of a matrix that contained 34 

erroneous genotypes, 1–2% fewer correct clusters were found using ordination and tree-based 35 

methods.  Model-based procedures that minimize the deviation from Hardy-Weinberg 36 

equilibrium in order to assign individuals to clusters performed better as genotyping error 37 

increased.  We attribute this surprising result to the inbreeding-like nature of microsatellite 38 

genotyping error, wherein heterozygous genotypes are mischaracterized as homozygous.  We 39 

show that genotyping error elevates estimates of the level of genetic admixture.  Overall, missing 40 

data negatively impact population structure inference more than typical genotyping errors. 41 

 42 

INTRODUCTION 43 

Short, repetitive regions of the genome, known as microsatellite DNA, simple sequence 44 

repeats (SSRs), or short tandem repeats (STRs), are commonly used in molecular population 45 

genetic studies (Sunnucks 2000; Guichoux et al. 2011).  SSR loci exhibit a unique mutational 46 
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mechanism, slipped-strand mispairing, which causes the duplication or deletion of repeat units, 47 

resulting in sequence length variation among alleles (Levinson & Gutman 1987).  SSR mutation 48 

rates vary widely depending on organism, repeat length, and repeat number, but are generally 49 

1E3–1E4 times higher than a typical nucleotide substitution rate of 1E-8 per generation (Dallas 50 

1992; Chakraborty et al. 1997; Vigouroux et al. 2002), thus SSR regions provide highly 51 

polymorphic markers, useful for distinguishing individuals, reconstructing population history, 52 

and estimating demographic parameters. 53 

While single nucleotide polymorphisms (SNPs) may gradually supplant SSRs for certain 54 

population genetic applications (Brumfield et al. 2003), SSRs remain popular. Over 3500 papers 55 

that utilized SSRs were published in 2009 (Guichoux et al. 2011), and in 2013–2015, ~33% of 56 

articles in the journal Molecular Ecology included SSRs as a primary data source.  SSR 57 

development and typing costs have dropped due to next generation sequencing (Gardner et al. 58 

2011) and improved multiplexing protocols (Butler 2005; Holleley and Geerts 2009).  We expect 59 

SSRs to remain in use due to low cost and their ability to outperform SNPs with fewer loci for 60 

individual identification (Seddon et al. 2005); parentage and sibship analysis (Glaubitz et al. 61 

2003; Wang & Santure 2009); and population structure inference (Liu et al. 2005; Glover et al. 62 

2010). 63 

 Most SSR data sets contain missing data and erroneous genotypes.  Missing data are 64 

entered into an SSR data matrix when a particular sample does not produce an interpretable 65 

pattern of DNA fragments after PCR amplification.  PCR failure is usually caused by poor 66 

quality template DNA or improper PCR conditions, including mispriming due to mutations at 67 

primer binding sites (Guichoux et al. 2011).  The frequency of missing data is elevated across 68 

loci for samples with poor quality DNA.  Suboptimal PCR conditions increase missing data 69 
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across samples for specific loci.  Consequently, missing genotypes typically occur non-randomly 70 

in data matrices, clumped in rows or columns.  Missing data can be minimized by re-extracting 71 

DNA and repeating amplifications for problematic individuals, redesigning troublesome primers 72 

and optimizing PCR conditions, or excluding individuals and loci with high failure rates from the 73 

matrix. 74 

 SSR genotyping errors arise from three main sources:  the occurrence of null alleles at a 75 

locus, preferential amplification of small DNA targets during PCR, and stuttered visualization of 76 

amplification products (DeWoody et al. 2006; Guichoux et al. 2011).  “Null alleles” are 77 

genotypic variants that fail to amplify under the conditions specified for the locus.  They often 78 

occur due to mutations at primer binding sites that inhibit amplification but may also arise from 79 

poor template quality.  Because nothing is amplified, null alleles, by definition, cannot be 80 

observed and are not scored.  Consequently, in diploid organisms, the genotype entered into the 81 

data matrix becomes—erroneously—homozygous for the other, visible allele, or, if both alleles 82 

are nulls, missing data.  Several analytical approaches have been devised to detect null alleles 83 

and estimate their frequency (Chakraborty et al. 1992; Raymond & Rousset 1995; Van 84 

Oosterhout et al. 2004; Kalinowski et al. 2007) although only about 40% of studies use them 85 

(Guichoux et al. 2011).  In most cases, eliminating null alleles requires primer redesign outside 86 

of highly mutable regions (Dakin & Avise 2004; Chapuis & Estoup 2007). 87 

 Preferential amplification of short DNA sequences causes “large allele dropout” error.  88 

All else equal, short sequences are more efficiently amplified than long.  In a heterozygote with 89 

differently-sized alleles this bias may prevent the signal for the large allele from rising above the 90 

detection threshold, with the consequence that a heterozygous genotype will be erroneously 91 

scored as homozygous for the smaller allele (Wattier et al. 1998; Björklund 2005).  Large allele 92 
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dropout can be mitigated in some cases by excluding loci where amplicons exceed 200 bp (Sefc 93 

et al. 2003). 94 

 Slipped-strand mispairing during PCR results in the production of shadow peaks around 95 

the amplified allele (Murray et al. 1993), a phenomenon termed “stutter”.  Stutter peaks are 96 

usually smaller than the target, and deviate in size by multiples of the repeat unit length, with 97 

progressively decreasing signal (Shinde et al. 2003).  As with other types of error, stutter causes 98 

heterozygotes to be scored as homozygous, but always for the larger of the two alleles, and only 99 

when the alleles differ in size by a single repeat unit.  Stutter can be reduced by avoiding SSRs 100 

with dinucleotide repeats (Chambers & MacAvoy 2000), decreasing denaturation temperature 101 

(Olejniczak & Krzyzosiak 2006), and using highly processive polymerases (Davidson et al. 102 

2003). 103 

 The final assembly of an SSR data set requires considerable care.  Filling all cells in a 104 

data matrix is time consuming; poor-performing loci must be optimized and recalcitrant 105 

individuals must be extracted and genotyped repeatedly.  Consequently, the typical course for 106 

dealing with missing data is to eliminate problematic individuals or loci.  This can produce 107 

biased sampling because the frequency of missing data may be similar in related populations 108 

(Amos 2006).  Some authors have recommended that error rates be reported and efforts made to 109 

assess the reliability of conclusions given uncertainty in the genotypes (Bonin et al. 2004; 110 

Broquet & Petit 2004; Hoffman & Amos 2005).  This practice is increasing—error rate estimates 111 

can be found in about a quarter of published papers (Guichoux et al. 2011)—but it requires 112 

sample replication and extensive post-genotyping data analysis, increasing costs.  If missing data 113 

and genotyping error were to impact the accuracy of population structure inference in only minor 114 

ways these steps might be avoided. 115 
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 The effect of missing data and error on linkage mapping (Hackett & Broadfoot 2003), 116 

parentage analysis (Dakin & Avise 2004; Hoffman & Amos 2005; Kalinowski et al. 2007), and 117 

the estimation of population genetic parameters (Chapuis & Estoup 2007; Hall et al. 2012; Peel 118 

et al. 2013) has been studied in detail, but there have been few investigations of the effect on 119 

population structure inference (Pompanon et al. 2005; Carlsson 2008; Chapuis et al. 2008).  In 120 

this study we seek to quantify the extent to which missing data or genotyping error impact 121 

population structure inference, to assist researchers in developing strategies to produce SSR data 122 

sets that maximize accuracy while minimizing costs. 123 

 124 

MATERIALS AND METHODS 125 

Highly polymorphic, neutral marker data were simulated using a coalescent model and 126 

the software MSMS (Ewing & Hermisson 2010).  The simulation approach is detailed in Reeves 127 

et al. (2012).  Briefly, 1E4 data sets were generated, each containing 500 diploid individuals 128 

equally distributed among 50 populations, and 50 unlinked loci.  An asymmetric island migration 129 

model was created by randomly assigning migration rates between populations.  The population 130 

scaled mutation rate (θ) was varied from 0–0.5.  The underlying mutation model of MSMS is an 131 

infinite sites model.  Unique binary strings output by MSMS were converted into uniquely 132 

named alleles following Huelsenbeck and Andolfatto (2007), rendering the infinite sites model 133 

as an infinite allele model.  We used an infinite allele model instead of a stepwise mutation 134 

model as an expedient, and because it is not clear the extent to which the stepwise mutation 135 

model fits real SSR data (Gaggiotti et al. 1999).  It is not unusual for SSR data sets to better fit 136 

an infinite allele model than stepwise mutation (e.g. Estoup et al. 1995; O’Connell et al. 1997).  137 

The primary defining feature of real SSR data is a limited number of alleles per locus (Paetkau et 138 
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al. 1997).  Therefore, data sets containing levels of polymorphism comparable to typical SSR 139 

loci (on average < 30 alleles per locus, following Kalinowski 2002) were subsampled from the 140 

original 1E4 data sets.  A total of 1367 were found and used for further analysis. 141 

Simulated data sets were altered to include missing or erroneous genotypes using models 142 

describing the distribution of these data aberrations in typical SSR data sets. In the missing data 143 

model, the percent of the matrix containing missing data was varied between zero and 25.  A 144 

“clumping” parameter was used to bias placement of missing genotypes towards certain loci or 145 

individuals.  The clumping parameter was varied among data sets from zero, which caused a 146 

uniform distribution of missing data, to ten, which elevated the probability ten-fold that the next 147 

missing genotype would occur in a row or column already containing missing data.  Missing 148 

genotypes were substituted for known genotypes one by one, with the probability of conversion 149 

for each row and column adjusted after each substitution using the clumping parameter, until the 150 

specified percentage of missing data was reached. 151 

To create data sets that varied in their propensity to contain null alleles, a 152 

data-set-specific maximum null allele frequency parameter (νd) was defined, and selected at 153 

random from 0 to 20 percent, following Dakin and Avise (2004).  Within each data set, the 154 

locus-specific null allele frequency parameter (νl) was chosen at random from 0 to νd for each 155 

locus. The number of null alleles per locus was then defined as νl multiplied by the number of 156 

distinct alleles at the locus, with the alleles that were to act as nulls chosen randomly.  Alleles 157 

defined as nulls were treated as unknown, with the consequence that heterozygous genotypes 158 

became homozygous for the non-null allele, and homozygous null genotypes became missing 159 

data, in the modified data set. 160 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2016. ; https://doi.org/10.1101/080630doi: bioRxiv preprint 

https://doi.org/10.1101/080630
http://creativecommons.org/licenses/by/4.0/


8 
 

To simulate large allele dropout, it was necessary to assign a probability of dropout for 161 

each allele that was proportional to its size.  A locus-specific maximum probability of dropout 162 

(δl) was chosen at random for each locus from 0 to δd, the data-set-specific dropout probability.  163 

The ceiling on δd was set to 0.5 based on empirical studies (Taberlet et al. 1996; Gagneux et al. 164 

1997; Buchan et al. 2005).  We assumed a curvilinear function relating dropout probability to 165 

allele size, with the largest allele at each locus having a dropout probability of δl.  Coalescent 166 

simulations only provide information on allelic state, not allele size, so relative allele sizes (σa) 167 

were assigned to all alleles for each locus by randomly sampling an exponential distribution with 168 

rate parameter λ, varied by locus from 0 to 10. The probability of retention (i.e. the probability 169 

that an allele does not drop out) was then computed for each allele as one minus the cumulative 170 

distribution function of the exponential (CDF = 1 − e−λσa) rescaled to have a maximum value of 171 

δl.  In this way, data sets exhibited varying levels of overall “dropout proneness” governed by the 172 

parameter δd.  Within data sets, the largest alleles at a locus always had the highest dropout 173 

probability, but some loci were characterized by dropout probabilities that declined uniformly 174 

with consecutively smaller allele size (when λ→0), while others approximated a threshold effect 175 

where alleles above a particular size were highly dropout prone (when λ→10).  If a uniform 176 

random number from 0 to 1 exceeded the probability of retention, the allele was made to drop 177 

out, and the data set was modified accordingly.  Thus, the effect of simulated large allele dropout 178 

was to convert heterozygous genotypes to small allele homozygotes with probability δl(1 −179 

e−λσa). 180 

To model stutter error, we identified all heterozygotes having consecutively-sized alleles 181 

using the arbitrary sizes from the large allele dropout model.  These genotypes are called 182 

“adjacent-allele heterozygotes” (Hoffman & Amos 2005).  Stutter error could only affect these 183 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2016. ; https://doi.org/10.1101/080630doi: bioRxiv preprint 

https://doi.org/10.1101/080630
http://creativecommons.org/licenses/by/4.0/


9 
 

genotypes, but was not assumed to affect all of them.  A model was developed to assign a 184 

“probability of stutter error occurrence” to each adjacent-allele heterozygous genotype, thus 185 

permitting us to vary the “stutter error proneness” between data sets and among loci.  A 186 

data-set-specific average probability of stutter error at adjacent-allele heterozygotes (𝜏𝑑���) was 187 

randomly chosen from zero to one.  𝜏𝑑�, the standard deviation of 𝜏𝑑���, was randomly set from zero 188 

to one.  The locus-specific probability of stutter error, 𝜏𝑙, was sampled from the normal 189 

distribution defined by 𝜏𝑑���and 𝜏𝑑�. The conversion of adjacent-allele heterozygotes into 190 

large-allele homozygotes then occurred with probability 𝜏𝑙, the locus-specific conversion 191 

probability.  192 

Genotypes in the unmodified matrices were altered in the order that errors would arise 193 

during the genotyping process.  Null allele errors, which are caused by mispriming, were added 194 

first, followed by large allele dropout errors, caused by poor amplification, then by stutter errors, 195 

caused by slippage during amplification but attributable primarily to poor scoring procedures.  196 

Realized error rates were then recalculated for each error type, for each data set. 197 

Three categorically-distinct analytical approaches for inferring population structure were 198 

used.  First, we applied a class of Bayesian Markov chain Monte Carlo (MCMC) methods 199 

introduced by Pritchard et al. (2000) in the software STRUCTURE.  To avoid ad hoc model 200 

selection procedures for determining the number of populations (K) (Evanno et al. 2005), we 201 

used INSTRUCT v1.0 (Gao et al. 2007) and STRUCTURAMA v1.0 (Huelsenbeck and 202 

Andolfatto 2007) instead of STRUCTURE.  For INSTRUCT analyses, we used no-admixture 203 

(mode 0) and admixture (mode 1) models, as well as a model that estimates individual 204 

inbreeding coefficients simultaneously with individual assignment (mode 5).  Modes 0 and 1 of 205 

INSTRUCT are comparable to no-admixture and admixture models of STRUCTURE.  A single 206 
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Markov chain was run for 1E5 generations and sampled every 25, with the initial 12500 207 

generations discarded.  The deviance information criterion (DIC) was used to determine the best 208 

value of K between 1 and 50 (Gao et al. 2011).  A discrete assignment was created by assigning 209 

individuals to clusters based on the highest assignment probability in the Q-matrix.  210 

STRUCTURAMA estimates K alongside individual assignment.  Chains were run as for 211 

INSTRUCT, the prior on number of populations was set to two, and no admixture was allowed. 212 

Second, we used a tree-based approach.  Neighbor-joining (NJ) trees were constructed 213 

using NTSYS (Rohlf 2008).  Inter-individual distances were computed using Lynch’s (1990) 214 

band sharing coefficient.  Populations were counted as correctly inferred when they existed as a 215 

monophyletic group in the resulting tree.  Third, an ordination method was applied.  We used 216 

PCOMC, a procedure that couples ordination with cluster analysis to simultaneously determine 217 

population number and membership (Reeves & Richards 2009).  Principal coordinate analysis 218 

was performed using NTSYS.  Distance matrices, computed as for NJ, were double-centered 219 

prior to the calculation.  Principal coordinate values were weighted according to their 220 

contribution to the total variance, then subject to the density clustering algorithm PROC 221 

MODECLUS (SAS Institute, Cary, NC). 222 

Correct and incorrect clusters resulting from application of each analytical method to 223 

each data set were counted.  Correct clusters were those that contained all 10 individuals that 224 

belonged to a single population as specified in the coalescent simulation model, and no others.  225 

Incorrect clusters contained some, but not all, members of a population in the model, or 226 

individuals from more than one population.  The “performance ratio” was defined as the number 227 

of correct clusters resulting from analysis of a modified data set divided by the number of correct 228 

clusters in the unmodified data set from which it was derived.  A performance ratio < 1 indicates 229 
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that data modification reduces accuracy, while a performance ratio > 1 indicates improved 230 

accuracy.  We used the partition distance of Gusfield (2002) as a second, less strict measure of 231 

accuracy for methods that produce partitions (INSTRUCT and STRUCTURAMA).  The 232 

partition distance (𝑃𝑃) has been used previously for this purpose, and is useful because it can 233 

quantify partially correct matches between clusters, unlike the performance ratio (Huelsenbeck 234 

and Andolfatto 2007; Choi and Hey 2011).  It is defined as the number of elements that must be 235 

moved between clusters to make one partition identical to another.  We normalized the 𝑃𝑃 to the 236 

range 0–1 by dividing by the maximum possible 𝑃𝑃 (Charon et al. 2006), calling the result 𝑃𝑃𝑛.  237 

We define the “partition distance ratio” as 1−𝑃𝑃𝑛
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

1−𝑃𝑃𝑛
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, where numerator and denominator are 238 

formulated as similarities to simplify comparison with the performance ratio.  𝑃𝑃𝑛
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the 239 

normalized partition distance between the partition resulting from analysis of the modified data 240 

and the 50 cluster partition defined in the coalescent simulation model (likewise for 241 

𝑃𝑃𝑛
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢).  The performance ratio and the partition distance ratio are non-identical, but 242 

correlated, measures of the accuracy of population structure inference (Supplementary Table 1).  243 

We preferentially report the performance ratio, because its interpretation is intuitive, and it is 244 

applicable to all methods. 245 

The false discovery rate (𝐹𝐹𝐹) was calculated as the number of incorrect clusters divided 246 

by the total number of clusters returned. A ratio, 𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐹𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, was calculated to express the 247 

difference in probability of recovering incorrect clusters between modified and unmodified data 248 

sets.  Multiple regression and likelihood analysis were used to examine the effect of model 249 

factors on the accuracy of inference. 250 

 251 
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RESULTS 252 

Data set validation.  The 1367 simulated data sets contained an average of 14.48 ± 8.46 (1 sd) 253 

alleles per locus.  Population structures ranged from virtually panmictic to highly subdivided 254 

(Figure 1).  Levels of population subdivision, as quantified by Hedrick’s (2005) G’st, varied from 255 

0.006 to 0.999, with an excess of low G’st values.  The degree to which data sets were modified 256 

by the missing data model was not significantly related to the level of population differentiation 257 

(𝑟 = 0.03, 𝑝 = 0.32); application of the error models resulted in a slight, but significant, 258 

negative correlation between G’st and the proportion of genotypes modified (𝑟 = −0.14, 259 

𝑝 < 0.0001 (Supplementary Figure 1). 260 

Performance.  The analytical methods differed in accuracy when unmodified data sets were 261 

analyzed (Figure 2).  For a given level of genetic subdivision, correct clusters were found in NJ 262 

trees at a much higher frequency than in INSTRUCT, STRUCTURAMA or PCOMC analyses.  263 

This is not surprising because the criterion for identifying correct clusters for NJ was less strict 264 

than for other methods—a correct inference occurred when a node existed that defined a 265 

population correctly in the tree, but there was no mechanism to determine which nodes defined 266 

populations.  PCOMC had the lowest rate of correct cluster recovery.  STRUCTURAMA 267 

recovered more correct clusters and had a lower false discovery rate than INSTRUCT for high 268 

levels of genetic subdivision, while INSTRUCT was more accurate at lower levels, regardless of 269 

mode. 270 

To avoid undefined values when calculating the performance ratio, data sets were 271 

excluded when zero correct clusters were inferred with unmodified data.  Likewise, for the 272 

partition distance ratio, data sets were excluded when 𝑃𝑃𝑛
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 1, i.e. when the observed 273 

partition was maximally distant from the simulated partition.  Because the coalescent model was 274 
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complex and population subdivision was often low, a substantial number of data sets were 275 

excluded using this restriction.  The total number of useful data sets ranged from 63 to 473, 276 

depending on analytical method, when measured using the performance ratio (Table 1), and 115 277 

to 464 for the partition distance ratio (Supplementary Table 1).  Population subdivision in the 278 

excluded data sets was low (G’st ~5-fold lower than retained data sets), approaching or exceeding 279 

the limits of resolution of the methods applied. 280 

Performance decreased in a roughly linear manner as missing data increased (Figure 3a–281 

f).  The slope of the regression line was significantly different from zero (at α = 0.01, 282 

Holm-Bonferroni corrected, here and throughout) for all methods except ‘INSTRUCT 283 

inbreeding’ (mode 5) and PCOMC (Table 1).  R2
adj values for significant regressions ranged 284 

from 0.08 to 0.27 and the slope of performance loss ranged from 𝑚 =  −1.8–−3.5 between 285 

analytical approaches (Table 1).  The results using the partition distance ratio were similar.  A 286 

significant negative correlation was found for ‘INSTRUCT no admixture’ (mode 0) and 287 

‘INSTRUCT admixture’ (mode 1); the correlation was not significant for ‘INSTRUCT 288 

inbreeding’ or STRUCTURAMA (Supplementary Table 1). 289 

Taking into account 95% confidence intervals on the slopes, a data matrix with 5% 290 

missing data is predicted to result in recovery of at least 72–81% of the correct clusters that 291 

could be recovered with a complete data matrix.  Based on our data, 95% of recoverable clusters 292 

should be found when data matrices contain, for INSTRUCT, 2.5–2.7% missing data, or, for the 293 

other methods, 1.5–1.6% missing data.  The FDR ratio increased significantly (α = 0.05) with 294 

missing data for all methods except ‘INSTRUCT inbreeding’ and PCOMC, indicating that, in 295 

addition to fewer correct clusters, users should expect more erroneous clusters as missing data 296 

increase. 297 
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The clumping parameter had a statistically significant effect on performance for NJ only 298 

(Table 2).  Performance of NJ was higher when missing values were more clumped (𝛽 = 0.02).  299 

Using ratios of the Akaike weights, the linear model for percent missing data alone had a much 300 

higher probability (1025-fold) than the model for clumping parameter for NJ.  Regardless of 301 

method, less than 4% of the variance in performance was attributable to clumping—a slight 302 

effect—thus the clumping parameter, despite adding realism to the simulation, was largely 303 

dispensable. 304 

The effect of genotyping error differed between categories of analytical method.  For 305 

distance methods NJ and PCOMC, performance declined as erroneous data increased (Figure 306 

3k,l).  The slopes of the regressions were significantly different from zero and about half the 307 

magnitude found for missing data (Table 1).  A matrix with 5% erroneous data should result in 308 

recovery of 85% (NJ) or 82% (PCOMC) of the clusters that would be found if the data set 309 

contained no error.  Ninety five percent of recoverable clusters were found when 2.9% (NJ) or 310 

3.6% (PCOMC) of the data matrix was erroneous.  For NJ, large allele dropout and stutter had 311 

the greatest effect on deteriorating performance (Table 2). 312 

In contrast, accuracy of model based methods improved as erroneous data increased.  313 

When using the performance ratio, the slope of the regression was positive for all methods 314 

(0.41–1.36) (Figures 3g-j, Table 1).  The relationship was statistically significant for 315 

STRUCTURAMA.  When using the partition distance ratio, a significant positive correlation 316 

was found for all methods (Figure 4, Supplementary Table 1).  Large allele dropout was the most 317 

important model effect for INSTRUCT and STRUCTURAMA, explaining 2–10% of the 318 

variation in performance (combined model, 5–16%), and holding 18–78% of the linear models’ 319 
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Akaike weight (model probability).  The FDR ratio did not change significantly with increasing 320 

error for any method. 321 

 322 

DISCUSSION 323 

Genomewide genotyping approaches are gaining popularity for studies of population 324 

structure but SSRs continue to be used due to low cost and high power of inference.  Although 325 

SSR data sets are prone to containing missing data and erroneous genotypes, few studies have 326 

examined their impact on analyses of population structure (Pompanon et al. 2005).  We explored 327 

the effect of missing data and genotyping errors on population structure inference using 328 

model-based Bayesian MCMC procedures (INSTRUCT, STRUCTURAMA), a tree-based 329 

method (NJ), and an ordination approach (PCOMC).  Our goal is to provide users of SSRs with 330 

insight for how much missing data and error might be tolerated in order to achieve a desired 331 

level of accuracy. 332 

In order to make general recommendations it was necessary to explore a diverse set of 333 

population structures.  This was accomplished using coalescent modeling with key parameters—334 

mutation, migration rates, migration directionality—set stochastically, but within plausible 335 

ranges (Reeves et al. 2012).  The resultant data sets exhibited a large range of complex 336 

population structures with widely varying levels of subdivision (Figure 1, Supplementary Figure 337 

1).  Nevertheless, the extent to which simulated data can ever accurately represent nature is 338 

debatable.  We attempted to produce a realistic subsample from the universe of plausible 339 

population structures.  Other models describing population divergence exist, most notably the 340 

isolation with migration model (Nielsen & Wakeley 2001).  Our conclusions should be 341 
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interpreted as limited to modified island models similar to those simulated, and should not be 342 

expected to precisely predict outcomes for any single data set. 343 

Key properties peculiar to SSR data sets were modeled, including the clumped nature of 344 

missing data, and the three best understood sources of error:  null alleles, large allele dropouts, 345 

and stutter artifacts.  We did not include an assessment of human error, which contributes 346 

substantially (Bonin et al. 2004), but is not easily modeled.  While most real data sets will be 347 

affected by both missing data and error, we elected to study these factors independently because 348 

the course of action for mitigation seems distinct. 349 

Impact of missing data.  For data sets modified with missing data three basic observations were 350 

made.  First, the degradation of performance as missing data increased was roughly linear 351 

(Figure 3a–f).  Second, the rate at which performance declined was similar among methods 352 

(Table 1).  Third, the degree to which missing data were clumped by locus or DNA sample was 353 

unimportant (Table 2)—contiguous blocks of missing genotypes did not affect performance 354 

much more than an equal number of randomly-distributed missing genotypes.  These 355 

observations lead to a simple prediction:  for every 1% of a data matrix that contains missing 356 

data, researchers should expect to recover 2-4% fewer correct clusters than would be inferred 357 

with a complete data set. 358 

Impact of error on distance methods.  Error caused a decline in performance for the tree-based 359 

NJ method and for the ordination approach PCOMC.  Researchers should expect a ~2% decrease 360 

in the number of correct clusters recovered for every 1% of the data matrix impacted by error 361 

when using these methods. 362 

Although NJ and PCOMC are quite distinct mathematically, the similarity in response 363 

between the methods may arise from their use of the same distance metric.  Distance was 364 
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calculated as 1 − 𝑆𝑥𝑥, where 𝑆𝑥𝑥 is the ratio of alleles common to two individuals, over the total, 365 

or |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|, i.e. the Jaccard index (here, A and B represent the sets of unique alleles from each 366 

individual).  The mechanism by which performance decreases is loss of precision in the genetic 367 

distance estimate.  Conversion of heterozygotes to homozygotes decreases the number of alleles, 368 

lowering |𝐴 ∪  𝐵|.  The maximum number of distinct values the index can assume, |𝐴 ∪  𝐵|  +369 

1, also decreases, imposing a limit on the assembly of individuals into different clusters.  370 

Missing data had a stronger effect than error (Figure 3e,f,k,l).  Conversion of a heterozygous 371 

locus to missing data may reduce |𝐴 ∪  𝐵| by two, whereas with error |𝐴 ∪  𝐵|  can only 372 

decrease by one, thus the erosion of resolving power is generally more rapid with missing data. 373 

Impact of error on model-based methods.  We observed a positive relationship between the 374 

amount of error introduced into a data set and the accuracy of inference when using model-based 375 

methods (Figures 3-4, Table 1, Supplementary Table 1).  Our data suggest that a matrix 376 

containing 25% erroneous data could cause the recovery of 30–70% more correct clusters than 377 

an error-free matrix.  Hereafter, we attempt to explain this unexpected result. 378 

When a population consists of several subpopulations, a “heterozygote deficit” occurs, 379 

where the observed heterozygosity of the population analyzed as a whole is lower than predicted 380 

under Hardy-Weinberg equilibrium.  This “Wahlund effect” (Wahlund 1928) forms the 381 

theoretical justification, and source of signal, for a class of model-based clustering methods that 382 

includes STRUCTURE, STRUCTURAMA, INSTRUCT, and others (e.g. Dawson and Belkhir 383 

2001; Corander et al. 2003), which minimize the deviation from Hardy-Weinberg expectations 384 

by partitioning individuals into distinct subpopulations.  Unfortunately, the signal upon which 385 

these methods rely is not uniquely generated by population subdivision.  Heterozygote deficit 386 

also occurs as a consequence of selfing or inbreeding (Gao et al. 2007).  Likewise, because SSR 387 
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genotyping error typically involves the conversion of heterozygotes to homozygotes, it too 388 

induces a heterozygote deficit.  In our simulation, a decline in observed heterozygosity with 389 

increasing error inflated the inbreeding coefficient 𝐹 = 1 − 𝐻𝑜
𝐻𝑒

.  As error increased, the 390 

heterozygote deficit 𝐷 = 𝐻𝑜−𝐻𝑒
𝐻𝑒

 likewise increased (since D is the additive inverse of F).  Thus 391 

error produces an inbreeding-like signature in data sets, which magnifies the Wahlund effect and, 392 

as a byproduct, inflates the level of genetic subdivision, causing increased signal (Supplementary 393 

Figure 2). 394 

If this sort of signal amplification is important we would expect model factors ∆F (the 395 

change in inbreeding between unmodified and modified data due to error), and/or ∆G’st (the 396 

change in genetic subdivision) to drive the positive relationship between error and accuracy.  397 

Some evidence supports this.  When accuracy was measured using the partition distance ratio, 398 

∆G’st was the second-most important model effect for all INSTRUCT modes, explaining 3-10% 399 

of the variation (Supplementary Table 3).  For ‘INSTRUCT no admixture’, ∆F was the most 400 

important.  ∆G’st and ∆F were also important model effects for STRUCTURAMA, explaining 5-401 

15% of the variation in the partition distance ratio.  However, for STRUCTURAMA, the 402 

overwhelming weight of evidence was that ∆K, the difference in the number of populations 403 

inferred, was the primary driver of the response.  Thus the improvement in accuracy observed for 404 

STRUCTURAMA seems to have an additional underlying cause. 405 

STRUCTURAMA uses a Dirichlet process prior to simultaneously infer K and individual 406 

assignment.  A “Dirichlet process” describes a distribution of probability distributions and is a 407 

mathematical construct commonly used as a prior in MCMC procedures to categorize items into 408 

groups when the number of groups is unknown.  During progression of the Markov chain in 409 
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STRUCTURAMA, a critical decision is made for each individual at each step:  whether the 410 

individual belongs to an existing cluster or should be assigned to a new cluster.  This decision 411 

affects both assignment and the inference of K.  The algorithm proceeds roughly as follows.  412 

First, an individual i is selected at random from the existing partition and removed.  Individual i 413 

is then re-assigned to whichever of the K clusters it fits best, or to a new cluster, all by itself.  414 

The probability that the individual is re-assigned to an existing cluster, k, is dependent on the 415 

number of individuals, η, in that cluster (large clusters are more attractive) and the marginal 416 

posterior probability of drawing i’s genotype from cluster k.  In contrast, the probability of 417 

assigning i to a new cluster depends on the concentration parameter, α, of the Dirichlet process 418 

(the higher α is, the lower the probability that two randomly drawn individuals belong to the 419 

same cluster) and the probability of drawing i’s genotype from the prior distribution of allele 420 

frequencies, where all alleles are equiprobable. 421 

In our unmodified data sets, the deviation from Hardy-Weinberg equilibrium is due to 422 

subpopulation structure plus some minor, random effects of the coalescent.  However, when 423 

error is introduced, part of the deviation is then derived from the inbreeding-like effect of SSR 424 

error.  With error, the relative probability of assigning an individual to an existing cluster versus 425 

a new cluster decreases—data with heterozygote deficit, by definition, do not fit nicely into a 426 

Hardy-Weinberg scenario—and, accordingly, it becomes more likely that an individual will be 427 

assigned to a new cluster, thereby increasing K.  Consistent with this expectation, K increased 428 

significantly with error (Figure 5a).  When more clusters are available in which to distribute 429 

individuals, more correct inferences can be made (equivalently, the number of correct inferences 430 

possible is suppressed for low levels of error).  Consequently, performance improves with 431 

increasing error primarily because K increases.  While convenient, the STRUCTURAMA 432 
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approach for defining K may be incautious.  Miller and Harrison (2014) argued that Dirichlet 433 

process models should not be used to infer the number of components. 434 

INSTRUCT uses the Deviance Information Criterion (DIC) to select the best K value 435 

from a user-defined range.  In the present case, a model with K=50 will usually have a higher 436 

likelihood than one with, say, K=4, but that does not necessarily mean it is better, it may merely 437 

be overfit.  The DIC, like other model selection statistics, deals with this by imposing a penalty 438 

on the likelihood for adding parameters.  The DIC value is, essentially, the mean likelihood 439 

across MCMC draws at stationarity, penalized for increasing K.  The K value that minimizes the 440 

DIC across the range is deemed optimal.  This method for choosing K appears largely insensitive 441 

to the level of error, and in this sense seems preferable to the Dirichlet process used by 442 

STRUCTURAMA.  There is currently no consensus on the best procedure to estimate the 443 

number of groups in a finite mixture.  Until the basic mathematical issues are resolved, the 444 

biological problem of estimating K for population structure inference will remain more craft than 445 

science. 446 

Impact of error on the estimation of admixture proportions.  Using an admixture model and 447 

STRUCTURE, Gao et al. (2007) showed that inbreeding causes two spurious results:  448 

exaggerated levels of admixture and elevated likelihoods for higher K values.  Falush et al. 449 

(2003, p. 1572) predicted this:  “…situations that might cause additional populations to be 450 

inferred by STRUCTURE…include a significant frequency of inbreeding, cryptic relatedness 451 

within the sample, or the presence of null alleles.”  The implication is that 452 

heterozygote-deficit-inducing factors other than population subdivision might promote the 453 

inference of more clusters, or more admixture among clusters, than is actually the case.  For 454 

‘INSTRUCT admixture’, the relative level of inferred admixture increased with error, and 455 
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likelihoods were elevated for higher K values (Figure 5b,d).  This did not, however, translate into 456 

the inference of higher K values under the DIC (𝑝 > 0.19). 457 

To reduce artifacts from conflation of signal types, Gao et al. (2007) relaxed the 458 

assumption of Hardy-Weinberg equilibrium to estimate an inbreeding parameter alongside 459 

subpopulation membership.  Relative to ‘INSTRUCT admixture,’ the relationship between error 460 

and admixture for ‘INSTRUCT inbreeding’ remained positive, but that between K and the model 461 

likelihood was reversed:  LnL decreased as K increased (Figure 5c,d).  Thus the inbreeding 462 

model of Gao et al. (2007) compensates in some ways for genotyping error, but does not resolve 463 

the issue of admixture overestimation.  The effects of error might be mitigated by explicitly 464 

modeling it as an additional parameter that alters Hardy-Weinberg expectations at each locus 465 

independently, distinct from the inbreeding coefficient estimated by INSTRUCT, which alters 466 

expectations uniformly across loci. 467 

Whether over-estimation of admixture proportions due to genotyping error is a problem 468 

in real data sets is unknown, but the potential exists.  False confidence in our understanding of 469 

the partitioning of genetic variation in nature notwithstanding, artifactually-elevated admixture 470 

estimates could have important economic implications, in endangered species management or 471 

genomewide association analysis, for example.  Newer forms of data, like SNPs, are not immune 472 

to the problem.  High throughput genotyping and next generation sequencing approaches vary in 473 

their capacity to accurately identify heterozygotes (Harismendy et al. 2009; Skotte et al. 2013), 474 

sometimes defaulting to the homozygous condition, akin to SSR error. 475 

Recommendations.  Missing data exert a greater negative effect on the inference of population 476 

structure than typical SSR genotyping errors.  As missing data increase, the number of correct 477 

clusters recovered decreases and the number of incorrect clusters increases.  In order to 478 
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efficiently produce SSR data sets for inferring population structure we recommend limiting the 479 

percent of a matrix that contains missing data to ~2%, unless a greater amount can be justified 480 

based on the particular hypotheses under examination.  This will allow researchers to retain most 481 

of the resolving power of their data while not incurring the extra costs associated with 482 

completing a data matrix.  For analyses reliant on simple distance metrics, we recommend 483 

limiting the error rate to ~4% of scored genotypes. Model-based population structure inference 484 

methods handle genotyping error well.  We recommend the use of admixture models to infer 485 

cluster membership, but caution that admixture estimates may be artificially elevated. 486 

 487 
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FIGURE LEGENDS 667 
Figure 1.  Some complex population structures generated by coalescent simulation, visualized 668 
using principal coordinate analysis.  Top row, high population subdivision (G’st = 0.99); middle 669 
row, intermediate (G’st = 0.5); bottom row, low (G’st = 0.01). 670 
 671 
Figure 2.  Accuracy of population structure inference for unmodified data sets.  X-axis measures 672 
population subdivision, Y-axis shows the proportion of correctly inferred populations out of 50 673 
possible (black), and the false discovery rate (grey).  a) INSTRUCT no admixture; b) 674 
INSTRUCT admixture; c) INSTRUCT inbreeding; d) STRUCTURAMA; e) Neighbor-joining; 675 
f) PCOMC.  False discovery rate not calculable for neighbor-joining. 676 
 677 
Figure 3.  Effect of missing data and error on clustering accuracy using the performance ratio.  678 
a,g) INSTRUCT no admixture; b,h) INSTRUCT admixture; c,i) INSTRUCT inbreeding; d,j) 679 
STRUCTURAMA; e,k) Neighbor-joining; f,l) PCOMC.  For visual clarity, points are mean 680 
values binned with an interval width of 0.01.  Error bars indicate SEM.  Statistics were 681 
calculated without binning.  Dotted curves mark the 95% confidence interval on the slope of the 682 
regression.  Grey shaded area is the 95% confidence interval on the slope of the regression for 683 
the false discovery rate ratio.  False discovery rate not calculable for neighbor-joining.  The 684 
range of values in f) is truncated because principal coordinate analysis can accept limited missing 685 
data. 686 
 687 
Figure 4. Effect of error on clustering accuracy using the partition distance ratio. a) INSTRUCT 688 
no admixture; b) INSTRUCT admixture; c) INSTRUCT inbreeding; d) STRUCTURAMA.  689 
Dotted curves mark the 95% confidence interval on the slope of the regression. For clarity, a 690 
total of 8 outlying points have been omitted from the plots, but were included in the regression. 691 
 692 
Figure 5. a) As genotyping error increases the optimal value for K is elevated under a Dirichlet 693 
process prior using STRUCTURAMA.  b) The level of inferred admixture, as measured by the 694 
Shannon index, increases with error for ‘INSTRUCT admixture’.  c) The upward bias in the 695 
admixture estimate is not corrected by using ‘INSTRUCT inbreeding’.  d) Error causes the 696 
likelihood to be elevated for higher values of K, plateauing after K > 10.  This effect is reversed 697 
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by using a model that compensates for inbreeding.  Black line, ‘INSTRUCT admixture’; grey 698 
line, ‘INSTRUCT inbreeding’. 699 
 700 
  701 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2016. ; https://doi.org/10.1101/080630doi: bioRxiv preprint 

https://doi.org/10.1101/080630
http://creativecommons.org/licenses/by/4.0/


28 
 

 702 

TABLES 703 

Table 1.  Regression analysis of clustering accuracy, measured with the performance ratio. 704 
 705 
Data set Method nobs ma bb R2

adj pc 
Missing       
 INSTRUCT 

     no admixture 
188 -1.96 1.02 0.11 2.0E-06*** 

 INSTRUCT 
     admixture 

133 -1.97 0.95 0.08 6.6E-04** 

 INSTRUCT 
     inbreeding 

129 -1.84 0.87 0.04 1.8E-02 

 STRUCTURAMA 106 -3.46 0.96 0.27 6.4E-09*** 
 Neighbor-joining 473 -3.13 0.84 0.24 1.1E-30*** 
 PCOMC 63 -3.19 0.84 8.7E-03 0.22 
Error       
 INSTRUCT 

     no admixture 
190 0.41 0.90 0.01 8.7E-02 

 INSTRUCT 
     admixture 

134 1.19 0.84 0.02 3.8E-02 

 INSTRUCT 
     inbreeding 

130 1.36 0.91 9.5E-03 0.14 

 STRUCTURAMA 128 1.05 0.79 0.11 8.7E-05*** 
 Neighbor-joining 473 -1.86 0.96 0.13 1.5E-16*** 
 PCOMC 185 -1.67 0.95 0.04 6.2E-03* 
aSlope with Y-intercept fixed at 1. 706 
bY intercept for natural regression. 707 
c*significant at Holm-Bonferroni corrected α=0.05; ** α=0.01; *** α=0.001. 708 
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 709 
Table 2.  Multiple regression analysis and linear model likelihoods. 710 
 711 

Data set Method Model R2
adj β SE pa K AIC Δi

b wi
c 

Missing 
          

 
INSTRUCT 
     no admixture          

  % missing { β0+β1(x1) } 0.11 -1.99 0.41 3.2E-6*** 2 -301.76 1.01 0.38 
  Clumping parameter { β0+β2(x2) } 0.02 0.02 0.01 0.09 2 -282.69 20.08 2.7E-05 
  Combined { β0+β1(x1)+β2(x2) } 0.12   2.9E-6*** 3 -302.77 0 0.62 

 
INSTRUCT 
     admixture  

        

  % missing { β0+β1(x1) } 0.08 -1.51 0.48 1.8E-3* 2 -216.92 2.24 0.24 
  Clumping parameter { β0+β2(x2) } 0.04 0.03 0.01 0.04 2 -211.19 7.97 0.01 
  Combined { β0+β1(x1)+β2(x2) } 0.1   3.9E-4** 3 -219.16 0 0.74 

 
INSTRUCT 
     inbreeding  

        

  % missing { β0+β1(x1) } 0.04 -0.99 0.46 0.03 2 -226.42 2.24 0.20 
  Clumping parameter { β0+β2(x2) } 0.03 0.02 0.01 0.04 2 -226.05 2.61 0.17 
  Combined { β0+β1(x1)+β2(x2) } 0.06   7.6E-3 3 -228.66 0 0.63 

 
STRUCTURAMA 

 
        

  
% missing { β0+β1(x1) } 0.27 -3.30 0.51 2.6E-9*** 2 -184.27 2.80 0.20 

  
Clumping parameter { β0+β2(x2) } 0.02 -0.03 0.01 0.03 2 -152.4 34.67 2.4E-08 

  
Combined { β0+β1(x1)+β2(x2) } 0.30   5.0E-9*** 3 -187.07 0 0.80 

 
Neighbor-joining 

 
        

  
% missing { β0+β1(x1) } 0.24 -2.2 0.18 1.4E-30*** 2 -1066.74 14.94 0.00 

  
Clumping parameter { β0+β2(x2) } 0.04 0.02 4.7E-3 4.1E-5*** 2 -950.623 131.06 3.5E-29 

  
Combined { β0+β1(x1)+β2(x2) } 0.27   3.7E-33*** 3 -1081.68 0 1.00 

 
PCOMC 

 
        

  
% missing { β0+β1(x1) } 8.7E-3 -1.77 1.26 0.17 2 -98.52 0 0.50 

  
Clumping parameter { β0+β2(x2) } -0.01 -0.01 0.02 0.43 2 -97.15 1.37 0.25 

  
Combined { β0+β1(x1)+β2(x2) } 2.8E-3   0.34 3 -97.19 1.33 0.25 

Error 
  

        

 
INSTRUCT 
     no admixture  

        

  Null percent { β0+β1(x1) } -4.5E-3 0.14 0.86 0.87 2 -208.04 5.57 0.05 
  Drop out percent { β0+β2(x2) } 0.02 2.07 0.88 0.02 2 -213.61 0 0.78 
  Stutter percent { β0+β3(x3) } -3.4E-3 -1.26 2.51 0.61 2 -208.25 5.36 0.05 

  
Combined { β0+β1(x1)+β2(x2)+β3(x3) 
} 

0.16   0.12 4 -209.92 3.69 0.12 
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INSTRUCT 
     admixture  

        

  Null percent { β0+β1(x1) } -2.3E-3 0.99 1.49 0.51 2 -51.1 6.06 0.03 
  Drop out percent { β0+β2(x2) } 0.04 3.90 1.44 7.6E-3 2 -57.16 0 0.59 
  Stutter percent { β0+β3(x3) } 5.3E-3 -6.45 4.49 0.15 2 -52.12 5.04 0.05 

  
Combined { β0+β1(x1)+β2(x2)+β3(x3) 
} 

0.05   0.03 4 -55.98 1.18 0.33 

 
INSTRUCT 
     inbreeding  

        

  Null percent { β0+β1(x1) } -7.6E-3 -0.71 1.82 0.70 2 0.24 11.09 3.1E-03 
  Drop out percent { β0+β2(x2) } 0.05 5.35 1.68 1.8E-3* 2 -7.91 2.94 0.18 
  Stutter percent { β0+β3(x3) } 0.03 -15.29 5.82 9.7E-3 2 -4.54 6.31 0.03 

  
Combined { β0+β1(x1)+β2(x2)+β3(x3) 
} 

0.09   2.1E-3* 4 -10.85 0 0.78 

 
STRUCTURAMA 

 
        

  
Null percent { β0+β1(x1) } 1.0E-3 1.26 0.83 0.13 2 -200.45 15.10 3.5E-04 

  
Drop out percent { β0+β2(x2) } 0.10 3.10 0.80 1.8E-4** 2 -214.15 1.40 0.33 

  
Stutter percent { β0+β3(x3) } 0.02 5.12 2.60 0.05 2 -202.97 12.58 1.2E-03 

  

Combined { β0+β1(x1)+β2(x2)+β3(x3) 
} 

0.13   2.0E-4** 4 -215.55 0 0.67 

 
Neighbor-joining 

 
        

  
Null percent { β0+β1(x1) } 0.03 -1.31 0.29 1.2E-5*** 2 -951.524 76.95 2.0E-17 

  
Drop out percent { β0+β2(x2) } 0.08 -1.67 0.26 5.7E-10*** 2 -975.431 53.04 3.0E-12 

  
Stutter percent { β0+β3(x3) } 0.07 -6.69 0.99 4.2E-11*** 2 -971.313 57.16 3.9E-13 

  

Combined { β0+β1(x1)+β2(x2)+β3(x3) 
} 

0.18   1.2E-20*** 4 -1028.47 0 1.00 

 
PCOMC 

 
        

  
Null percent { β0+β1(x1) } 2.0E-3 -1.19 0.74 0.11 2 -274.075 5.05 0.05 

  
Drop out percent { β0+β2(x2) } 0.02 -1.49 0.66 0.03 2 -277.417 1.71 0.26 

  
Stutter percent { β0+β3(x3) } 8.5E-3 -5.15 2.45 0.04 2 -275.274 3.85 0.09 

  

Combined { β0+β1(x1)+β2(x2)+β3(x3) 
} 

0.04   0.02 4 -279.128 0 0.61 

 712 
a *Significant at Holm-Bonferroni corrected α=0.05; ** α=0.01; *** α=0.001. 713 
b Rescaled Akaike information criterion (AIC). 714 
c Model probability. 715 
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SUPPLEMENTARY FIGURE LEGENDS 716 
Supplementary Figure 1.  Properties of simulated data sets. a) Frequency of data sets with 717 
differing levels of population subdivision.  b) The amount of missing data introduced into data 718 
sets was unrelated to level of population subdivision.  c) The frequency of erroneous genotypes 719 
was negatively correlated with population subdivision. 720 
 721 
Supplementary Figure 2.  The inbreeding-like effect of SSR genotyping error.  a) The level of 722 
apparent inbreeding increases with genotyping error.  b, c) The increase in F is driven by a 723 
decrease in observed heterozygosity rather than an increase in expected heterozygosity, which 724 
decreased significantly, but slightly.  d) Error increases the apparent level of population 725 
subdivision, producing a tendency for more accurate assignment of genotypes to clusters as the 726 
amount of error increases. 727 
  728 
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Supplementary Table 1.  Spearman’s rank order correlation of clustering accuracy, measured 729 
with the partition distance ratio. 730 
 731 
Data set Method nobs

a ρa,b pa,c nobs
d ρd,b pd,c 

Missing        
 INSTRUCT 

     no admixture 
437 -0.22 2.3E-06*** 188 0.68 1.4E-26*** 

 INSTRUCT 
     admixture 

356 -0.23 1.1E-05*** 133 0.63 2.6E-16*** 

 INSTRUCT 
     inbreeding 

357 -0.11 0.03 125 0.45 1.4E-07*** 

 STRUCTURAMA 115 0.12 0.19 100 0.05 0.61 
Error        
 INSTRUCT 

     no admixture 
464 0.30 2.4E-11*** 190 0.51 1.0E-13*** 

 INSTRUCT 
     admixture 

393 0.49 4.5E-25*** 134 0.41 7.0E-07*** 

 INSTRUCT 
     inbreeding 

382 0.53 6.2E-29*** 130 0.46 2.7E-08*** 

 STRUCTURAMA 141 0.18 0.03 115 0.57 4.4E-11*** 
a Spearman’s rank order correlation between percent data set modification and the partition 732 
distance ratio metric. 733 
b Spearman’s coefficient, rho. 734 
c *Significant at Holm-Bonferroni corrected α=0.05; ** α=0.01; *** α=0.001. 735 
d Spearman’s rank order correlation between the performance ratio and the partition distance 736 
ratio.737 
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Supplementary Table 2.  Multiple regression and likelihood analysis of six competing model effects explaining accuracy of 738 
model-based clustering methods subject to erroneous data, measured with the performance ratio. 739 
 740 

Method Model R2
adj β SE pc K AIC Δi

d wi
e 

STRUCTURAMA         
 % error { β0+β1(x1) } 0.11 3.16 0.95 1.2E-03* 2 -215.01 32.01 4.4E-08 

 ∆ APLa { β0+β2(x2) } 0.03 0.09 0.07 0.20 
2 

-204.35 42.67 2.1E-10 

 ∆ K { β0+β3(x3) } 0.24 0.10 0.02 2.6E-08*** 
2 

-235.96 11.06 1.6E-03 

 ∆ G'st { β0+β4(x4) } -7.8E-03 -0.86 4.14 0.84 
2 

-199.33 47.69 1.7E-11 

 ∆ p(1)b { β0+β5(x5) } 1.7E-03 -3.48 1.70 0.04 
2 

-200.54 46.48 3.2E-11 

 ∆ F { β0+β6(x6) } 2.9E-03 -1.16 0.72 0.11 2 -200.7 46.32 3.5E-11 

 Best 2 { β0+β3(x3)+β5(x5) } 0.28   6.4E-10*** 3 -240.68 6.34 1.7E-02 

 Best 3 { β0+β1(x1)+β3(x3)+β5(x5) } 0.30   2.0E-10*** 4 -244.76 2.26 0.13 

 Best 4 { β0+β1(x1)+β3(x3)+β4(x4)+β5(x5) } 0.32   1.4E-10*** 5 -247.02 0 0.40 

 Best 5 { β0+β1(x1)+β2(x2)+β3(x3)+β4(x4)+β5(x5) } 0.32   2.8E-10*** 6 -246.68 0.34 0.33 

 All { β0+β1(x1)+β2(x2)+β3(x3)+β4(x4)+β5(x5)+β6(x6) } 0.32   1.1E-09*** 7 -244.73 2.29 0.13 

INSTRUCT, no admixture     
 

   
 % error { β0+β1(x1) } 0.01 2.62 1.12 0.02 2 -210.86 12.65 5.5E-04 

 ∆ APLa { β0+β2(x2) } 0.04 -1.2E-03 0.09 0.99 2 -216.59 6.92 9.6E-03 

 ∆ K { β0+β3(x3) } -3.6E-03 1.0E-03 0.00 0.64 2 -208.21 15.30 1.4E-04 

 ∆ G'st { β0+β4(x4) } 0.03 -2.47 2.00 0.22 2 -214.90 8.61 4.1E-03 

 ∆ p(1)b { β0+β5(x5) } 0.02 -5.02 3.62 0.17 2 -212.23 11.28 1.1E-03 

 ∆ F { β0+β6(x6) } 0.02 -1.03 0.78 0.19 2 -212.64 10.87 1.3E-03 

 Best 2 { β0+β1(x1)+β4(x4) } 0.06   6.2E-04* 3 -220.91 2.60 0.08 

 Best 3 { β0+β1(x1)+β4(x4)+β6(x6) } 0.08   2.9E-04* 4 -223.11 0.40 0.25 

 Best 4 { β0+β1(x1)+β4(x4)+β5(x5)+β6(x6) } 0.09   2.9E-04* 5 -223.51 0 0.30 
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 Best 5 { β0+β1(x1)+β3(x3)+β4(x4)+β5(x5)+β6(x6) } 0.09   4.0E-04* 6 -223.08 0.44 0.25 

 All { β0+β1(x1)+β2(x2)+β3(x3)+β4(x4)+β5(x5)+β6(x6) } 0.09   8.7E-04* 7 -221.30 2.21 0.10 

INSTRUCT, admixture     
 

   
 % error { β0+β1(x1) } 0.02 5.18 2.71 0.06 2 -54.77 0.22 0.19 

 ∆ APLa { β0+β2(x2) } 0.02 0.04 0.16 0.78 2 -53.84 1.15 0.12 

 ∆ K { β0+β3(x3) } -7.6E-03 -1.9E-04 7.7E-03 0.98 2 -50.41 4.59 0.02 

 ∆ G'st { β0+β4(x4) } -3.0E-03 8.87 7.02 0.21 2 -51.02 3.97 0.03 

 ∆ p(1)b { β0+β5(x5) } -4.2E-03 -6.48 4.27 0.13 2 -50.85 4.14 0.03 

 ∆ F { β0+β6(x6) } -4.6E-03 -3.32 1.82 0.07 2 -50.80 4.19 0.03 

 Best 2 { β0+β1(x1)+β6(x6) } 0.03   0.04 3 -54.99 0 0.21 

 Best 3 { β0+β1(x1)+β5(x5)+β6(x6) } 0.04   0.05 4 -54.43 0.56 0.16 

 Best 4 { β0+β1(x1)+β4(x4)+β5(x5)+β6(x6) } 0.04   0.05 5 -54.28 0.71 0.15 

 Best 5 { β0+β1(x1)+β2(x2)+β4(x4)+β5(x5)+β6(x6) } 0.04   0.09 6 -52.36 2.63 0.06 

 All { β0+β1(x1)+β2(x2)+β3(x3)+β4(x4)+β5(x5)+β6(x6) } 0.03   0.14 7 -50.36 4.63 0.02 

INSTRUCT, inbreeding     
 

   
 % error { β0+β1(x1) } 9.5E-03 3.44 3.58 0.34 2 -1.99 0.44 0.16 

 ∆ APLa { β0+β2(x2) } 9.2E-03 -0.05 0.21 0.80 2 -1.95 0.48 0.15 

 ∆ K { β0+β3(x3) } -3.0E-03 0.01 0.01 0.33 2 -0.37 2.06 0.07 

 ∆ G'st { β0+β4(x4) } -7.3E-03 2.68 8.98 0.77 2 0.19 2.62 0.05 

 ∆ p(1)b { β0+β5(x5) } 2.5E-03 -8.53 5.50 0.12 2 -1.07 1.36 0.10 

 ∆ F { β0+β6(x6) } -5.1E-03 -1.58 2.41 0.51 2 -0.10 2.33 0.06 

 Best 2 { β0+β1(x1)+β5(x5) } 0.02   0.10 3 -2.43 0 0.19 

 Best 3 { β0+β1(x1)+β5(x5)+β6(x6) } 0.02   0.14 4 -1.38 1.05 0.11 

 Best 4 { β0+β1(x1)+β3(x3)+β5(x5)+β6(x6) } 0.02   0.17 5 -0.34 2.09 0.07 

 Best 5 { β0+β1(x1)+β3(x3)+β4(x4)+β5(x5)+β6(x6) } 0.01   0.27 6 1.59 4.02 0.03 

 All { β0+β1(x1)+β2(x2)+β3(x3)+β4(x4)+β5(x5)+β6(x6) } 4.2E-03   0.37 7 3.52 5.95 9.9E-03 
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aMean number of alleles per locus 741 
bMean private allele frequency 742 
c*significant at Holm-Bonferroni corrected α=0.05; ** α=0.01; *** α=0.001. 743 
d Rescaled AIC. 744 
e Model probability. 745 
 746 
 747 
Supplementary Table 3.  Multiple regression and likelihood analysis of six competing model effects explaining accuracy of 748 
model-based clustering methods subject to erroneous data, measured with the partition distance ratio metric. 749 
 750 

Method Model R2
adj β SE pc K AIC Δi

d wi
e 

STRUCTURAMA         
 % error { β0+β1(x1) } 0.04 -0.78 0.72 0.28 2 -245.03 83.80 2.4E-19 

 ∆ APLa { β0+β2(x2) } 6.8E-03 -0.01 0.05 0.84 2 -238.05 90.78 7.3E-21 

 ∆ K { β0+β3(x3) } 0.43 0.12 0.01 1.2E-15*** 2 -318.23 10.60 1.9E-03 

 ∆ G'st { β0+β4(x4) } 0.05 -1.94 3.15 0.54 2 -246.64 82.19 5.4E-19 

 ∆ p(1)b { β0+β5(x5) } 0.01 -0.13 1.37 0.92 2 -240.54 88.29 2.6E-20 

 ∆ F { β0+β6(x6) } 0.15 1.51 0.56 7.6E-03 2 -261.90 66.93 1.1E-15 

 Best 2 { β0+β3(x3)+β6(x6) } 0.48   1.9E-20*** 3 -328.83 0 0.38 

 Best 3 { β0+β1(x1)+β3(x3)+β6(x6) } 0.48   6.8E-20*** 4 -328.75 0.07 0.37 

 Best 4 { β0+β1(x1)+β3(x3)+β4(x4)+β6(x6) } 0.48   4.0E-19*** 5 -327.20 1.63 0.17 

 Best 5 { β0+β1(x1)+β2(x2)+β3(x3)+β4(x4)+β6(x6) } 0.47   2.4E-18*** 6 -325.24 3.59 0.06 

 All { β0+β1(x1)+β2(x2)+β3(x3)+β4(x4)+β5(x5)+β6(x6) } 0.47   1.3E-17*** 7 -323.25 5.58 0.02 

INSTRUCT, no admixture         
 % error { β0+β1(x1) } 0.06 1.32 0.52 0.01 2 -597.36 35.52 8.0E-09 

 ∆ APLa { β0+β2(x2) } -1.5E-03 0.10 0.05 0.07 2 -567.72 65.17 2.9E-15 

 ∆ K { β0+β3(x3) } -9.0E-04 -1.3E-03 1.4E-03 0.36 2 -567.98 64.91 3.3E-15 

 ∆ G'st { β0+β4(x4) } 0.10 2.70 1.45 0.06 2 -616.39 16.50 1.1E-04 

 ∆ p(1)b { β0+β5(x5) } 7.7E-03 -1.01 1.21 0.40 2 -571.96 60.93 2.4E-14 
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 ∆ F { β0+β6(x6) } 0.11 0.67 0.24 0.00 2 -621.13 11.76 1.2E-03 

 Best 2 { β0+β3(x3)+β4(x4) } 0.13   1.8E-14*** 3 -629.15 3.73 6.4E-02 

 Best 3 { β0+β3(x3)+β4(x4)+β6(x6) } 0.13   1.8E-14*** 4 -630.95 1.93 0.16 

 Best 4 { β0+β1(x1)+β3(x3)+β4(x4)+β6(x6) } 0.14   1.5E-14*** 5 -632.89 0.00 0.41 

 Best 5 { β0+β1(x1)+β2(x2)+β3(x3)+β4(x4)+β6(x6) } 0.14   4.5E-14*** 6 -631.80 1.084 0.24 

 All { β0+β1(x1)+β2(x2)+β3(x3)+β4(x4)+β5(x5)+β6(x6) } 0.14   1.4E-13*** 7 -630.51 2.38 0.13 

INSTRUCT, admixture         
 % error { β0+β1(x1) } 0.12 5.79 1.04 4.7E-08*** 2 -45.33 6.06 1.5E-02 

 ∆ APLa { β0+β2(x2) } 8.0E-03 0.24 0.11 0.03 2 0.16 51.54 2.0E-12 

 ∆ K { β0+β3(x3) } -1.5E-03 -3.3E-04 5.0E-03 0.95 2 3.85 55.24 3.1E-13 

 ∆ G'st { β0+β4(x4) } 0.05 6.24 2.93 0.03 2 -16.00 35.39 6.4E-09 

 ∆ p(1)b { β0+β5(x5) } -6.0E-04 -3.42 2.35 0.15 2 3.50 54.88 3.7E-13 

 ∆ F { β0+β6(x6) } 4.7E-03 -1.21 0.49 0.01 2 1.43 52.81 1.1E-12 

 Best 2 { β0+β1(x1)+β3(x3) } 0.13   1.8E-12*** 3 -48.28 3.11 0.07 

 Best 3 { β0+β1(x1)+β2(x2)+β3(x3) } 0.13   1.3E-12*** 4 -50.62 0.7663 0.21 

 Best 4 { β0+β1(x1)+β2(x2)+β3(x3)+β4(x4) } 0.14   1.9E-12*** 5 -51.22 0.16 0.29 

 Best 5 { β0+β1(x1)+β2(x2)+β3(x3)+β4(x4)+β5(x5) } 0.14   3.0E-12*** 6 -51.39 0.00 0.31 

 All { β0+β1(x1)+β2(x2)+β3(x3)+β4(x4)+β5(x5)+β6(x6) } 0.14   1.2E-11*** 7 -49.39 2.00 0.11 

INSTRUCT, inbreeding         
 % error { β0+β1(x1) } 0.12 6.89 1.06 3.2E-10*** 2 -19.01 15.98 1.8E-04 

 ∆ APLa { β0+β2(x2) } 4.6E-03 0.34 0.11 2.3E-03* 2 26.42 61.40 2.5E-14 

 ∆ K { β0+β3(x3) } -2.3E-03 -1.9E-04 5.5E-03 0.97 2 29.02 64.01 6.7E-15 

 ∆ G'st { β0+β4(x4) } 0.03 6.35 3.01 0.04 2 15.03 50.02 7.3E-12 

 ∆ p(1)b { β0+β5(x5) } -2.5E-03 -5.82 2.41 0.02 2 29.08 64.07 6.5E-15 

 ∆ F { β0+β6(x6) } -5.0E-04 -1.61 0.52 2.2E-03* 2 28.32 63.31 9.5E-15 

 Best 2 { β0+β3(x3)+β6(x6) } 0.13   1.4E-12*** 3 -23.86 11.13 0.00 
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 Best 3 { β0+β1(x1)+β3(x3)+β6(x6) } 0.15   6.1E-14*** 4 -32.04 2.95 0.12 

 Best 4 { β0+β1(x1)+β2(x2)+β3(x3)+β6(x6) } 0.15   1.0E-13*** 5 -32.47 2.52 0.15 

 Best 5 { β0+β1(x1)+β2(x2)+β3(x3)+β5(x5)+β6(x6) } 0.16   5.6E-14*** 6 -34.99 0 0.53 

 All { β0+β1(x1)+β2(x2)+β3(x3)+β4(x4)+β5(x5)+β6(x6) } 0.16   2.3E-13*** 7 -32.99 2.00 0.20 
aMean number of alleles per locus 751 
bMean private allele frequency 752 
c*significant at Holm-Bonferroni corrected α=0.05; ** α=0.01; *** α=0.001. 753 
d Rescaled AIC. 754 
e Model probability. 755 
 756 
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