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As expected from the literature, the MD task robustly activated the DMN (Fig. 7A,

red) and deactivated attentional networks (Fig. 7A, blue) that are typically active

during task performance [8]. Consistent with previous literature [76] group level

analysis of the MSIT showed robust activation of the dorsal and ventral attention

networks (Fig 7B, red) and deactivation of the DMN (Fig 7B, blue). 21 participants

reported falling asleep during the resting state scan and were excluded from group-

level analysis. Figure 7C illustrates the expected pattern of anti-correlation between

DMN and task networks [49] for the remaining 104 participants. These results con-

firm that these three tasks are working as expected for deactivating, activating, and

localizing the DMN.

Figure 7 Illustrations of the overall quality of the functional neuroimagDefault network patterns
extracted from the Moral Dilemma, MSIT, and Resting State fMRI Tasks. A) The dillemma >
control contrast from group-level analysis of the Moral Dilemma task results in DN activation. B)
The incongruent > congruent contrast of the MSIT shows DN deactivation. C) Functional
connectivity of the DN extracted from the resting state task using dual regression. Statistical
maps were generated by a permutation group analysis, thresholded at p < 0.001 TFCE
FWE-corrected; overlay colors represent t statistics.

The neurofeedback task was analyzed with all of the participants that completed

the scan (n=121) (Fig. 8A and B) and again with only the participants who did

not fall asleep during the resting state or neurofeedback tasks (Fig. 8C). The group

averaged DMN map extracted from this data is consistent with what we expect,

with the exception of the prominent negative correlations (Fig. 8A). Comparing

the group mean DMN time course for all participants to the task ideal time course

shows that overall the task trend is followed, with a good deal of high frequency

noise (Fig 8B). When the participants that fell asleep are removed, the high fre-

quency noise remains, but the amplitude difference between wander and focus trials

becomes greater, driving a higher correlation with the task waveform (Fig. 8C). This

is further seen in the distribution of individual-level correlations between DMN ac-
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tivity and the task, where those who do not sleep perform marginally better for

both conditions (Fig. 9).

Figure 8 Technical validation for the neurofeedback paradigm. Panel A shows the functional
connectivity map for the default mode network across all participants (p ¡ 10-30 uncorrected,
n=121) derived through dual regression. Panel B shows average overall time-series (in dark blue
with shading indicating standard error) of the default mode network, across all participants
(n=121), in relation to ideal time-series (in black). The coefficient of determination of the
averaged time series is R2 = 0.36. Panel C shows average overall time-series (in dark blue with
shading indicating standard error) of the default mode network across participants who reported
no sleep during both training and feedback trials (n=76), in relation to ideal time-series (in
black). The coefficient of determination of the averaged time series is R2 = 0.68.

5 Usage Notes
The PSWQ and PTQ were added to the assessment battery in July 2014, approxi-

mately nine months after data collection began. As a result, scores for these mea-

sures are missing from the first 26 and 27 participants, respectively. Additionally,

in July of 2014, the full scale Response Styles Questionnaire (RSQ) was replaced

with the newer subscale RRS, which has better psychometric properties and fewer

questions. The only difference between the RRS subscale of the RSQ and the newer

RRS is that one item from the Depression-Related subscale in the RRS is absent

from the RSQ. To correct for this missing item in those who received the RSQ,

we suggest the following: (1) Divide the RSQ derived Depression Related subscale

score by 11; (2) round down to the nearest whole number (3) add this number to

the RSQ derived Depression Related subscale and RSQ derived RRS-subscale to-

tal score. This procedure was validated using responses from 13 participants who

received the RRS and RSQ. Correlations between scores calculated using all of the

questions and those calculated using the above procedure were r = 0.9994 for the

Depression-Related subscale and r = 0.9997 for the RRS total score.
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Figure 9 Distribution of individual correlations for participant default mode network time-series
with ideal-times series as a function of sleep status. Each sleep status group is then sub-divided
into the two task conditions – Focus/Wander. Subjects with reported sleep during both trials show
lower correlations with the model compared to subjects with no reported sleep. The dots indicate
the mean within each group and the distributions of the correlations are plotted around the mean.

For the MSIT, fMRI data should be analyzed as 42s blocks with the following

onset times after dropping the first four TRs: congruent blocks - 22, 106, 190, 274;

incongruent blocks –64,148, 232, 316. The Moral Dilemma fMRI data should be

analyzed as 30s blocks with the following onset times after dropping the first four

TRs: control blocks – 12, 72, 132, 192; dilemma blocks – 42, 102, 162, 222. Note that

up until April 2014 (first 11 participants), no pre-experiment fixation period was

implemented for the moral dilemma task. For those participants, all of the afore-

mentioned stimulus onset times should be altered by subtracting 20s. For analysis

of the NFB fMRI data, the first stimulus onset (and duration) times, in seconds, are

as follows: 34(30), 162(60), 260(90), 418(60), 576(30), 674(90). The second stimu-

lus onset (and duration) times, in seconds, are as follows: 68(90), 226(30), 354(60),

482(90), 610(60), 768(30). This timing information is also available in events.tsv

files provided in the repository alongside the task fMRI data.

For some participants, the button box used to record participant responses in the

scanner was defective, resulting in unusable data for the MSIT task (18 participants)

and Moral Dilemma task (5 participants).

As previously discussed scripts are provided with each of the tasks for calculat-

ing response accuracies and reaction times. The assumptions made in calculating

these scores may not be appropriate to all researchers, or in all applications. For

this reason we have released the trial-by-trail response information in log files that

accompany the fMRI data.
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The impact of sleep on intrinsic brain activity, and the preponderance of sleep that

occurs during resting state fMRI acquisition, has been highlighted in the literature

[78, 79]. Indeed, a large proportion of the participants in this study reported falling

asleep during either the resting state or neurofeedback scans. Whether or not this

data should be excluded is up to the researcher and depends on the analysis being

performed. Users of this resource might also consider whether they trust the self

reports, or whether they should try to decode an objective measure of sleep from

the data [79]. Additionally, researchers could potentially use the respiratory, heart

rate, or galvanic skin response recordings provided in the repository to monitor

wakefulness.

See information in Data Privacy section of Data Records for restrictions and

limitations on data use.

6 Discussion/Conclusions
This manuscript describes a repository of data from an experiment designed to

evaluate DMN function across a variety of clinical and subclinical symptoms in a

community-ascertained sample of 180 adults (50% females, aged 21-45). The data

includes assessments that cover a variety of domains that have been associated

with or affected by DMN activity, including emotion regulation, mind wandering,

rumination, and sustained attention. Functional MRI task data is included for tasks

shown to activate, deactivate, and localize the DMN, along with a novel real-time

fMRI neurofeedback paradigm for evaluating DMN regulation. Preliminary analysis

of the first 125 participants released for sharing confirms that each of the tasks is

operating as expected.

Group level analysis of the neurofeedback data indicates that the participants are

able to modulate their DMN along with the task instructions. For all participants

the group average time-course co-varies significantly with the task model and in-

creases when removing participants who reported sleep. Greater than half of the

participants who reported no sleep had a significant correlation (p <0.05; r>0.15,

phase randomization permutation test) with the task model (see Fig. 9). The large

portion of participants who were able to significantly modulate their DMN shows

the effectiveness of the neurofeedback protocol.

One unexpected result of our technical validation is a high amount of data loss due

to poor participant performance and compliance. Excluding all of the participants

who are considered outliers on at least one of the tasks or who fell asleep during the

resting state or neurofeedback scans, would remove 73 of the 125 participants (see

Fig. 5). Forty-six individuals could be excluded for sleep, which is not surprising

given recent reports of the high incidence of sleep during resting state scans [79].

Interestingly, 26 of these participants were also outliers in at least one other task.

This indicates that either they had trouble staying awake during the other tasks as

well, or were non-compliant overall. Due to a paucity of information on participant

compliance during fMRI experiments, it is hard to tell whether what we are seeing

is common for our population, or whether there is a specific problem with our

experiment protocol. We do believe that compliance would be higher if we were

to utilize a younger healthy population, or participants who have been scanned

multiple times, as is commonly done in cognitive neuroscience. These problems
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with sleep and poor performance illustrate the need to debrief participants, monitor

their wakefulness during the scan, or try decode sleep from the fMRI data [79].

Additionally, it is important to check the data as it is acquired so that a study

protocol can be adapted to reduce data loss.

Although much of the interest in real-time fMRI based neurofeedback is focused

on clinical interventions [80], it is also a valuable paradigm for probing typical

and atypical brain function. We believe that the data in this repository will have

a substantial impact for understanding the nuances of DMN function and how

variation in its regulation leads to variation in phenotype. This resource will be

particularly useful to students and junior researchers for testing their hypothesis

of DMN function, learning new techniques, developing analytical methods, and as

pilot data for obtaining grants. We encourage users to provide us with feedback for

improving the resource and are very interested to learn about the research performed

with the data.
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