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Abstract 

A fast and approximate method of generating allosteric communication landscapes is presented by using 
Schreiber's entropy transfer concept in combination with the Gaussian Network Model of proteins. 
Predictions of the model and the allosteric communication landscapes generated show that information 
transfer in proteins does not necessarily take place along a single path, but through an ensemble of 
pathways. The model emphasizes that knowledge of entropy only is not sufficient for determining 
allosteric communication and additional information based on time delayed correlations has to be 
introduced, which leads to the presence of causality in proteins. The model provides a simple tool for 
mapping entropy sink-source relations into pairs of residues. Residues that should be manipulated to 
control protein activity may be determined with this approach. This should be of great importance for 
allosteric drug design and for understanding the effects of mutations on protein function. The model is 
applied to determine allosteric communication in two proteins, Ubiquitin and Pyruvate Kinase. 
Predictions are in agreement with detailed molecular dynamics simulations and experimental evidence. 

 

Significance: Proteins perform their function by an exchange of information within themselves and with 
their environments through correlated fluctuations of their atoms. Fluctuations of one atom may drive the 
fluctuations of another. Information transmitted in this way leads to allosteric communication which is 
described as the process in which action at one site of the protein is transmitted to another site at which 
the protein performs its activity. Disruption of allosteric communication by mutation for example leads to 
disease. The present paper incorporates information theoretic concepts into the well known Gaussian 
Network Model of proteins and allows for rapid characterization of allosteric communication landscapes 
for normal functioning as well as malfunctioning proteins.  

 

Introduction 

Transfer of entropy from one subsystem of a protein to another is now becoming a subject of interest 
because of its relation to information flow and allosteric communication. Allosteric communication is the 
process in which action at one site of a protein is transmitted to another site at which the protein 
performs its activity. Protein-protein and protein-DNA interactions, drug action and all processes that 
depend on signal transduction involve allosteric activity for the system to carry out its normal function. 
Most known cancer causing mutations lead to the disruption of normal allosteric communication. Recent 
findings show that allosteric activity is entropic in nature and depends on information transfer from one 
part of the protein to the other [1, 2] through coordinated fluctuations of residues. Transmission of effects 
through correlated fluctuations is a universal property of all proteins and not only of allosteric ones. In 
this sense all proteins may be regarded as intrinsically allosteric in nature [3]. This new view freed the 
understanding of allostery from the limited picture of discrete two state transitions and opened a broader 
vista in terms of entropy transfer in proteins. The idea of transfer entropy, recently introduced by 
Schreiber [4], is the appropriate one for understanding information flow and communication in proteins. 
van der Vaart applied the Schreiber equation to determine information flow between Ets-1 transcription 
factor and its binding partner DNA [5], Barr et. al., [6] quantified entropy transfer among several residues 
in a molecular dynamics analysis of mutation effects on autophosphorylation of ERK2, Corrada et. al., [7] 
analyzed entropy transfer in antibody antigen interactions, Zhang et. al., [8] applied the method to 
understand changes in correlated motions of the Rho GTPase binding domain during dimerization. 
Presently, one of the requirements for calculating entropy transfer in proteins is to run molecular 
dynamics simulations in the order of a microsecond. Considering the urgent need for determining 
information transfer in malfunctioning proteins, the molecular dynamics technique becomes a serious 
bottleneck and a rapid characterization is needed. The aim of this paper is to provide a rapid scheme of 
computing entropy transfer in proteins and show that its results agree with detailed molecular dynamics 
based predictions. For this purpose we formulate transfer entropy using the Gaussian Network Model 
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(GNM) which is based on harmonic interactions between contacting pairs of residues [9]. Calculation 
times for determining transfer entropy between all pairs of residues of proteins, even of extremely large 
protein complexes, using GNM can now be performed in the order of seconds on a laptop computer.  

 

Results of the Model 

Using the GNM version of transfer entropy developed in this paper, we studied two important proteins, 
Ubiquitin and the Pyruvate Kinase tetramer. 

Ubiquitin, (PDB code 1UBQ), is a 76 amino acid protein. It consists of 8 distinct secondary structures 
that actively take part in interactions with a large number of proteins. Ubiquitin, although not known as an 
allosteric protein itself, communicates with several other proteins to send information from one binding 
partner to another, and hence can be regarded as having intrinsic allosteric properties [10]. Recently, we 
used a 600 ns molecular dynamics trajectory to determine communication patterns in Ubiquitin resulting 
from entropy transfer [11]. Here, we compare the results of the present model with those from molecular 
dynamics (MD) simulations. The values of ( )iT τ→ for Ubiquitin from Eq.(9) are shown by the lower 

curve indicated as GNM in Fig 1. The upper curve shows the results of MD simulations. Both curves are 
obtained for the entropy associated with the alpha carbons of the residues. The GNM data is scaled and 
translated relative to the MD data for easier comparison. The secondary structures of Ubiquitin are shown 
in the upper part of the figure, where α and β stand for alpha helix and beta strand, respectively. The 
turns between the secondary structures are not indicated in the figure. The GNM and MD curves show 
good agreement in that the residues with high entropic activity are common to both except the β5 strand 
and the loop between β4 and β5.  

 

 

Fig 1. Entropy results of each alpha carbon of Ubiquitin. Upper curve is the entropy result calculated with MD data and lower 
curve is the entropy result calculated with GNM.  

For a more detailed analysis we present, in Fig 2, the transfer entropy values ( )i jT τ→ for each pair of 
residues of the protein.  
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Fig 2. Transfer entropy between Ubiquitin residue pairs. Left panel shows GNM results and right panel shows MD results. 
Entropy is being transferred from the donor(x axis) to the acceptor(y axis). 

In this figure, we compare the entropy transfer values ( )i jT τ→ calculated from Eq. (8) of Ubiquitin 

obtained by GNM (left panel) and from MD results of Reference [11] (right panel). The value of τ is 
taken such that relaxations decay to 1/e of the initial [A1]values. The horizontal axes denote the indices of 
residues that act as entropy donors. The vertical axes denote indices of residues that act as residue 
acceptors. For example the horizontal line of points corresponding to residue 76 in the ordinate of both 
panels indicates that this residue is an entropy sink and takes the entropy of all other residues. Several such 
entropy acceptors are common to both panels in the figure. In this respect, residues L8, Q40, G47, N60 
and G75 absorb entropy from several residues of UBQ. An example to an entropy donor residue is I23. 
On the left panel, a sequence of points perpendicular to the x axis at 23 indicates that I23 gives entropy to 
several other residues. There is a similar trend for residue I23 shown by the MD data in the right panel. 
The vertical direction at 23 here is not as densely populated as the corresponding one on the GNM data, 
nevertheless there is a large set of residues that accept entropy from I23. According to MD results, residue 
I3 is an entropy donor to almost all other residues, as indicated by the vertical points at 3. GNM results 
show that residues I3-V5 are entropy donors to several residues but not exactly as shown by the discrete 
succession of points in the MD results. Residue Q40 shows also approximately similar behavior as entropy 
acceptor for both GNM and MD. Other residues with common features for GNM and MD data may also 
be seen from the two panels of Fig 2.  

In Fig 3, we present the surface plot of the antisymmetric part of Eq. (10) for Ubiquitin. In this figure, the 
red regions show entropy transfer from the entropy donor to the entropy acceptor residue, identified on 
the abscissa and the ordinate, respectively. The blue regions show entropy transfer to the donor residue. If 
a pair of residues, i from the entropy donor axis and j from the entropy acceptor axis leads to a positive 
value on the surface, then i provides entropy to j and vice versa for the negative surface. Thus, the 
negative blue trough for i=76 on the entropy donor axis means i=76 extracts entropy from all residues 
along the trough. The surface depicted in Fig 3 gives a view of the communication landscape of UBQ. 
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Fig 3. Surface plot of entropy transfer in Ubiquitin. Red regions denote entropy transfer from the entropy donor axis to entropy 

acceptor axis. Blue regions show the reverse, entropy transfer into the residue identified on the entropy donor axis. 

A more concise view of sink and reservoir residues may be seen from the net entropy out from a residue i 
curve obtained by Eq. (11). In Fig 4 results for UBQ are shown. 

 
Fig 4. Net Entropy out from residues of UBQ. 

The negative peaks indicate that the corresponding residue acts as an entropy sink, extracting entropy 
from the protein. The positive peaks are the entropy reservoirs that provide entropy to the protein. An 
interesting feature from the figure is that the two C-terminal residues G75 and G76 act as residue sinks, 
absorbing the entropy of the remaining residues of the protein. 

 

Pyruvate Kinase 

Pyruvate Kinase from Leishmania mexicana (PDB code 3HQQ), which is a homotetrameric enzyme having 
1992 amino acids in total and 498 amino acids per protomer, each consisting of 28 secondary structures 
and 4 domains named as N-terminal(residues between 1-17), A(residues between 18-88 and 187-356), 
B(residues between 89-186) and C(residues between 357-498). It catalyzes the last step in glycolysis and is 
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known to be allosterically activated by the binding of fructose biphosphate (FBP). Ligand free and 
allosterically activated states of PK differ in rigid body rotations of the AC core. This rotation results in 
R310 making hydrogen bonds with R262 and G263 on an alpha helix and this helix unwinds in the 
absence of FBP. R310 plays a crucial role because it shows the greatest conformational changes between 
the inactive and active states of the enzyme, but it has been proven that it is necessary but not sufficient 
for allosteric transition. FBP interacts with E451 and G487 in the C-domain and affects the motion of the 
B-domain by increasing the rigidity of the enzyme and consequently its activity although it binds to a site 
over 40 Å away from the active site [12-14]. Here we used the alpha carbons of the crystal structure of apo 
form of PK to determine communication patterns between its residues with GNM based calculations by 
using Eq (8).  
 
Entropy transfer and allosteric activity in PK takes place at two different scales. Firstly, transfer among the 
four protomers, and secondly within each protomer. We analyze them separately. In Fig 5, we present the 
communication landscape for the tetramer. Red regions denote positive and blue regions denote negative 
entropy transfer from the entropy donor to acceptor residue pairs. We see a continuous negative trough 
for R310 of the entropy donor axis. A negative entropy donor means R310 extracts entropy from other 
residues of the protein including all other protomers. R310 makes contact with G263 and G266 of 
another protomer through its large interface. This leads to a long range entropy transfer inclusive of all 
four protomers. The red peaks between S1 and A20 of the entropy donor axis indicates that these residues 
provide entropy to the rest of the protein. These peaks extend over all other protomers and hence 
represent long range entropy transfer. Inspection of the crystal structure shows that these residues belong 
to the short helix hanging on a long loop near the short interface. Thus each protomer provides entropy 
to other protomers through a certain set of residues and extracts entropy from other protomers through 
another set of residues. This constitutes the basis of the mechanism of the inhomogeneous rocking 
motions of the tetramer. The communication landscape of Fig 5 is essentially a pictorial representation of 
the large scale rocking motions. The symmetry of rock and lock motion across all four protomers is 
noticeable from the figure.  
 

 

 

Fig 5. Transfer entropy between Pyruvate Kinase residue pairs. Red regions denote positive and blue regions denote negative 
entropy transfer between residue pairs.  
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In the interest of understanding intra-residue communication in a more detailed way i.e., transfer within a 
protomer, we present entropy transfer over short scales in Fig 6. The regions corresponding to entropy 
donor residue indices between 350 and 498 are predominantly blue, showing that these residues extract 
entropy from the remaining residues. The red domains corresponding to the entropy donor residues A70 
to T170 are the residues that give their entropy to the others. FBP binds to residues L399, S400, N401, 
T402, S405, H480, A481 and G487, which are all in the blue region of Fig 6, extracting entropy from the 
red regions, i.e., residues between A70 and T170. 

 
Fig 6. Transfer entropy between residue pairs of one PK protomer.  

Red regions denote positive and blue regions denote negative entropy transfer between residue pairs.  

 

Fig 7 shows the three dimensional structure of a protomer. The green molecule is FBP. Highlighted blue 
residues around FBP are the binding residues that fall in the blue region of Fig 6. They extract entropy. 
The blue ribbon and the highlighted blue head in the figure are the residues A70-T170 that donate entropy 
to others. 

 
Fig 7. Cartoon of a single protomer of PK in complex with FBP. Blue residues in ribbon representation (A70-T170) donate 

entropy to others, green molecule is FBP and blue residues in CPK representation are the binding residues of FBP.  
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Discussion 

In this paper we present a fast but approximate method of determining allosteric communication 
landscapes in proteins using the Gaussian Network Model which is based on harmonic interactions 
between contacting residues. The method is based on the transfer entropy concept introduced recently by 
Schreiber, and shows that knowing only the energy landscape is not sufficient to predict information 
transfer and allosteric communication, and that time delayed correlations are necessary. The allosteric 
communication landscapes presented in Figs. 3, 5 and 6 show that information transfer in proteins does 
not necessarily take place along a single path, but over an ensemble of pathways. The model also 
emphasizes that knowledge of entropy only is not sufficient for determining allosteric communication and 
additional information based on time delayed correlations has to be introduced, which leads to the 
presence of causality in proteins. The possibility of causality in proteins allows for identifying driver-driven 
relations for pairs of residues. The GNM method of entropy transfer provides a rapid tool for 
determining the allosteric communication landscape for proteins. Construction of a landscape for a 
protein as large as 2000 residues now takes less than one minute on a desktop. We performed a 
comparative analysis of allosteric communication between residue pairs in Ubiquitin and Pyruvate Kinase 
with the present method and showed that the results are in good agreement with molecular dynamics 
based predictions. Evaluating the communication map for the Pyruvate Kinase by molecular dynamics 
would take several months on a supercomputer. With the GNM approach, we were able to determine the 
allosteric communication landscape of the 1992[A2] residue protein Pyruvate Kinase. The results agreed 
with experimentally known allosteric communication features of the complex.  The GNM entropy 
transfer model provides a simple tool which maps the entropy sink- source relations into pairs of residues. 
By this approach residues that should be manipulated to control protein activity may be determined. This 
should be of great importance for allosteric drug design and for understanding effects of mutations on 
protein function.  

 

Methods 

Following Schreiber's work [4], we write the transfer entropy ( )i jT τ→ from the fluctuation trajectory 

( )iR t∆ of atom i to that of j ( )jR t τ∆ + at time t τ+ as  

( ) ( ) ( )( ) ( ) ( ) ( )( ),i j j j j i jT S R t R t S R t R t R tτ τ τ→ = ∆ + ∆ − ∆ + ∆ ∆     (1) 

The conditional entropies on the right hand side of the Schreiber equation for two events ( )iR t∆  and 

( )jR t τ∆ +  in a steady state process is given in Boltzmann units, i.e., the Boltzmann constant taken as 
unity by 

( ) ( )( ) ( ) ( )( ) ( )( )ln 0 , ln 0j i i j iS R t R t p R R p Rτ τ∆ + ∆ = − ∆ ∆ + ∆    (2) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ), ln 0 , ln 0 , 0 ,j i j j j i j jS R t R t R t p R R p R R Rτ τ τ∆ + ∆ ∆ = − ∆ ∆ + ∆ ∆ ∆

            (3) 

Detailed derivations of the expressions presented in this paper are provided in the Supplementary 
Material. In the coarse graining approximation we focus only on the alpha carbon of each residue.  

Substituting Eqs. (2) and (3) into Eq. (1), leads to 
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( ) ( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )

ln 0 , ln 0 , 0 ,

ln 0 ln 0 , 0

i j j j i j j

j i j

T p R R p R R R

p R p R R

τ τ τ→ = − ∆ ∆ + ∆ ∆ ∆

+ ∆ − ∆ ∆
   (4) 

The Gaussian Network Model is characterized by the spring constants matrix Γ where a spring of 
constant unity is assumed between residues in contact. It is defined as follows: ijΓ equates to -1 if alpha 

carbons of residues i and j are within a cutoff distance of Cr and to zero otherwise. Each ith diagonal 

element iiΓ is equal to the negative sum of the ith row. The time correlation of fluctuations is given by the 
GNM as [15] 

( ) ( ) ( ) { }00 exp /i j ij k
k

R R A kτ λ τ τ∆ ∆ = −∑        (5) 

where  

( ) 1 ( ) ( )k k
ij k i jA k u uλ −=           (6) 

with kλ being the kth eigenvalue and ( )k
iu being the ith component of the kth eigenvector of the Γmatrix. 

The probability distribution of a Gaussian of n variables, [ ]1 2 3, , , ,R R R R n∆ = ∆ ∆ ∆  is 

( )
( )

( ) ( )
1

1 1exp
22 det

T

n
p R R R

π −

 ∆ = − ∆ Γ ∆ 
 Γ

      (7) 

where, 1−Γ is the matrix of covariances ( )1
i jij

R R−Γ = ∆ ∆  

Taking the logarithm of Eq. (7) and averaging and substituting into Eq. (4) leads to the final expression 
for entropy transfer in the GNM as: 

( ) ( ) ( ) { }

[ ( ) ( )

( ) ( ) { } ( ) { }

( ) { } ( ) ( ) ( )

2 2

0

2

0 0

2 2

0

1 ln exp /
2

1 ln
2

2 exp / exp /

exp / exp

i j jj jj k
k k

ii jj
k k

ij jj k ij k
k k k

ij k ij jj jj
k k k

T A k A k

A k A k

A k A k A k

A k A k A k A k

τ λ τ τ

λ τ τ λ τ τ

λ τ τ

→

    = − −         

  −   
  

 + − − 
 
       − − + − −      
       

∑ ∑

∑ ∑

∑ ∑ ∑

∑ ∑ ∑ { } ( ) ]

( )

( ) ( ) ( )

2

0

2

/

1 ln
2

1 ln
2

k ii
k k

jj
k

ii jj ij
k k k

A k

A k

A k A k A k

λ τ τ   
   
   

  −   
  

     + −           

∑ ∑

∑

∑ ∑ ∑
            (8) 
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The net entropy transfer ( )iT τ→ from residue i to the rest of the protein is obtained by summing 

( )i jT τ→  over j 

( ) ( )i i j
j i

T Tτ τ→ →
≠

=∑           (9) 

Defined in this way, ( )iT τ→  is a measure of entropic activity of residue j[A3]. 

The matrix ( )i jT τ→  may be written as the sum of its symmetric and antisymmetric parts as 

( ) ( ) ( ) ( ) ( )
2 2

i j j i i j j i
i j

T T T T
T

τ τ τ τ
τ → → → →

→

+ −   
= +   
   

     (10) 

The second parenthesis on the right hand side is nonzero due to causality of events. If the fluctuations of 
residue i drive the fluctuations of residue j stronger than the action of j on i, then residue i acts as the 
driver and j as the driven. The antisymmetric part has both negative and positive components, 
corresponding to entropy sinks and entropy reservoirs. Summing up the right hand side over j gives the 
net entropy going out of residue i as: 

( ) ( )
2

i j j i

j

T T
Net entropy out from residue i

τ τ→ →− 
=  

 
∑     (11) 

The time delay τ that appears in the equations depends on the spring constant of the harmonic 
interactions. Molecular dynamics simulations of proteins at physiological temperatures shows that 
fluctuations of two residues i and j are in the order of 5 nanoseconds [11, 16]. However, it is not possible 
to establish an exact quantitative correspondence between the GNM values and real time parameters. In 
all the calculations below, we took τ  as the time for which correlations decay to 1/e of their initial values. 
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Figure Legends 

Fig 1. Upper curve is the entropy result calculated with MD data and lower curve is the entropy result 
calculated with GNM data.  

Fig 2. Left panel shows GNM results and right panel shows MD results. Entropy is being transferred 
from the donor(x axis) to the acceptor(y axis). 

Fig 3. Red regions denote positive whereas blue regions denote negative entropy transfer between pairs. 

Fig 5. Red regions denote positive and blue regions denote negative entropy transfer between residue 
pairs. 

Fig 6. Red regions denote positive and blue regions denote negative entropy transfer between residue 
pairs. 

Fig 7. Blue residues in ribbon representation (A70-T170) donate entropy to others, green molecule is FBP 
and blue residues in CPK representation are the binding residues of FBP. 
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Supplementary material for the derivation of equations in the main manuscript: 

 

We assume that the trajectories, ( )iR t∆  and ( )jR t∆  for two atoms are known. We now consider two 

events separated in time by τ , with the condition that ıR∆ coming before jR∆ . The conditional entropy 
for these two events is defined by 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ), lnj i i j j iS R t R t p R t R t p R t R tτ τ τ∆ + ∆ = − ∆ ∆ + ∆ + ∆∑   

   ( ) ( )( )ln j ip R t R tτ= − ∆ + ∆     (1) 

   
( ) ( )( )

( )( )
,

ln i j

i

p R t R t
p R t

τ∆ ∆ +
= −

∆
 

   ( ) ( )( ) ( )( )ln 0 , ln 0i j ip R R p Rτ= − ∆ ∆ + ∆  

where, the summation is over all states for i and j, and the condition of stationarity is used in the last 
equation. Throughout the paper we take the Boltzmann constant as unity. 

Following Schreiber's work [1], we write the transfer entropy ( )i jT τ→ from trajectory i to j at time τ as  

( ) ( ) ( )( ) ( ) ( ) ( )( ),i j j j j i jT S R t R t S R t R t R tτ τ τ→ = ∆ + ∆ − ∆ + ∆ ∆     (2) 

Using the relations for conditional entropy, this may be written as 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )

ln 0 , ln 0 , 0 ,

ln 0 ln 0 , 0

i j j j i j j

j i j

T p R R p R R R

p R p R R

τ τ τ→ = − ∆ ∆ + ∆ ∆ ∆

+ ∆ − ∆ ∆
   (3) 

The probability distribution of a Gaussian of n variables, [ ]1 2 3, , , ,R R R R n∆ = ∆ ∆ ∆  is 

( )
( )

( ) ( )
1

1 1exp
22 det

T

n
p R R R

π −

 ∆ = − ∆ Γ ∆ 
 Γ

      (4) 

where, ijΓ is defined from the Gaussian Network Model (GNM) [2] as the matrix of spring constants 

which has the value -k if atom i is within a given cutoff distance of Cr which is usually taken as 7 

Ångstroms. If the distance between two atoms is larger than Cr , then ijΓ  equals zero. The diagonal 

elements iiΓ  is equal to the negative sum of the ith row. The magnitude of the spring constant k is 

immaterial, and hence is taken as unity. 1−Γ is the matrix of covariances with ij i jR RΣ = ∆ ∆ . 

Then, 

( ) ( ) ( )11ln ln det ln 2
2 2

np R eπ−∆ = − Γ +        (5) 
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Each term in Eq. 3 now takes the following form 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )
2 221ln 0 , ln 0 0 ln 2

2j j j j jp R R R R R eτ τ π ∆ ∆ = − ∆ − ∆ ∆ + 
 

 (6) 

( ) ( ) ( )( ) [ ( )( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ } ( )( )

( ) ( ) ( )( ) ] ( )

222

22 2

2 2

1ln 0 , 0 , ln 0 0
2

0 0 0 0

0 0 0 0

0 0 0 0

30 0 ln 2
2

i j j i j

i j j j i j

i j j j i j

i j i j j

j j i

p R R R R R

R R R R R R

R R R R R R

R R R R R

R R R e

τ

τ τ

τ τ

τ

τ π

∆ ∆ ∆ = − ∆ ∆

+ ∆ ∆ ∆ ∆ ∆ ∆

+ ∆ ∆ ∆ ∆ ∆ ∆

− ∆ ∆ + ∆ ∆ ∆

− ∆ ∆ ∆ −

   (7) 

( )( ) ( )( ) ( )21 1ln 0 ln 0 ln 2
2 2j jp R R eπ ∆ = − ∆ +  

     

            (8) 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )
2221ln 0 , 0 ln 0 0 0 0 ln 2

2i j i j i jp R R R R R R eπ∆ ∆ = − ∆ ∆ − ∆ ∆ +  

            (9) 

The time correlation of fluctuations according to the GNM  is given as [3] 

( ) ( ) ( ) { }00 exp /i j ij k
k

R R A kτ λ τ τ∆ ∆ = −∑        (10) 

where  

( ) 1 ( ) ( )k k
ij k i jA k u uλ −=           (11) 

with kλ being the kth eigenvalue and ( )k
iu being the ith component of the kth eigenvector. For 0τ = , 

( ) ( ) ( )0 0i j ij
k

R R A k∆ ∆ =∑          (12) 

Substituting these into into Eqs. 6-9 and then into Eq 3 leads to 
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( ) ( )( ) ( )( ) ( )( )

[ ( )( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ } ( )( )
( ) ( ) ( )( ) ]

( )( )

( )( ) ( )( ) ( )( ) ( )( )( )

2 22

222

22 2

2 2

2

222

1 ln 0 0
2

1 ln 0 0
2
2 0 0 0 0

0 0 0 0

0 0

1 ln 0
2
1 ln 0 0 0 0
2

i j j j j

i j

i j j j i j

i j i j j

j j i

j

i j i j

T R R R

R R

R R R R R R

R R R R R

R R R

R

R R R R

τ τ

τ τ

τ

τ

→
 = ∆ − ∆ ∆ 
 

− ∆ ∆

+ ∆ ∆ ∆ ∆ ∆ ∆

− ∆ ∆ + ∆ ∆ ∆

− ∆ ∆ ∆

 − ∆  

+ ∆ ∆ − ∆ ∆

     (13) 

When the fluctuations of the two residues are uncorrelated, this quantity becomes zero. Substituting the 
eigenvalues and eigenvectors into Eq. 13 leads to the final expression for entropy transfer 

( ) ( ) ( ) { }

[ ( ) ( )

( ) ( ) { } ( ) { }

( ) { } ( ) ( ) ( )

2 2

0

2

0 0

2 2

0

1 ln exp /
2

1 ln
2

2 exp / exp /

exp / exp

i j jj jj k
k k

ii jj
k k

ij jj k ij k
k k k

ij k ij jj jj
k k k

T A k A k

A k A k

A k A k A k

A k A k A k A k

τ λ τ τ

λ τ τ λ τ τ

λ τ τ

→

    = − −         

  −   
  

 + − − 
 
       − − + − −      
       

∑ ∑

∑ ∑

∑ ∑ ∑

∑ ∑ ∑ { } ( ) ]

( )

( ) ( ) ( )

2

0

2

/

1 ln
2

1 ln
2

k ii
k k

jj
k

ii jj ij
k k k

A k

A k

A k A k A k

λ τ τ   
   
   

  −   
  

     + −           

∑ ∑

∑

∑ ∑ ∑
            (14) 
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