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Abstract

Naturalistic viewing paradigms such as movies have been shown to reduce par-
ticipant head motion and improve arousal during fMRI scanning relative to
task-free rest, and have been used to study both functional connectivity and
task-evoked BOLD-signal changes. These task-evoked changes result in corti-
cal activity that is synchronized across subjects and involves large areas of the
cortex, and it is unclear whether individual differences in functional connectiv-
ity are enhanced or diminished under such naturalistic conditions. This work
first aims to characterize variability in functional connectivity (FC) across two
distinct movie conditions and eyes-open rest (n=34 healthy adults, 2 scan ses-
sions each). At the whole-brain level, we found that movies have higher intra-
and inter-subject correlations in cluster-wise FC relative to rest. The anatom-
ical distribution of inter-subject variability was similar across conditions, with
higher variability occurring at the lateral prefrontal lobes and temporoparietal
junctions. Second, we used an unsupervised test-retest matching (or “finger-
printing”) algorithm that identifies individual subjects from within a group
based on functional connectivity patterns, quantifying the accuracy of the algo-
rithm across the three conditions. We also evaluated the impact of parcellation
resolution, scan duration, and number of edges on observed inter-individual dif-
ferences. The movies and resting state all enabled identification of individual
subjects based on FC matrices, with accuracies between 62 and 100%. Overall,
pairings involving movies outperformed rest, and the more social and faster-
paced movie attained 100% accuracy. When the parcellation resolution, scan
duration and number of edges used were increased, accuracies improved across
conditions, and the pattern of movies > rest was preserved. These results sug-
gest that using dynamic stimuli such as movies enhances the detection of FC
patterns that are distinct at the individual level.
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Highlights

e Intra- and inter-subject FC correlations are compared across rest and
movies.

e Movies outperformed rest in an unsupervised identification algorithm based
on FC.

e Movies outperform rest regardless of parcellation, scan length, or number
of edges.

e Watching movies enhances the detection of individual differences in FC.

1. Introduction

As psychiatric research has shifted towards a dimensional conceptualization
of symptoms and behaviors (Insel et al., [2010), interest within neuroimaging
has expanded to include brain-based characterization at the individual level
(Arbabshirani et all 2013). Despite the reliability of functional connectivity
(FC) patterns across individuals and across testing sessions (Yeo et al., 2011}
Zuo et al.| 2010; Damoiseaux et al., 2006; [Shehzad et al., |2009)), FC relation-
ships have also been shown to capture significant inter-individual variability,
generating optimism for their eventual use as biomarkers of mental illness (Finn
et al. [2015)). Recent work has begun to characterize the spatial and state-based
aspects of individual differences in FC.

1.1 Spatial aspects of FC variability. Functional neuroimaging data sets contain-
ing retest scans have been leveraged to investigate inter-individual variability
in FC patterns while controlling for intra-individual variability. Mueller et al.
demonstrated that individual differences in FC were largest in association cortex
including lateral prefrontal regions and the temporoparietal junction (Mueller
et al) [2013). Unsurprisingly, unimodal sensory and motor regions were the
least variable across subjects. At the network level, frontoparietal and ventral
attention networks exhibited the largest variability in FC, followed next by the
default and dorsal attention networks. This pattern of results was subsequently
confirmed independently (Chen et al.l |2015]).

A second wave of studies extended these findings by using unsupervised
test-retest sorting algorithms to match pairs of FC matrices. Finn et al. used a
cohort (n = 126) of the Q2 Human Connectome Project data, and showed that
correlations between FC matrices could be used to identify individual subjects
from within a group (Finn et al., 2015)). Further, the FC edges that contributed
most to successful matching were located in the frontoparietal network. Airan


https://doi.org/10.1101/084665
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/084665; this version posted November 2, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

et al. used a similar approach on four publicly available data sets with differ-
ent sequence parameters and acquisition durations (Airan et al., [2016). They
found that the brain regions which contributed most to individual subject char-
acterization involved default, attention, and executive control networks. Taken
together, these data reinforce the view that FC of heteromodal cortex is partic-
ularly variable, and importantly, that group-level variability contains differences
that are distinct at the individual subject level.

Investigations of FC variability inherently capture structural variability, in-
cluding differences in anatomical features such as cytoarchitecture, sulcal depth,
and morphology, as well as variability in functional mapping of corresponding
areas across subjects (Brett et al., 2002; Frost and Goebel, [2012; [Zilles and|
|Amunts| [2013} |Shah et al., [2016]). The significance of this heterogeneity is evi-
dent in the improvement attained by the “hyperalignment” of functional data
(in representational space) using functional correlations rather than structural
features to align data across subjects (Conroy et al., |2013; |Guntupalli et al.,
2016; Langs et al.l [2015). At the individual level, gradients in FC profiles have
been shown to delineate functionally distinct cortical areas that in and of them-
selves demonstrate individual-specific variation (Xu et al., 2016} Laumann et al.,
, and methods are being developed to create individualized maps of FC
relationships (Wang et al.,|2015). Recent work related four areal properties (ar-
chitecture, function, connectivity, and topography) to create a multi-modal par-
cellation of the cortex. These data showed that even with improved inter-subject
alignment, specific regions demonstrated atypical topological arrangements in
some subjects (Glasser et al.l [2016]). Though it is not yet possible to delineate
the precise contribution of these underlying structural factors to inter-individual
differences in FC measures, the emerging literature indicates that spatial vari-
ability is a major factor. Accordingly, multiple groups have shown that using
finer-grained parcellation schemes for FC studies enhances inter-individual vari-
ability (Airan et al., 2016} [Finn et al., 2015 [O’Connor et all [7777). The fact
that spatial variability is likely not the only factor is indicated by the presence of
differences in FC variability that are present across states or conditions (see 1.2
below) and data showing that changing spatial parameters such as the degree of
smoothing does not significantly alter the performance of test-retest matching
algorithms (Finn et al.| [2015).

1.2 Collection states and FC variability. The effects of acquisition conditions on
FC continue to be examined and debated (Mennes et al.,[2013} |Cole et al.| 2014}
|Arbabshirani et al.| 2013). A general question in the current context is whether
inter-individual differences in FC are more robust under less constrained states
such as rest versus tasks. As part of a thorough investigation of reliability and
reproducibility in FC measures using a large database (n = 476), Shah and
colleagues showed that individual patterns in FC were preserved across mul-
tiple task and rest conditions (Shah et all 2016). Geerligs et al. investigated
“state and trait” components of FC across rest and an audiovisual finger-tapping
task (Geerligs et al. [2015). By comparing correlations across conditions, they
showed that state and trait effects each explained approximately equal amounts
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of variance in FC at a single scanning session. Interestingly, when examining
the temporal variability of FC, Elton and Gao found that a Stroop-like letter-
naming task decreased variability relative to rest (Elton and Gaol 2015). Finn
and colleagues showed that when using FC-based identification (i.e., match-
ing) algorithm, the maximal accuracy (94%) was attained when using rest-rest
correlations; accuracy decreased to 54-87% when using rest-task or task-task
correlations, suggesting that individual differences are more pronounced during
less constrained states, but are still present in task-based FC data. These stud-
ies indicate that inter-individual differences in FC are not abolished when using
tasks, at least when the tasks are conventional and discrete such were used in
these studies.

Different results have been demonstrated when using more naturalistic tasks.
One study investigated inter-individual differences during movie-watching us-
ing a Hitchcock film (Bang! You’re Dead) (Geerligs et al. 2015). This study
showed that the least amount of overlap and the highest amount of variance
occurred within the movie-task comparison relative to both the movie-rest and
task-rest comparisons, suggesting that perhaps movies have a unique effect on
FC patterns. These data indicate that individual differences in FC are more
pronounced when conditions are more constrained and engaging, or perhaps
more accurately, when more networks are recruited simultaneously in a natu-
ralistic fashion. However, to date, it remains unclear which collection states
might be most advantageous for the study of FC patterns that are distinct at
the individual level.

1.8 Movies and FC variability. Airan et al. point out that to optimize individ-
ual subject characterization, investigators should seek to maximize inter-subject
variability while minimizing intra-subject variability (Airan et al.| 2016). The
same concept was outlined by Wang et al. who assert that to be clinically
useful, a mapping technology must demonstrate (among other things) high re-
producibility within subjects while also being sensitive to functional differences
between subjects (Wang et all 2015). These are testable constructs, as out-
lined by Strother et al., who advocate for cross-condition comparisons of data-
analytic parameters, including both prediction accuracy across data sets and
reproducibility within the same data set (Strother et al., 2002)). Due to the sig-
nificant improvement in compliance regarding head movement and arousal levels
conferred by movie watching in the scanner (Vanderwal et al., [2015), we wanted
to investigate the effects of movie watching on these aspects of FC variability.
In the present study, we investigated individual differences in FC during two
distinct movie watching conditions and eyes-open rest. Movie conditions were
an abstract, nonverbal movie called Inscapes that was created to maximize com-
pliance while minimizing cognitive load, and a verbal, social, complex clip from
an action movie (Ocean’s Eleven, Warner Brothers 2001, directed by Steven
Soderbergh). These two movies have previously been shown to elicit differ-
ent FC patterns, particularly involving the default and frontoparietal networks,
with Inscapes demonstrating mean FC that was more comparable to rest than
to the action movie clip (Vanderwal et al.,|2015). The study is divided into two
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parts. First, we provide an overview of aspects that relate to FC variability, in-
cluding cross-condition comparisons of FC, measures of inter- and intra-subject
correlations in FC, and the spatial distribution of inter-individual variability
of FC. Based on these cross-condition characterizations of variability, we pre-
dicted that movies would enhance the ability to detect individual differences in
FC that are distinct at the individual level. The second part of the study tests
this hypothesis. We ran an unsupervised test-retest matching algorithm that
used FC matrices to identify individual subjects from among a group. We also
ran the algorithm using different parcellation schemes, acquisition durations,
and percent of edges used to test whether these factors differentially affected
the two types of movies and rest. Primary outcomes were the different accuracy
percentages of the identification algorithm across the three conditions.

2. Materials and Methods

2.1 Data collection. Participants. Healthy right-handed adults were recruited
from the community, and 46 participants completed two testing sessions with
a one-week interval. Twelve participants self-reported falling asleep during one
or both sessions, and were excluded from further analysis, leaving n = 34 (18
females, mean age 24.4+5.1 years). Data from a subset (n = 22) were published
previously (Vanderwal et all 2015). Exclusion criteria included neurological or
psychiatric diagnoses, use of centrally acting medications, heavy alcohol use,
any illicit drug use in the past 6 months, cardiovascular disease, significant
visual or hearing impairment, and self-reporting less than six hours of sleep
per night. All participants gave written consent and were compensated for their
participation. The study was approved by the Human Investigations Committee
at Yale University School of Medicine.

Procedure. Imaging was performed on a Siemens Trio 3-Tesla scanner with a
32-channel head coil. Standard structural images used an MP-RAGE sequence
(TR=1900ms, TE=2.52ms, TI=900ms, flip angle=9°) yielding 1mm? voxel size.
Functional data were collected using a single shot echo planar imaging sequence
(TR=2500ms, TE=30ms, flip angle=80°, voxel size=3mm isotropic) across 38
slices in the same plane as the anatomical scans. All participants completed
3 functional scans during which stimuli were presented via E-Prime software,
version 2.0 (Psychology Software Tools, Pittsburgh, PA). Images were back-
projected onto a screen that participants viewed via a mirror mounted on the
head coil. Sound-reducing headphones over protective earplugs enabled par-
ticipants to hear the soundtracks. Three 7 minute and 20 second conditions
included Inscapes (detailed description of this movie is provided in Vanderwal
et al. 2015), a clip from the movie Ocean’s Eleven (Warner Brothers, 2001, di-
rected by Steven Soderbergh) referred to here as Oceans, and Rest (see Figure
1). The order of conditions was counter-balanced across participants. Each con-
dition started and ended with 10 seconds of fixation; the first 10 seconds were
dropped for all analyses. Participants were asked to watch the screen and to
stay as still as possible during each condition. Foam wedges were fitted around
the participant’s head for comfort and to decrease movement. Retest sessions
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occurred 1 week later at the same time slot whenever possible. Due to schedul-
ing issues, 6 participants had different time slots for scan 1 and scan 2, but the
1-week interval was maintained.

a. Rest b. Inscapes c. Oceans

Figure 1. Scenes from three conditions. Conditions were a) eyes-open Rest, using a
static fixation cross on a dark grey background; b) Inscapes, a nonverbal, nonsocial, abstract
animation designed to maintain engagement while minimizing cognitive load; and c) a clip
from vault scene of the action movie Ocean’s Eleven. All conditions were 7 minutes long, with
10 seconds of fixation at the beginning and end. Inscapes can be viewed and downloaded at
headspacestudios.org.

Data processing. Standard data preprocessing was performed using the Con-
figurable Pipeline for Analysis of Connectomes (C-PAC) including motion re-
alignment and transformation into Montreal Neurological Institute (MNI) space
using Advanced Normalization Tools (Avants et all |2008). Nuisance signal re-
gression removed linear and quadratic trends, motion estimates, and COMP-
COR with 5 principal components (Behzadi et al. [2007), and was followed by
temporal filtering (0.008-0.1Hz). Motion was evaluated using framewise dis-
placement (FD) which quantifies head motion between each volume of func-
tional data (Power et al.,|2012). Following Finn et al., data were not spatially
smoothed prior to averaging within our cluster-based regions of interest (ROIs).
Number of volumes per condition was 172.

Whole-brain FC matrices. All subsequent analyses were based on FC con-
nectivity matrices. Matrices were constructed using a functional parcellation
scheme comprising 200 ROIs (Crad-200; Craddock et al., 2012). For each sub-
ject, we extracted the mean time series of each ROI and then computed the
Pearson’s correlation coefficient between all ROI pairs to produce a 200x200
whole-brain connectivity matrix for each subject for each condition. Subsequent
analyses used only unique ROI pairs (i.e., A-B and not B-A), leaving 19900
edges. Correlation coefficients were Fisher z-transformed, averaged across sub-
jects, and then reverted to r-values to produce group-level correlation matrices.
To qualitatively assess similarities across conditions in terms of the correlations
within and between large-scale functional networks, we arranged the ROIs on
the matrix according to network membership using the 7-network scheme (vi-
sual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal
and default networks; see Figure 2), defined by Yeo and Krienen and colleagues

(Yeo et al 0T1).
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2.2. FC variability across conditions. Following previous methods used to assess
similarity and difference in FC matrices across conditions or states (Cole et al.|
2014; Geerligs et al. [2015)), we created connectivity matrices for each condition
by averaging the connectivity matrices across participants within each condition.
These matrices are used to visualize the group-level connectivity for movies
and Rest. For statistical comparison across conditions, however, we calculated
pairwise Pearson’s correlations between connectivity matrices of the different
conditions (i.e. Rest-Inscapes, Inscapes-Oceans, Oceans-Rest) within a subject.
To better match the noise estimate (see below), we used half the volumes by
computing the Pearson’s correlation coefficient between the first half of condition
1 and the first half condition 2, as well as the second half of condition 1 and
condition 2. The average of these two correlation coefficients was squared, and
this squared value represents the proportion of variance that is similar or shared
across those conditions. It is assumed that the remaining proportion of variance
represents across-condition variance, such that:

e r = correlation between two conditions
e 12 = shared variance between those conditions, termed overlap

e (1 -1?) = total remaining variance, assumed to include both state-based
and noise-based contributions

To estimate the noise contribution to this between-state variance, we calculated
the split-half correlation within each condition. The split-half correlation ob-
tained for Rest was used to estimate noise regardless of the pair of conditions
being compared, as movies are not expected to be consistent from the first half
to the second half.

e 1 ;, = split-half correlation of Rest
e (1-1,,2%) = estimate of variance due to noise

This facilitates the subtraction of noise from the total variance, such that:
e (1-1%)-(1-r4,?%) = state-based variance

It is important to note two differences between our method and that outlined
in Geerligs et al. (2015). First, all computations were performed using pairwise
Pearson’s correlations between connectivity matrices of the different conditions
within a subject, so we expect lower cross-condition correlations overall. Second,
as explained above, the between-condition correlation coefficients are based on
only half of the volumes, again likely returning lower r-values than has been
shown previously.

Intra- and inter-subject FC correlations. Intra-subject (or within subject)
correlations of FC were computed by first calculating the Pearson’s correla-
tion coefficient of the two scanning sessions’ FC matrices for each subject. To
compute the inter-subject correlations, we performed the same procedure be-
tween one subject and every other subject within a single scanning session. The
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pairwise correlations were averaged to provide a single inter- and intra-subject
r-value for each subject.

Spatial distribution of inter-individual variability. Following an approach
outlined in Mueller et al., we wanted to map cluster-level inter-subject variability
of FC using a method that accounted for intra-subject variability (Mueller et al.,
2013). First, group-level inter-subject variance values were obtained as follows:
for each condition’s first scanning session we computed a correlation coefficient
for each ROT (across all 199 of its edges) between all possible subject pairings.
The resulting r-values were squared and subtracted from 1 to convert them to
measures of dissimilar variance. Averaging across subject pairs then yielded an
estimate of total inter-subject variance at each cluster. Next we computed the
intra-subject variance for each condition by performing the same procedure, this
time correlating between each subject’s scan 1 and scan 2 FC matrices, yielding
a 200 x 34 (clusters x subjects) matrix, which was subsequently averaged across
individuals to obtain a group-level map. Using ordinary least-squares regression,
the intra-subject variance was regressed out of the total inter-subject variance,
and the residuals were taken to represent the inter-subject variability. We did
not regress out a measure of technical noise. Residual values were mapped onto
surface space using CARET (Van Essen et al.,|2001). To assess the variability by
network, we used the 7-network schema from Yeo and Krienen et al., averaging
the variability across all clusters belonging to each network (Yeo et al., 2011)).

2.8. Accuracies of identification algorithm. The prediction procedure closely
followed methods described elsewhere (Finn et al., [2015). In brief, six databases
were created, one for each of the three conditions for both Scans 1 and 2. Each
database consisted of the Crad-200 FC matrix for each subject for a given con-
dition (34 matrices per data set). To run the matching algorithm, two databases
were selected at a time. A subject’s FC matrix was selected from one, and the
Pearson’s correlation coefficient was then calculated between that matrix and
every matrix in the other database. The two matrices with the highest corre-
lation were deemed the “matched pair,” and the accuracy of the algorithm was
simply the percentage of correct pairs when checked against the known subject
identities. We ran the algorithm across testing sessions and across conditions,
resulting in a structure of 30 pairings (e.g., Rest 2-Rest 1, Oceans 2-Rest 2,
Oceans 2-Rest 1). Because of our moderate sample size, we wanted to be sure
that accuracies did not reflect chance pairings. We thus performed nonparamet-
ric permutation testing in which false identity pairs were randomly assigned and
the algorithm was run 1000 times to determine how many times the false pair
was identified as being the most strongly correlated. To investigate the role of
head motion in the matching, we computed discrete motion distribution vectors
for each participant based on the framewise displacement time courses across
all 3 conditions and across both scanning sessions. The mean and standard
deviations of the FD across all subjects and conditions was computed, and 60
bins were set to capture the grand mean +/- 3 s.d. and vectors were calculated
accordingly. The 1x60 vectors were then used in the same way that the FC
matrices were to run the identification algorithm. This procedure tests whether
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each individual’s motion characteristics can be used to identify individuals from
within a group, and helps to assess the degree to which motion might contribute
to the FC-based matching algorithm.

Parcellation resolution. To test if the resolution of the parcellation had
differential effects on identification accuracy across conditions, we parcellated
the data at all of the 43 resolutions defined in a publicly available atlas that used
a spatially constrained spectral clustering approach of independent resting state
data (Craddock et all 2012)). The range of the number of clusters was 10-950.
We then ran the identification algorithm using each parcellation on the Scan
2-Scan 1 within-condition pairings. All subsequent analyses used the Crad-200
parcellation and only the Scan 2-Scan 1 within-condition pairings.

Scan duration. To test if shorter scan durations handicapped the matching
accuracy of one condition more than another, we ran the same matching algo-
rithm, varying the amount of data used between two volumes and the full 172
volume run, starting from the beginning of the run and adding sequential TRs
one at a time.

Number of edges. To test if one of the conditions required fewer edges in
order to make the correct identity matches, we sequentially tested the algorithm
using increasing numbers of edges. To dictate the order in which we added edges,
we calculated the differential power (DP) for each edge (Finn et al., 2015). DP
provides a measure of how contributory an edge is to successful matching. Values
indicate the proportion of the time a subject is matched to itself rather than
to another subject based on that edge. We then rank-ordered the edges from
least contributory (lowest DP) to most contributory (highest DP) within each
condition. Next, we ran the matching algorithm using only the lowest 0.5% of
edges, and successively repeated this procedure adding an additional 0.5% at
each increment until 100% of the edges were used.

3. Results

8.1 Compliance. Subjects self-reported falling asleep during 14 Rest runs, 7
Inscapes runs, and zero Oceans runs. The remaining 34 subjects had little over-
all head motion, with mean FD=0.07mm (s.d.=0.03) at scan 1, and a mean
FD=0.08mm (s5.d.=0.04) at scan 2 (see Figure 2). At the first scanning ses-
sion, mean FD was significantly lower for both movies relative to Rest, and
Inscapes was significantly lower than either comparison condition (one-way re-
peated measures ANOVA, F (3 33)=9.589, p=0.0004, post hoc two-tailed t-test,
Inscapes-Rest p=0.0001, Oceans-Rest p=0.05, Inscapes-Oceans p=0.019). At
the second scanning session, no significant differences in head motion were found
(one-way repeated measures ANOVA, F (5 33)=1.855, p=0.17).
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Figure 2. Head motion during movies and Rest (n=34, healthy adults). Head
motion was evaluated by quantifying the framewise displacement (FD) between each volume
of functional data (Power et al., 2012). Significant differences were found across all conditions
at Scan 1, with Rest > Oceans > Inscapes. At Scan 2 (one week later), no significant
differences were found in mean head movement across conditions. Overall, head motion during
all acquisition conditions across both scanning sessions was low, reflecting the high compliance
of this young, healthy adult population. Bracketed lines indicate which comparisons showed
significant differences (*=p<0.05, ***=p<0.001).

3.2 Characterizing FC variability. Within-condition split-half correlations for
FC matrices were as follows: Rest=0.64, Inscapes=0.65, Oceans=0.60 (see Fig-
ure 3). There was a significant effect of condition on split-half correlation (one-
way repeated measures ANOVA, F (3 33)=7.202, p=0.0015). Follow-up paired
t-tests showed no significant difference in the split-half correlations between In-
scapes and Rest (t(33)=0.411, p=0.68), but Oceans was significantly different
from both Inscapes (t(33y=3.581, p=0.0011) and Rest (t(33)=3.149, p=0.0035).
Cross-condition comparisons using half of the volumes showed moderate cor-
relations, with Rest-Inscapes r=0.54, Inscapes-Oceans r=0.48 and Oceans-Rest
r=0.47 (one-way repeated measures ANOVA, F 5 33y=26.08, p<0.0001, post hoc
two-tailed t-test, Inscapes-Rest vs. Inscapes-Oceans p<0.0001, Rest-Inscapes
vs. Rest-Oceans p<0.0001, and Oceans-Rest vs. Oceans-Inscapes p<0.041.
These r-values are lower than those reported by Geerligs et al. for similar com-
parisons, possibly because we maintained within-subject pairings and used only
half of the volumes when calculating the cross-condition correlations. Rest and
Inscapes had the highest overlap at 29% and the lowest state-based difference
(after subtracting out a noise estimate) of 12.9%.

Intra- and inter-subject FC correlations. Intra-subject correlations for FC
were uniformly stronger than inter-subject correlations (see Figure 4). For intra-
subject correlations, movies were stronger than Rest, but were not different from
each other (one-way repeated measures ANOVA, F (5 33)=4.29, p=0.019, post
hoc two-tailed t-tests, Inscapes-Rest p=0.01, Oceans-Rest p=0.017, Oceans-
Inscapes p=0.82). For inter-subject correlations, movies were again stronger
than Rest, and were again not significantly different from each other (one-way re-
peated measures ANOVA, F (5 33) =30.34, p<0.0001, post hoc two-tailed t-tests,
Inscapes-Rest p<0.0001, Oceans-Rest p<0.0001, Oceans-Inscapes p=0.17).
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Spatial distribution of FC variability. Inter-subject FC variability (by clus-
ter) demonstrated a nonuniform spatial distribution with higher variability in
the lateral prefrontal lobes, temporoparietal junctions, and along regions of the
lateral temporal lobes (see Figure 5). Lower variability was found in primary
sensory and motor cortices. This pattern is similar to previous reports
and was similar across both movies and Rest. Inscapes had higher
variability in temporal regions, while Oceans had higher variability in prefrontal
regions. When calculated for each of 7 networks, FC variability was highest in
the frontoparietal network and lowest in the visual and somatomotor networks
across conditions. Within the frontoparietal network, variability was highest for
Oceans.

Rest Inscapes
split half r = 0.64 split half r = 0.65

Visual
sua r=0.54

overlap = 29%
04 state difference = 13%

Somatomotor
Dorsal Attention
Ventral Attention

Default f§

Oceans

split half r = 0.60

r=0.47 ,
overlap = 22%

state difference = 20%

r=0.48
08 overlap = 23%
state difference = 18%

Figure 3. Group-level similarity and variance in FC matrices across movies and
Rest (n=34, healthy adults). Pearson’s correlation coefficients were calculated between
each pair of conditions to produce the r-value denoted in the matrices. Rest and Inscapes are
the most strongly correlated conditions with the highest amount of overlap and the lowest
state difference. Rest and Inscapes also have the highest split-half correlations. These data
align with our previous report suggesting Inscapes is associated with FC patterns that more
closely resemble Rest than those of conventional movies (Vanderwal et al., |2015).
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Figure 4. Intra- and inter-subject FC correlations. Intra-subject correlations of whole-
brain, cluster-based FC were greater than inter-subject correlations for all conditions. Both
movies had significantly greater intra-subject correlations relative to Rest, with no significant
difference between movies. The same pattern was found for inter-subject correlations, with
movies greater than Rest (*=p<0.05, ****=p<0.0001).
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Figure 5. Spatial distribution of inter-individual variability in FC. Inter-individual
variability was quantified for FC of each cluster after least-squares regression to correct for
underlying intra-subject variability. Consistent with previous work (Mueller et al., 2013),
FC variability is lowest in primary sensory and motor regions, and highest in heteromodal
regions such as lateral prefrontal cortices and the temporoparietal junctions. Qualitatively,
this pattern of spatial distribution occurs across all three scanning conditions. Variability by
network was highest in the frontoparietal network and lowest in visual and somatomotor net-
works. V=visual, SM=somatomotor, DA=dorsal attention, VA=ventral attention, L=limbic,
FP=frontoparietal, D=default, masks for networks based on Yeo and Krienen et al., 2011.
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8.8 Accuracies of identification algorithm. We first tested prediction accuracy
using the Crad-200 parcellation, and found high accuracies across and within
conditions with a range of 62-100% (see Figure 6). Oceans attained 100% accu-
racy, and in general, the highest accuracies were associated with pairings that
included movies. Importantly, high accuracies were attained for cross-condition
pairings, indicating that individually distinct patterns in FC persisted across
conditions. The permutation testing (performed 1000 times to quantify the
percentage of time the algorithm matched a randomly assigned “false identity”
pairing) had an average accuracy of 0.36% (with maximal accuracy of 5.9%)
for Scan 2 to Scan 1 pairings, and 0.51% (with maximal accuracy of 8.8%) for
Scan 1 to Scan 2 pairings. When using motion distribution to match subjects,
accuracies ranged from 9-24%. Results for permutation testing and motion
distribution are shown in Supplementary Materials.

Accuracies of identification algorithm
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Figure 6. Accuracies of unsupervised test-retest matching algorithm based on
FC matrices (n=34, healthy adults). Individual subjects were correctly identified by the
unsupervised algorithm across all conditions, with accuracies ranging from 62-100%. Overall,
the highest accuracies were associated with pairings that involved movies. High accuracies
were attained in cross-condition matches, indicating that individual subjects have distinct FC
patterns that persist across conditions.
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Parcellation resolution. When tested at different parcellation resolutions, the
within-condition Scan 2-Scan 1 identification accuracies improved with higher
resolutions, as expected (Figure 7a). Varying the resolution had differential
effects by condition: Oceans attained 100% accuracy at 120 clusters, Inscapes
at 500 clusters, and Rest hit a ceiling accuracy of 97% at 650 clusters.

Scan duration. Also as expected, longer scan durations positively affected
the accuracy of the algorithm. Oceans reached 100% accuracy at 127 volumes,
Inscapes reached maximal accuracy of 97% at 116 volumes, and Rest reached a
ceiling accuracy of 91% at 165 volumes (Figure 7b).

Number of edges used. Again, including higher numbers of edges produced
higher prediction accuracies across all conditions, as was expected. Oceans and
Inscapes demonstrated almost overlapping graphs up until 75% of the edges were
included, at which point Oceans had higher accuracies than Inscapes. Overall,
movies outperformed Rest at all numbers of edges included (Figure 7c).

A. Parcellation resolution B. Scan duration C. Number of edges
~ 100{ = 100 100 — Rest
&
g | — Inscapes
0 |
g 50 ! 50 50 — Oceans
53 I
< |
|
0+ : - ot - .
0 200 400 600 800 1000 0 50 100 150 200 0 50 100
No. of clusters No. of volumes % of edges used

Figure 7. The effect of varying data parameters on accuracy of unsupervised
matching algorithm (n=34). A. Parcellation resolution: Using the within-condition
matching algorithm (Scan 2-Scan 1) on data parcellated at different resolutions, accuracies
increased with higher resolutions. Oceans attained 100% accuracy at 120 clusters, Inscapes at
500 clusters, and Rest hit a ceiling accuracy of 97% at 650 clusters. Dashed line highlights the
Crad-200 matrix, which was used for all subsequent analyses. B. Scan duration: Including
more volumes led to an increase in accuracies for all conditions. Oceans reached 100% accuracy
at 127 volumes; Inscapes reached 97% at 116 volumes; and Rest hit its ceiling of 91% at 165
volumes. C. Number of edges used. After rank-ordering edges according to differential
power (DP), we sequentially added edges that were increasingly contributory to successful
matching. The more edges used, the higher the accuracy across conditions. Both movies had
similar accuracies until about 75% of the edges were used, at which point Oceans diverged
from Inscapes. Overall, varying each of these parameters did not alter the general pattern of
movies outperforming Rest with regards to the matching of individual subjects.
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4. Discussion

4.1 Accuracies of identification algorithm for movies and rest. This study in-
vestigated the effects of movie watching on individual differences in FC. We
showed that an unsupervised test-retest matching algorithm that identifies sub-
jects from within a group based on FC performed well using data acquired
during both movies and Rest, and that the highest accuracies were attained
using movies.

Overall accuracies of the matching algorithm ranged from 62-100%. These
results are in-line with data from Finn et al. who reported accuracies of 54-94%
in a larger sample using rest and task (Finn et al.,2015). The highest accuracy
in our data (100%) was attained when matching FC matrices between scan
sessions of Oceans, with Inscapes reaching 97%, and Rest 91%. The pattern
of these accuracy relationships (Oceans > Inscapes > Rest) held true across
parcellation resolutions, scan durations, and number of edges used. We conclude
that relative to task-free resting state conditions, movie watching preserves—
and possibly enhances—the ability to detect differences in FC patterns that are
distinct at the individual level.

4.2 Variability in FC of different acquisition conditions. The matching algo-
rithm used is based on correlations of FC matrices between separate scanning
sessions. Consequently, we would expect intra-subject correlations to play a
substantial role in the success of the algorithm. When examining cluster-wise,
whole-brain FC, our data showed that movies had significantly stronger intra-
and inter-subject correlations relative to Rest. Additionally, intra-subject cor-
relations were stronger than inter-subject correlations for all conditions, in ac-
cordance with the success of the matching algorithm across conditions.

Further, previous work has shown that FC edges which contributed most
to successful identification matches were found in the frontoparietal network
(Finn et all |2015)). In our data, variability within the frontoparietal network
was greatest for Oceans, perhaps contributing to the observed 100% accuracy
attained for the Oceans-Oceans pairings. In general, the spatial distribution of
inter-subject variability in FC during Rest and movies followed the same pattern
as had been previously reported during Rest: the lowest variability occurred
in primary motor and sensory cortices with higher variability in heteromodal
cortex involving the prefrontal and temporal cortices (Mueller et al., |2013;|Chen
et al} [2015). These data suggest that the spatial distribution of inter-individual
variability observed during Rest is not drastically shifted by movie watching,
and more specifically, that variability in the frontoparietal network is high across
conditions.

4.8 Individually distinct FC' and naturalistic paradigms. To date, the majority
of studies utilizing naturalistic paradigms have focused on the concerted nature
of BOLD-signal changes evoked by movie watching that have been shown to
involve large areas of the cortex (Hasson et al. {2004} 2010; |Kauppi et al., [2010).
Intuitively, one might assume that because of this shared activation across sub-
jects, patterns of FC would be less distinctive at the individual level. Our
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data indicate that this is not the case as the highest accuracies of the match-
ing algorithm were attained using movie-watching data. In addition to the high
intra-subject FC correlations discussed above, another possible contributing fac-
tor to this pattern is that concerted activity across subjects in multiple voxels
enables individually distinct patterns of FC to “stand out” more. In other
words, we hypothesize that movie watching may not itself evoke individual dif-
ferences in functional neural responses, but that the whole-brain processing at
the group-level that occurs during naturalistic paradigms enhances the detection
of individually distinct FC patterns. This seems plausible given the fact that
cross-condition pairings in our data also attained high accuracies, indicating
that the same individually distinct patterns are maintained across conditions.
Relatedly, Papageorgiou et al. suggested that complex stimuli might elicit
useful shifts in whole-brain signal-to-noise ratios when they used a highly engag-
ing task in which subjects received real-time feedback to their neural responses
during a silent counting task (Papageorgiou et al., |2013|). They posited that
frontoparietal regions and the insula regulated global processes during engaging
conditions, conferring an improvement in signal-to-noise ratios. When taken to-
gether with data indicating that individual variability is highest in frontoparietal
networks (Mueller et al., 2013), and that matching algorithms rely heavily on
edges contained in the frontoparietal network (Finn et al.,2015), we suggest that
during naturalistic conditions, the frontoparietal network may play a dual role
in the identification of individually distinct FC patterns. First, frontoparietal
FC itself may comprise individually distinct differences, and second, frontopari-
etal control may cause an advantageous shift in broader processes enhancing the
detection of individually distinct FC patterns. Whatever the mechanism, stud-
ies to date, including the data presented here, indicate that the frontoparietal
network plays a key role in the detection of individual differences in FC.

4.4 Compliance. The major compliance advantage of using movies in healthy
adult populations relates to arousal levels. In this study, subjects self-reported
falling asleep during 14 Rest runs, 7 Inscapes runs, and zero runs of Oceans. In
line with our previous report, head movement at the first scan was significantly
better during both movies relative to rest. A new finding reported here is that
Inscapes showed significantly lower head movement than Oceans. However, no
differences in head movement were found at the second session. We speculate
that habituation and loss of novelty may have contributed to this null finding.

Because head motion has previously been shown to be more trait-like than
state-like (Siegel et al., [2016; [Couvy-Duchesne et al., 2014]), we were concerned
that head motion might contribute to the accuracy of the matching algorithm.
When using motion distribution as the basis for an identity algorithm (i.e., with
no FC measures), accuracies ranged from 6-24%, which is higher than chance
but much lower than the accuracies attained using FC measures (62-100%). We
conclude that motion likely contributes to the matching of FC matrices, but
that it does not account for the primary finding that naturalistic conditions
enable the detection of FC differences at the individual level.
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4.5 Limitations and future directions. The study design did not include a rich
phenotypic assessment, and consequently, we were not able to test for corre-
lations between FC variability during movie watching and clinically relevant
behaviors or traits. Because movies appear to enhance the ability to detect in-
dividual differences in FC, some brain-behavior relationships may be identified
using naturalistic paradigms that are not detectable using conventional tasks.
For example, a pediatric study was able to identify math-based brain-behavior
relationships using fMRI data collected during Sesame Street clips that were
not detected using a well-validated conventional fMRI math task (Cantlon and
Li |2013). Given the absence of cross-condition differences in head motion at
the second scanning session, further work examining head movement patterns
would be helpful to better understand the utility of movies with regard to com-
pliance for repeated measures. Other groups have begun to look at individual
differences in temporal dynamics of FC during task reorganization (Chai et al.|
2016; [Simony et al., [2016]), and it would be interesting to investigate these rela-
tionships under the ongoing dynamic stimulation provided by naturalistic con-
ditions. Finally, future studies that incorporate multi-modal or group-weighted
parcellation schema (Glasser et all 2016; [Mejia et al., [2016) or explorations
of FC in non-anatomical space (Conroy et al.| [2013) might be combined with
the use of naturalistic viewing paradigms to further enhance the sensitivity of
fcMRI to identify individually distinct patterns of FC.

4.6. Conclusions.

1. Movies preserve, and possibly enhance, the ability to detect patterns in FC
that are distinct at the individual level.

2. Movies had stronger intra- and inter-subject correlations in FC relative to
Rest, and inter-individual variability in the frontoparietal network was highest
during Oceans. These factors may facilitate the observed 100% matching accu-
racy attained using Oceans.

3. Compliance benefits of using movies with healthy adults center around
arousal levels, with half as many subjects self-reporting sleep during Inscapes
relative to Rest, and no subjects self-reporting sleep during Oceans. Significant
head motion advantages for healthy adults occurred, but only at the first expo-
sure to the stimuli.

4. Movies may be advantageous for future efforts to identify brain-behavior
correlations in pediatric and psychiatric populations.
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Number of
times correct |[Scan1-> |Scan 2 ->
(out of 1000) |Scan 2 Scan 1

0 857 866
1 137 127
2 5 6
3 1 1

Supplemantary Table 1. Permutation testing of unsupervised identification al-
gorithm with falsely assigned identity pairs. The algorithm was run 1000 times using
false pairings. The mean accuracy attained for Scan 2-Scan 1 pairings was 0.36%, with a
highest accuracy of 5.9%. For Scan 1-Scan 2 pairings, the mean accuracy was 0.51%, with a
highest accuracy of 8.8%. The table shows the number of times the algorithm identified the
false pairing as being the most correlated pairing. These data indicate that correct pairings
are identified by the algorithm at rates that far exceed chance (62-100%), lending validity to
the high percentages attained when correctly identifying subjects.

Rest 1
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&

Supplemantary Figure 1. Accuracies of matching algorithm based on motion
distribution. Accuracies attained using only motion parameters ranged from 6-24%. These
numbers are greater than chance, and likely reflect the fact that motion distribution is a
trait that is somewhat identifiable across individuals. However, these accuracies are much
lower than those attained using FC matrices (62-100%). Motion likely contributes to the FC
matching, but it does not appear to account for the main effect.
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