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Loci discovered by genome-wide association studies (GWAS) predominantly map outside protein-coding
genes. The interpretation of functional consequences of non-coding variants can be greatly enhanced by
catalogs of regulatory genomic regions in cell lines and primary tissues. However, robust and readily
applicable methods are still lacking to systematically evaluate the contribution of these regions to genetic
variation implicated in diseases or quantitative traits. Here we propose a novel approach that leverages
GWAS findings with regulatory or functional annotations to classify features relevant to a phenotype of
interest. Within our framework, we account for major sources of confounding that current methods do not
offer. We further assess enrichment statistics for 27 GWAS traits within regulatory regions from the ENCODE
and Roadmap projects. We characterise unique enrichment patterns for traits and annotations, driving
novel biological insights. The method is implemented in standalone software and R package to facilitate its
application by the research community.

Introduction

Genome-wide association studies (GWAS) have discovered susceptibility variants for complex diseases and
biomedical quantitative traits, with over 16 000 genotype-phenotype associations found to date v
representing a large investment in resources, time and organisation to understanding human disease and
other phenotypes. Despite the statistical soundness of the discovered associations, a large proportion (~90%)
of implicated variants are classified as intronic or intergenic * and thus do not have a straightforward link to a

cellular or molecular mechanism. This has prompted a number of efforts to annotate their putative functional
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consequences in cell specific contexts from experimentally derived regulatory genomic regions (e.g. regions
marked by histone modifications, of open chromatin and transcription factor binding 3_6), principally as a
means to inform and accelerate functional validation efforts.

The robust identification of which combinations of cells and marks are most informative for a given disease or
guantitative trait of interest (henceforth referred generically to as 'phenotype') requires that one can
confidently identify biologically meaningful correlations. Genomic marks may cover a large proportion of the
genome, and thus many disease-associated variants will be found within these marks by chance. In addition,
the heterogeneous distribution of genetic variants and functional regions along the human genome, and thus
non-random association with genomic features 7’8, can create spurious correlations that again confound
correct interpretation.

Functional enrichment methods exploit experimentally derived regulatory genomic regions to assess the
relative contribution of variation in each cell type and regulatory annotation to a given phenotype of interest.
In their simpler implementation, they estimate enrichment of association p-values based on comparisons of
the full set of genetic variants analysed in the GWAS study > or on subsets of highly associated variants, for

1271 These approaches have identified many biologically

instance variants achieving genome-wide significance
plausible patterns of correlation (for instance in open chromatin marks for lipid traits in liver cell types and
Crohn’s disease in immune cells) and are broadly used for ranking the relative contribution of features.
However, there is currently little confidence in interpreting unexpected enrichment, because of concerns with
the statistical methodology, for three main reasons. Firstly, overly simplistic genetic models that do not
account for known confounders such as local linkage disequilibrium (LD), local gene density and minor allele
frequency, can lead to spurious enrichment patterns 2 Second, reliance on restrictive parametric statistics
(rather than permutations) makes these approaches less robust to the well-established underlying
heterogeneity of genomic feature distribution. Finally, tests based on subsets of variants (for instance those
reaching genome-wide significance) typically probe a limited number of genomic features, while it has been
shown that evidence of enrichment occurs well below genome-wide significance 10, Methodological
improvements are thus needed to improve the accuracy of inference, and to realise the full potential of those
costly experiments in focused experimentation.

Here we present a novel nonparametric approach that leverages GWAS findings with regulatory or functional
annotations to find features relevant to a phenotype of interest. To our knowledge, this is the only method
that accounts for LD, minor allele frequency, matched genotyping variants and local gene density with the
application of permutations to derive statistical significance. We name our method GARFIELD, which stands for
GWAS Analysis of Regulatory or Functional Information Enrichment with LD correction. We used GARFIELD to
analyse the enrichment patterns of publicly available GWAS summary statistics using regulatory maps from the
ENCODE ® and Roadmap Epigenomics > projects. Finally, we developed new software to facilitate the
application of our approach by the research community, and tools for effective visualisation of enrichment
results that scale to thousands of potential functional elements. In our own use we have discovered expected
and novel enrichments that illustrate the molecular and cellular basis of well studied traits, and we expect this
method to help drive novel biological insights and enhance efforts to robustly prioritise variants for follow-up
studies across existing and future association studies.

Results
Overview of the method

The analysis workflow implemented in GARFIELD is summarised in Figure 1 and Online Methods. The method
requires four inputs: (i) a set of genome-wide summary statistics, corresponding to single-variant p-values for
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the association of genetic variants with a given disease or trait of interest; (ii) genome-wide genomic
coordinates for a regulatory feature of interest; (iii) a list of LD tags for each variant (measured by the r
statistic with values of 0.1 and 0.8 within 1MB windows) from a reference population of interest (e.g.
Caucasian) and (iv) minor allele frequency (MAF) and distance to the nearest transcription start site (TSS)
measurements. Given these inputs, the method performs the following steps: (i) it greedily reduces the
genome-wide genetic variants to an independent set using LD and distance information (‘LD pruning step’) by
sequentially removing variants with r’>0.1 and within 1Mb window from the most significantly trait-associated
variant; (ii) it annotates each variant with a regulatory feature if either the variant, or a correlated variant
(r2>0.8), overlaps the feature (‘LD tagging annotation step’); (iii) and finally it calculates fold enrichment (FE) at
different GWAS p-value thresholds (denoted as ‘T’) and tests their significance by comparing the observed
enrichment to the one based on a large number of permutations for each annotation while performing
‘feature matching’ (Online Methods) on variants by MAF, distance to the nearest TSS and number of LD proxies
(r">0.8). To correct for multiple testing on the number of different annotations, it further estimates the
effective number of independent annotations by using the eigenvalues of the correlation matrix of the binary
annotation overlap matrix from Figure 1 (adapted from Galwey et.al. %) (Online Methods; Supplementary
Figure S1) and then applies a Bonferroni correction at the 95% significance level. This takes into account the
tissue selective components of regulatory data, namely that closely related cell types and tissues are more
similar to each other than different ones.

Our approach can be viewed as similar to Maurano et.al. ° (see also Supplementary Table S1) with two critical
improvements. First, we account for the effect of local correlation between variants by restricting FE
calculations to sets of independent variants (LD pruning step). Second, we employ an adaptive permutation
procedure that creates and utilizes null variant sets that account for systematic differences in MAF, gene
distance and number of proxies in the test variant set. Figure 2A illustrates the FE and significance results
under GARFIELD and two simpler approaches (NM = naive model with no LD or genomic feature correction
(corresponding to the Maurano model); LDM = LD-pruned model with no LD tagging annotation or feature
correction) for the Crohn’s disease phenotype (at T<10®) in DNasel hypersensitive sites (ENCODE, Roadmap
Epigenomics) for annotations that showed significant enrichment in at least two of the methods. Results
revealed a significant decrease in FE estimates from NM to LDM and GARFIELD models, a result of potentially
multiple genetic variants tagging a single underlying trait association.

To assess these models further, we simulated genome-wide association summary statistics for 10 quantitative
phenotypes with additive association to 5-100 randomly selected genetic variants (0.3<beta<1, MAF >5%)
(Methods). For each of them, we estimated FE metrics under the NM and GARFIELD models against 1000 peak
region annotations, simulated to match observed peak lengths and between peak distances for DNasel
hypersensitive sites in HepG2 cells (ENCODE). False positive rate (FPR) estimates were then obtained by
calculating the observed proportion of significantly enriched annotations per phenotype. As a result, we found
a significant increase in FPR when LD is not explicitly modelled (from an average of 0.02 for GARFIELD to 0.3 for
NM at the 5% significance level, Wilcoxon two-sample paired test p-value= 9x10”) (Figure 2B).

Additionally, to assess the value of feature matching in significance testing, we employed GARFIELD with and
without MAF, TSS distance and number of LD proxy correction to 424 open chromatin annotations in 27
phenotypes. As expected, we found that feature matching further controls for biases in enrichment analysis by
significantly reducing the number of observed significant enrichments (Wilcoxon signed rank test proportion
median -0.50, p-value = 1x10'4) (Figure 2C). We further explored the relative contribution of each feature in
turn by comparing GARFIELD'’s results when correcting for it against those with no feature correction and
found median proportion reduction estimates of significant enrichments of -0.37 (p-value =1x10), -0.11 (p-
value =7x10"") and 0.02 (p-value = 2.3x10°) for the number of LD proxies, TSS distance and MAF, respectively
(Supplementary Figure S7). These tests highlight the number of LD proxies as the most important single
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confounder, however not sufficient to correct for individually when compared to using all three features
together.

Finally, we estimated the uncertainty in the observed enrichment P-values by running GARFIELD 1000 times
with each of 10°, 10*, 10° and 10° permutations for the Crohn’s disease phenotype in 424 open chromatin
annotations. As expected the larger the number of permutations, the tighter the confidence intervals around
estimates, which however comes at a higher computational cost (Figure 2D). In practice we use 10°
permutations for the open chromatin data and 10° for the genomic segmentations which results in accurate
estimation of enrichment P-values up to ~1x10™* after multiple testing correction. Additionally, we implement
an adaptive permutation procedure which terminates the iterations if significant enrichment of a given feature
can no longer be achieved (after minimum of 100 iterations). This provides a substantial reduction in method
runtime (from an average of 20.6 min to 1.8 min per traits for the open chromatin data at the 10° GWAS
threshold) (Supplementary Figures S6).

Enrichment in open chromatin regions from 424 cell types

To assess the relative enrichment of phenotype-genotype associations in different cell types, we first applied
GARFIELD to a generic open chromatin mark, DNase | hypersensitive sites, commonly used as a marker of
regulatory DNA, in 424 cell lines and primary cell types from ENCODE * and Roadmap Epigenomics >
(Supplementary Table S2). We considered 3 disease and 24 quantitative traits with publicly available GWAS
summary statistics. For each trait and annotation pair we derived FE statistics at eight GWAS P-value
thresholds (T<10'1 to T<10'8). At the most stringent cut-off (T<10'8), there were a median of 19 independent
SNPs tested genome-wide per trait (range 0-331, Table 1 and Supplementary Table S3), while selecting SNPs
using a more permissive threshold (T<10”) increased the number of SNPs tested to a median of 77 variants per
trait (range 11-707).

We further tested the significance of observed FE statistics at the four most stringent thresholds (T<10” to
T<10®). We found statistically significant enrichments (defined by an empirical p<2.6x10'4, see Online
methods) for the majority of traits considered, highlighting clear differences in enrichment patterns between
traits (Supplementary Table S4). As also clearly visible from enrichment wheel plots, some traits displayed
relatively ubiquitous enrichment (e.g. height in Figure 3b), as compared to traits with relatively narrow
enrichment (e.g. Crohn’s disease, Figure 3a, see also Supplementary Figures S3-S5). Blood cells were overall
the most enriched tissue type in all haematological traits and autoimmune diseases, but provided little to no
enrichment for glycemic, blood pressure and anthropometric traits, with the exception of height which was
enriched in nearly all tissues. As predicted, incorporating sub-threshold associations (T less than 5x10°%)
increased the number of variants added to the analysis, which in turn greatly increased the resolution of
enrichment patterns across different traits (Table 1). For instance, at T<10°® there were no annotations
enriched for WHR (waist-to-hip ratio), while at the more permissive threshold T<10” there were 54 significant
enrichments, mostly corresponding to muscle or fetal muscle tissue. For Ulcerative Colitis (UC), there were
three annotations enriched at 10°, but a much larger number (98) at 10°, including several blood cell types
and interestingly also foetal intestinal tissue.

These enrichments reflect current understanding of key cellular types for disease, augmented with novel
observations. In the former category were enrichments of lipid traits in blood, liver, fetal intestine and fetal
thymus cell types; of haematological traits in blood and blood vessel tissues, and of autoimmune diseases (UC
and CD) in blood and fetal intestine >**°. An interesting example of an observation not previously described is
the enrichment of Caco-2 (a well established gut epithelia cellular model) elements for LDL (Low Density
Lipoprotein) and TC (Total Cholesterol), surpassing that for the expected key enrichment in HepG2 (a well
established hepatocyte cellular model) (FE=3.4 in Caco-2 and FE=2.2 in HepG2 for LDL for T<10®). Underlying,
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52% of Caco-2 DNasel peaks are shared with HepG2 (>=1bp overlap) and 36% of UK10K sequence variants
overlapping Caco-2 also overlap HepG2 (Supplementary Figure S9) (average of 12 LD tags per variant).
Furthermore 68% of Caco-2 annotated independent LDL associated variants were also shared with HepG2
(average of 11 LD tags per variant) and this proportion increased further when looking at the T<10°® threshold
to 74%, representing a much larger extent of sharing than expected from the DNasel or genotype data alone.
Unsurprisingly, we found the genes close to shared Caco-2/HepG2 LDL associated variants to be associated
with lipid functions, as expected from the known cholesterol pathways in liver (GREAT GO enrichment analysis
8 Supplementary Table S5). Interestingly however, when performing GO enrichment analysis on the subset of
LDL associations overlapping Caco-2 DNasel peaks, but not HepG2 ones, we found enrichment in T cell
receptor function (Supplementary Table S5), which was not observed for shared or HepG2 specific variants and
those not overlapping either HepG2 or Caco-2 DNasel peaks. Together with the overall stronger enrichment of
LDL variants in Caco-2 than HepG2, this suggests that there might be a different aspect of cholesterol
management mediated by gut epithelia, potentially with the involvement of the immune system.

Enrichment in genomic segmentations of 127 epigenomes

We additionally sought to compare the relative enrichment of different types of functional genomic marks,
using data on genomic segmentations for 127 cell types (Supplementary Table S6), where twelve (imputed)
marks were used to obtain a 25-state model (Supplementary Table S7) using ChromHMM. For each
segmentation state and cell type we analysed the same 27 phenotypes investigated before at 4 GWAS p-value
thresholds (T<10” to T<10®). Overall, when considering only significantly enriched trait-annotation pairs
(defined by an empirical p<3.7x10'5), we found higher levels of FE for promoters (median 8.7, range [5.9-13.8]
for T<10'5) and enhancers (median 7.4, range [4.3-12.5]) as opposed to transcribed regions (median 4.0, range
[2.8-7.1]) (Figure 4C) (similar patterns were obtained for T<10'8, Supplementary Figure S13).

The majority of these were found to come from transcription (30-32%) and transcription enhancer states (21-
25%) followed by weak transcription (12%) and downstream or upstream promoters regions (13-15%). This
could be a result of larger power to detect significant enrichment for transcription states due to their larger
region size. In terms of cell type specificity, similarly to the open chromatin data, we see the trait height as the
most ubiquitously enriched phenotype. In general, we find the largest FEs for anthropometric traits in active
enhancers in adipose tissue; glycemic traits in poised promoters in pancreatic islets and stomach mucosa and
weak transcription in blood, thymus and pancreatic islets; lipid traits in transcription regulation in tissues
including liver, lung and muscle; autoimmune diseases and platelet traits in active enhancers in tissue including
blood thymus and spleen. As expected, incorporating sub-threshold associations again greatly increases the
resolution of enrichment patterns across different traits (Table 1). For example, we find no significant
enrichment at T<10°® for Type 2 diabetes (T2D), fasting glucose (FG), fasting proinsulin (FPI) and packed cell
volume (PCV), whereas at T<10” T2D is enriched in weak transcription and weak enhancer state in primary T
helper cells, primary B cells, pancreatic islets and thymus, FG in poised promoters in pancreatic islets, stomach
and rectal mucosa, PCV predominantly in transcription regulation in blood and es cells.

We further assessed the extent to which traits identifying closely related functions (e.g. anthropometric,
hematological, glycemic, lipid, blood pressure and autoimmune disease; for short denoted as related or similar
traits; Table 1), shared significantly enriched annotations as opposed to non-related traits (Supplementary
Figures S9-S11 and Supplementary Table S8). To do this we counted the number of cell types per segmentation
state that were found to be significantly enriched (and have FE greater than 2) for (i) only a single trait, (ii) at
least two closely related traits (and no non-related ones), (iii) at least two non-related traits (Figure 4D). As a
result we found higher cell type specificity for promoter and enhancer states (average percentage of enriched
cell types unique to a single trait of 34% for promoters and 65% for enhancers), and larger sharing for
transcribed regions (average of 9% being trait specific). Similarly, the percentage of cell types shared between
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similar traits from those shared between any type of traits was largest for enhancers, followed by promoters
and smallest for transcribed states (average of 18% for enhancers, 3% for promoters, 0.4% for transcribed
regions). This higher sharing for transcribed regions could reflect underlying biological processes, but may also
be due to the larger expected power for enrichment detection in broader annotations. Finally, we observed a
lot less sharing between related traits than that including non-related traits with the exception of active
enhancers (EnhAl with 47% of sharing occurring between similar traits), which we suspect to be due to the
smaller sizes of classes of related traits when compared to the total number of trait classes.

Software implementation

Functional enrichments analyses have been part of many GWA studies, which have been often performed with
customized, in-house pipelines. In order to facilitate the application of our approach by the research
community, we implemented GARFIELD as a standalone tool in C++ (Online Methods). The software allows for
enrichment analysis of any user-provided trait with the following required input information: variant GWAS p-
values and genomic coordinated in build37. We further provide over 1000 GENCODE ® ENCODE * and
Roadmap Epigenomics > pre-compiled annotations, UK10K sequence LD data and MAF and TSS distance
informations for a ready to use package. Furthermore, custom user annotation data can also easily be
accommodated when provided in a simple bed format. The tool consists of two main parts: (i) pruning and
annotation of the GWAS study of interest and (ii) calculating fold enrichment and testing its significance.
Memory and CPU usage information for both is given in Supplementary Table S9 and Supplementary Figure S6.
As well as this standalone software we have also developed a Bioconductor package for the R statistical
framework to further ease usability.

Discussion

Large-scale efforts, such as those for ENCODE and Roadmap Epigenomics projects, have been devoted to
systematically mapping molecular traits associated with regulatory genomic regions. They have greatly
enhanced the annotation of putative functional consequences of non-coding variants in cell specific contexts,
and have further shown to provide links to disease association. However, current methods that aim to
evaluate the contribution of such regions to genetic variation in disease cannot always do so robustly or are
not readily applicable for systematic analysis and comparison of broad sets of features. In particular, it has
been shown that LD, gene density and MAF can confound enrichment analysis results 2 Here we further
estimated the relative effect of each of those features and identified LD as the largest confounder.
Additionally, by design, different genotyping platforms can create different biases (e.g. number of variants,
allele frequency distribution, genomic location distribution). GARFIELD accounts for all those features and to
the best of our knowledge there is no other method that can do so without making extremely restrictive
assumptions (e.g. Pickrell et.al. ! assume at most one causal variant at a given genomic region). Furthermore,
the majority of available approaches typically use variants that reach genome-wide significance from
association analysis (T<5x10®) although there has been evidence of enrichment occurring well below that level
1% 1o capture these effects, GARFIELD allows for parallel enrichment analyses at multiple p-value sub-
thresholds, which improves power to define statistically significant enrichment patterns by increasing the
number of variants tested, thus enabling its application to traits with underpowered GWAS studies. Finally, we
provide a flexible software platform with effective visualisation to enable researchers to carry out
simultaneous enrichment analysis for thousands of annotations at multiple association thresholds.

In our own application of GARFIELD on existing GWAS and functional datasets we identified a broad set of
largely expected or previously identified enrichments, for example lipids traits in open chromatin in liver,
haematological traits in blood and anthropometric traits in active enhancers in adipose tissue. We further
discovered a much larger enrichment of LDL cholesterol in open chromatin regions in colon cells (Caco-2) than
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in liver (HepG2), an interesting example, potentially related to lipid uptake by the gut epithelia. A number of
GWAS hits do not show significant enrichments even with established cell types when using higher thresholds,
but GARFIELD’s progressive, stratified approach uncovers these more nuanced enrichments, shown in the case
of pancreatic islets with T2D. By analysing large-scale genome segmentation data, we assessed the relative
contribution of each segmentation state to the phenotypic traits. We discovered a larger number of
enrichments coming from transcription states as opposed to promoter and enhancer states together with a
larger number of shared cell types between traits. These findings may be biologically relevant but they could
also be a result of statistically larger power for enrichment detection for broader region annotations. On the
other hand, we observed (~2 fold) larger FE values for significant enrichments in promoter and enhancer
regions when compared to those for transcribed region, highlighting them as much more relevant for trait
associated variants.

Robust, usable and modular methods are critical in the modern large-scale analysis arena, where we expect
many discoveries to come from principled combinations of heterogeneous datasets. We have already
deployed the GARFIELD method in a number of association study settings both in house and more broadly in
the community. Our aim in developing GARFIELD has been to provide the most robust statistical framework for
analysing functional enrichments coupled with practical ease of use and visualisation, and we hope the
community will continue to exploit this tool to provide more insights into disease mechanisms.
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Figure and Table Legends

Figure 1. GARFIELD method flow. The ‘Data’ panel shows the input annotation, p-value and LD data and the
first step of LD pruning. The ‘Statistic’ panel presents (i) the binary annotation overlap matrix for all pruned
variants and all annotations (with overlap denoting physical overlap or LD r2>0.8 based one); (ii) The fold
enrichment statistic at a GWAS significance P-value threshold T, where N denotes the total number of
independent variants, Nt — the subset of them with P-value less than T, N” - the number of variants in the
annotation of interest, and NTA— the number of them with P-value less than T. The ‘Null distribution’ panel
describes the permutation procedure for producing a null distribution for our test statistic. Namely, it involves
a large number (e.g. 100 000) of permutations of the p-values of the variants in our independence set, by
feature matching to MAF, TSS distance and number of LD proxies. Finally, panel ‘Test’ shows the empirical
enrichment p-value calculation.

Figure 2. Method assessment. (A) FE and significance of enrichment for an example trait, Crohn’s Disease (CD)
for DNasel hypersensitive sites in 424 cell types, from ENCODE and Roadmap Epigenomics, for annotations
with significant enrichment in at least two methods out of NM, LDM and GARFIELD. Between method p-values
were obtained using a paired Wilcoxon two-sample test. (B) Estimated false positive rate (FPR) for 10
simulated datasets containing different numbers of causal variants (y-axis) and 1000 simulated annotations.
Black vertical line denotes the 5% FPR threshold. (C) Comparison between the proportion of significant
annotations found from models accounting for MAF (M), number of proxies (N) and distance to nearest TSS (T)
respectively, to a model not accounting for any feature, for each of 27 publicly available GWA studies and 424
DNasel hypersensitive site annotations. (D) Estimates of 95% confidence intervals for -log10 enrichment P-
value for the Crohn’s Disease trait and DNasel hypersensitive site data based on 1000 runs of different
numbers of permutations (from 10" to 10"). Horizontal coloured line segments denote the minimum non-zero
P-value that can be obtained after n permutations and represent p less than or equal to this value (p=0 is
denoted as equal to 1/n for the analyses). Dotted lines represent 5% significance thresholds for marginal tests
and tests after multiple testing correction for the DHS and segmentation data to be used in subsequent
analyses.

Figure 3. Enrichment of genome-wide association analysis p-values in DNasel hypersensitive sites (hotspots).
(A) Crohn's disease (CD). (B) Height. Radial lines show FE values at eight GWAS P-value thresholds (T) for all
ENCODE and Roadmap Epigenomics DHS cell lines, sorted by tissue on the outer circle. Dots in the inner ring of
the outer circle denote significant enrichment (if present) at T<10” (outermost) to T<10® (innermost) and are
coloured with respect to the tissue of the cell type they test. CD shows to be predominantly enriched in blood,
fetal thymus and fetal intestine tissues whereas HGT exhibits an overall well spread enrichment.

Figure 4. Fold enrichment levels and extent of sharing between traits for 25-state chromatin segmentations
of the NIH Roadmap and ENCODE projects at the T<10”° GWAS significance threshold. (A-B) Example feature
volcano plots for Fasting Glucose (FG) and Packed cell volume traits (PCV), respectively. (C) Distribution of
significant FE values across the 27 traits considered, split by segmentation state and coloured to highlight
predicted functional elements (e.g. bright red for active TSS, dark green for transcription, see Supplementary
Table S7). (D) Sharing of significantly enriched annotations with FE>2 across different phenotypes. The barplot
displays the number of cell types where an annotation is uniquely enriched in a trait (light green), shared
between closely related phenotypic traits (e.g. LDL cholesterol and TC, see Supplementary Table S3) (grey) or
shared among non-correlated traits (e.g. TC and height) (blue).

Table 1. Summary of enrichment analyses in DNasel hypersensitive sites per phenotype.
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Online Methods

Association Summary Statistics Data

GWAS summary statistics from the analysis of 27 disease and quantitative phenotypes were obtained from a
number of sources. From GIANT

(http://www.broadinstitute.org/collaboration/giant/index.php/GIANT consortium) we downloaded large
studies on BMI*°, Height21 and Waist hip ratio adjusted for BMI*. From MAGIC
(http://www.magicinvestigators.org/downloads) we downloaded data on BMI adjusted 2hr glucoseB, HOMA

B, HOMA IR, Fasting glucose, Fasting insulin®*, Fasting proinsulin25 and HbA1C*®. Global lipid GWAS summary
statistics for LDL, HDL, TC and TG”” were obtained from
(http://www.sph.umich.edu/csg/abecasis/public/lipids2010/). IIBDGC data on Crohn’s disease’® and Ulcerative
colitis® was obtained from (http://www.ibdgenetics.org/downloads.html). ICBP data on SBP and DBP* was
downloaded from (http://www.georgehretlab.org/icbp_088023401234-9812599.html). Type 2 diabetes®"
GWAS summary statistics were downloaded from DIAGRAM (http://diagram-consortium.org/downloads.html).
Blood trait data on HGB, MCH, MCV, MCHC, RBC and PCV was additionally obtained from the authors of
Soranzo et. al. ** and MPV and PLT data from the authors of Gieger et. al.33(SuppIementary Table S3).

DHS data

DNasel hypersensitive sites (hotspots) were obtained from ENCODE (http://genome.ucsc.edu/cgi-
bin/hgTrackUi?db=hg19&g=hub_ 4607 uniformDnase&hubUrl=http://ftp.ebi.ac.uk/pub/databases/ensembl/e
ncode/integration_data_jan2011/hub.txt) and the NIH Roadmap Epigenomics Mapping

(http://www.genboree.org/EdaccData/Current-Release/experiment-sample/Chromatin_Accessibility/) on all

available cell types. DHS data was processed following DHSs data processing protocol described in an ENCODE
study”. Further information on the data can be found in Supplementary Table S2.

Epigenome segmentation data

Data from a chromatin state model with 25 states based on imputed data for 12 marks (H3K4me1, H3K4me2,
H3K4me3, H3K9ac, H3K27ac, H4K20me1l, H3K79me2, H3K36me3, H3K9me3, H3K27me3, H2A.Z, and DNase)
across 111 Roadmap Epigenomics14 and 16 ENCODE reference epigenomes was downloaded from
http://egg2.wustl.edu/roadmap/web_portal/. State and cell line information can be found in Supplementary
Tables S7 and S6.

LD data

LD information (proxies) was calculated using PLINK* (v1.7) and the --tag-r2 0.1 --tag-kb 500 (and --tag-r2 0.8 --
tag-kb 500) flags in order to find all proxies within a 1Mb window around each variant at R-squared thresholds
of 0.1 and 0.8. We computed these from the UK10K sequence data on 3621 samples from two population
cohorts (TwinsUK and ALSPAC) (data described elsewhere 17). Variants that were not observed in the UK10K
data were excluded from our analysis.

Data processing

Given a genome-wide distribution of p-values for association with a given disease or quantitative trait, we
perform the following pre-processing steps in order to calculate the level of enrichment and its significance for
an annotation of interest. To remove possible biases due to linkage disequilibrium (LD) or dependence
between variants we compute the r’ between all SNPs within 1Mb windows and consider r” of less than 0.1
between two variants to mean (approximate) independence. Next, from the full set of genetic variants for
each phenotype, we create an independent set of SNPs where in order to keep all possible GWAS signals we
sequentially find and retain the next most significant (lowest P-value) variant independent of all other variants
in our independence set. After LD pruning an average of 6.1% (with range 5.5-11%) of genome-wide variants
remained in our independence set for enrichment analysis (Supplementary Table S3). Next we annotate each
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independent SNP and consider it as overlapping a functional element if (i) the SNP itself resides in such a
genomic region or (ii) at least one of its proxies in LD (r2>=0.8) and within 500Kb with it does. We include the
latter as the association of a SNP in GWAS potentially tags the effect of other variants, which could underlie
the observed association signal. The advantage of our greedy pruning over a P-value independent pruning is
that we retain larger proportion of potentially causal variants (or tags of such SNPs). This is particularly
advantageous for GWAS studies with low power and more pronounced at more stringent pruning thresholds.

Quantifying enrichment
To find the enrichment of GWAS signals within a given functional annotation at a genome-wide significance P-
value threshold T, we calculate the Fold Enrichment statistic as

FEr= (Ny"/N*)/(N/N)

where N denotes number of all independent variants, Nt — the subset of them with P-value less than T, N” - the
number of variants in the annotation of interest, and NTA —the number of them with P-value less than T. This

represents the ratio of proportion of variants in an annotation A at threshold T divided by the proportion of all
variants at threshold T. We calculate FE at T=10"1, 10"2,..., 10 for all traits with at least 10 independent variants

at a given threshold and test for significance at the four most significant GWAS cut-offs.

Assessing statistical significance

To account for possible biases due to the GWAS P-value distribution depending on certain characteristics,
which may also non-randomly associate with functional data, we use permutation testing, where we shuffle
the P-values associated to each variant in our independence set in such a way as to match SNPs according to
MAF, distance to nearest TSS and number of LD proxies (r’>=0.8) they have. Specifically, we bin variants
according to 5 quantiles of MAF, number of LD proxies and distance to nearest TSS, resulting in 125 bins
overall (default software options). We then permute variants within each bin separately. Due to the
discreteness of the number of proxies and the skewness of their distribution in the pruned data, exact quantile
binning is not always possible, in which case we create a stepwise binning in which we iteratively find the first
(Q-q)’'th quantile from the remaining variants after having already created q (out of Q) bins and removed those
variants from consideration.

Multiple testing

To account for multiple testing in the number of annotations used, we apply a Bonferroni correction for the
number of independent tests carried out. Due to the nature of the data, annotations need not be (and are not
in general) independent (e.g. biological replicates of the same cell types). Thus correcting for all annotations by
assuming independence would be extremely stringent in practice. Instead, we estimate the effective number
of independent tests performed similarly to Galwey, 2009 > More specifically, we take an independent
subsample of SNPs and find the eigenvalues of the correlation matrix between all considered annotations and
then find the effective number of independent test from equation 16 in Galwey, 2009. This results in at most
194 independent annotations out of a total of 424 for the DHS data (for the 27 phenotypes considered), to
which we apply Bonferroni correction (p“2.5x10'4). Further details can be found in the supplementary
material. Similarly for the segmentation data a total of 25x127=3175 annotations were used, which resulted in
p”3.7x10'5 after correcting for multiple testing on the effective number of independent annotations at the 5%
significance level.

Number of permutations

For each annotation, we perform 10’ (DHSs) or 10° (Segmentations) permutations to approximate the null
distribution of our test statistic. These numbers are necessary in order to have sufficient resolution to detect
significant enrichment results after multiple testing.
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Variability in enrichment significance

In order to assess the variability of our enrichment P-value estimates we performed enrichment analysis for
Crohn’s Disease in DNasel hypersensitive site data 1000 times for each of n=104, 105, 10° and 10’ humber of
permutations per run. We then constructed 95% confidence intervals for -log10 enrichment P-value, where
p=0 was denoted as equal to 1/n for these analyses.

False positive rate

To get an estimate of GARFIELD’s false positive rate, we simulated ten phenotypes associated to variants
selected at random from a pruned set of UK10K common variants (MAF>0.05). We selected between 5 and
100 variants in each case and used large effect sizes (1>beta>0.3) in order to ensure GWA analysis would
detect those loci. We further simulated 1000 random annotations by mimicking the peaks lengths and
between peak distances from the ENCODE HepG2 DHS cell line. We then performed enrichment analysis for
each annotation-trait pair and estimated the false positive rate as the proportion of cell types showing
significant enrichment for a given trait.

Segmentation FE distribution and between trait sharing

From all significantly enriched cell types per trait and segmentation state, we calculated the median FE and
then plotted its distribution across traits in order to estimate the per-state FE. Additionally, we counted the
number of cell types per feature that were found to be significantly enriched and with FE>2 in a single trait,
shared between traits with related function or shared between different classes of traits. For trait classification
see Supplementary Table S3 or Table 1.

Software

GARFIELD can be downloaded from http://www.ebi.ac.uk/birney-srv/GARFIELD/ . The tool consists of two
main parts: (i) pruning and annotation of the GWAS study of interest and (ii) calculating fold enrichment and
testing its significance. Additionally, a quicker version of the method is implemented which terminates the
draws for a given annotation if after a certain number of draws (minimum of 100 by default) it can no longer
reach significance. In practice this is more advantageous for traits with few enrichments as opposed to
ubiquitous ones. As well as this standalone software we have also developed an R package which can be
downloaded from Bioconductor.
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