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Figure 1: A: Schematic of the task sequence in one trial, transition contingencies, and random 

walks of the probabilities to win for the four options (green/yellow boxes at stage 2). B: The 

factorial analysis of stay/switch behavior indicated that L-DOPA attenuated the effect of 

preceding reward on stay probability of the next trial, which is a signature of model-free (MF) 

control of behavior. Error bars depict 95% confidence intervals at the trial level. C: Density 

plots of the distribution of empirical Bayes (EB) parameter estimates of the preceding reward 

effect on stay/switch behavior. Inspection of the density and scatter plots (d) indicates that L-

DOPA “shrinks” strong model-free control of behavior during placebo towards zero, leading 

to an overall decrease in the impact of reward on stay probabilities. Blue line = robust linear 

fit, black line = identity. 
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L-DOPA reduces model-free control at second stage in the computational model 

To provide a more nuanced assessment of drug effects on reinforcement, we set up the 

seven parameter computational model (M7P) proposed Daw, Gershman, Seymour, Dayan and 

Dolan 
3
 and used maximum a posteriori (MAP) as fitting algorithm to better approximate the 

normal distribution of model parameters for parametric statistics 
14

. L-DOPA increased 

stochasticity of choices at the second stage (i.e., reduced β2), which is primarily under MF 

control (p = .008). This significant difference was also seen in the non-parametric Wilcoxon 

signed rank test (Z = -2.80; Monte Carlo p = .004 95% CI [.003-.005]). Notably, L-DOPA 

appeared to have opposite effects on stochasticity, leading to a positive Stage x Drug 

interaction (p < .001; Figure 2a) despite the positive correlation between βs at both stages (rD 

= .43, p < .001; rP = .36, p = .004). 

In line with the logistic regression analysis of stay probabilities, L-DOPA did not 

affect the degree of MB control, which is captured by the weighting parameter ω in the 

computational model (p = .94). Instead, L-DOPA abolished the negative correlation between 

MB control weighting parameter ω and the individually estimated MF control by preceding 

reward (rD = .02, p = .86; rP = -.44, p < .001; significant drug interaction term in HLM, p = 

.046; Figure 2b) making both action control modes operate more independently. No main or 

interaction effect of drug was seen for learning rates at both stages and all other parameters 

were not significantly different, although in line with previous research 
13, 28

, L-DOPA tended 

to increase switching as captured by the repetition bias parameter (p = .067; Figure 2). Lastly, 

there were no significant effects of gender or order in factorial or computational analyses of 

behavior. 
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Figure 2: Administration of L-DOPA increased stochasticity of choices at the second (i.e., 

primarily model-free) stage and abolished the negative correlation between goal-directedness 

in behavior, ω, with model-free control (i.e., the preceding reward bias on stay/switch 

behavior). A: L-DOPA reduces β2, which reflects the consistency of choices with values at 

stage 2 (t = -2.737; p = .008). Interactions of L-DOPA with task stage on α and β parameters 

are shown in the inset graph. B: Whereas there is a strong negative correlation between 

model-free control of behavior and goal-directedness during placebo visits, the correlation is 

abolished by L-DOPA, indicating that the interaction between model-free and model-based 

control systems was altered by increases in dopamine tone (p = .046). EB = empirical Bayes, 

PE = parameter estimate 

 

Due to the fact that we could not replicate the increase of MB control after 

administration of L-DOPA reported in Wunderlich, Smittenaar and Dolan 
13

, we tested if drug 

effects were dependent on overall model fit. First, L-DOPA did not significantly alter the log 
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likelihood (LL) of the computational model (t = 1.50, p = .15). Second, we added LLM7.D to 

repeated measures ANOVAs where estimates of MB control (RxT or ω) were the dependent 

variables, respectively. Administration of L-DOPA increased the RxT interaction term when 

the model fit was high, F(1,63) = 10.92, p = .002. A similar trend was observed for ω, F(1,63) 

= 2.84, p = .097. In other words, increases in MB control elicited by L-DOPA might be 

dependent on how well the model captures behavior. To test if the differences in drug effects 

might be driven by differences in the characteristics of the selected samples (i.e., 

undergraduates vs. a representative of adults), we used a working memory score computed 

from the operation span task (for details, see SI). Higher working memory capacity was 

associated with better average model fit (p = .015) and increases in MB control after L-DOPA 

(ω: p = .003; RxT: p = .089). These results indicate that the effects of L-DOPA are partly 

dependent on cognitive abilities such as working memory capacity. Critically, reduced MF 

control of behavior after administration of L-DOPA as evidenced by the effect of preceding 

reward or β2 was found independently of model fit and working memory capacity.  

Furthermore, we examined alternative models tested by Wunderlich, Smittenaar and 

Dolan 
13

. However, the models were inferior in terms of overall model fit and we found no 

consistent effect of L-DOPA on MB behavior or reward learning (see Table S.1, SI). Lastly, 

similar effects of L-DOPA on β2 (p = .013; Wilcoxon signed ranks test Z = -2.75; Monte 

Carlo p = .006 95% CI [.004-.007]) were also obtained with a recent reparametrization of M7P 

where ω is replaced by separate βs for MF and MB control 
29-31

 indicating that the obtained 

result is robust to minor changes in the setup of the computational model. 

To summarize, L-DOPA increases stochasticity of choices at the second stage of the 

task which is primarily under MF control. In contrast, drug effects on MB control were 

inconsistently found across models and not evident in the best fitting model. Furthermore, 

potential increases in MB control following the administration of L-DOPA were dependent on 

high overall model fit or working memory capacity. Taken together, the results of the 
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computational models echo the results of the factorial analysis and point conclusively to 

reduced MF control, but largely unaffected MB control (on average) after administration of L-

DOPA. 

No effect of L-DOPA on BOLD correlates of RPE signals 

To test for effects of L-DOPA on BOLD response correlates of RPE signals, we set up 

two separate second-level statistics for MF RPE and MB RPE contrast images including both 

conditions as repeated measures factor while controlling for order as a covariate. In line with 

previous studies 
3
, we observed a widely distributed brain network tracking MF RPE signals 

encompassing the ventral and dorsal striatum, the dopaminergic midbrain, the orbitofrontal 

cortex, the dorsolateral prefrontal cortex, and the posterior cingulate cortex (Figure 3; Table 

S.2). Contrary to MF RPE, MB RPE signals were found to be spatially sparser encompassing 

the ventral striatum (where overlap with MF RPE signals occurs) and vmPFC only. These 

results replicate the results reported by Daw, Gershman, Seymour, Dayan and Dolan 
3
.  
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Figure 3: Model-free (MF; red-yellow) and model-based (MB) reward prediction error 

signals (RPE; blue-white) pooled for placebo and L-DOPA sessions (with session order as 

covariate). In line with Daw et al. (2011), overlap of MF and MB reward prediction error 

signals were found in the nucleus accumbens (ROI outline shown in red) and ventromedial 

prefrontal cortex.  

 

In contrast to predictions of the reinforcement learning theory, yet in line with the 

absence of behavioral effects on learning rates, we observed no modulatory effects of L-

DOPA on RPE signals (Figure 4). At a whole-brain level, no differences survived a correction 

for multiple comparisons (cluster-forming threshold p < .001) and drug effects were virtually 

absent even at an uncorrected cluster extent threshold (see SI). Likewise, at the level of a 

priori ROIs, we observed no effects of L-DOPA (ps > .1). This absence of a drug effect was 

further corroborated by an additional time course analysis: We concatenated sessions and 

participants to improve the estimation of potential drug effects across the group, similar to the 

behavior analysis, but failed to see a modulatory effect of L-DOPA on RPE signaling (|t| < 

1.21, p > .23). Whereas there was no effect of L-DOPA on average parametric effects, we 

found an increase in interindividual variability of the MF RPE signals in the NAcc during the 

L-DOPA session, F(64,64) = 1.61, p = .030, which would, however, not survive correction for 
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multiple comparisons across ROIs and/or contrasts. To summarize, across whole-brain and a 

priori ROIs analyses, there was no indication of an altered correspondence between BOLD 

response and RPE signals after administration of L-DOPA. 

 

 

Figure 4: A priori region-of-interest (ROI) sections of the nucleus accumbens (NAcc) for the 

parametric effects of interest model-free (MF) and model-based (MB) reward prediction error 

(RPE) signals and first-stage action values depicted separately for placebo and drug sessions. 

Inset graphs show extracted parameter estimates (PE) and 95% confidence intervals (CI). 

Likewise, non-significant differences were obtained in ROI analyses for the ventromedial 

prefrontal cortex and in exploratory whole-brain analyses. Pla = placebo, PE = Parameter 

estimate 
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L-DOPA reduces the effect of reward at the outcome and subsequent trial-onset stage 

In the factorial analysis and the computational model of behavior, we found that L-

DOPA reduced reflexive MF control by reward without altering the encoding of RPEs. 

Hence, we set up an alternative first-level model of the task to assess the simple main effect of 

rewarded vs. unrewarded events. Second-level statistics were computed separately for the 

outcome stage and the subsequent trial onset, where participants may decide to stay or switch 

depending on the outcome and the transition of the previous trial. As a covariate, we included 

the individually estimated effect of reward obtained in the factorial analysis of stay/switch 

behavior conducted at this stage of the task (Figure 1c-d). This parameter captures the degree 

to which individuals reflexively adjust their first-stage choice after receiving a reward. Based 

on the behavioral results, which were in line with the predictions of the thrift and value 

theories of dopamine, we hypothesized that L-DOPA would reduce the effect of reward 

(rewarded – unrewarded events) on BOLD response in the mesocorticolimbic ROIs VTA/SN, 

NAcc, and vmPFC.  

Across the three ROIs, we found a significant effect of reward (p < .001), no 

significant effect of drug (p = .23), but a significant interaction Drug x Reward (p = .027; 

Table S.3). This interaction effect was driven by a reduced contrast between rewarded and 

unrewarded events during L-DOPA vs. placebo visits (Figure 5a; Figure S.2). Additional 

single ROI models indicated that the Drug x Reward effect was significant within the 

VTA/SN (p = .014; survives correction across 3 ROIs) and vmPFC (p = .047), but not in the 

NAcc alone (p = .32). Analogous effects were obtained with a voxel-based approach and 

coordinates of peak effects are reported in the SI. No other effects were seen in a whole-brain 

analysis that survived correction for multiple comparisons and there was no general effect of 

reward at the outcome stage on grey matter BOLD response (t = -.482, p = .63). 
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Likewise, at the onset of the following trial, we observed a significant decrease of the 

reward effect on BOLD response across the three a priori ROIs after administration of L-

DOPA (p = .019). At this stage, however, the effect was not only restricted to the 

mesocorticolimbic system because we found a significant modulation at the whole-brain level 

across grey matter voxels (t = -3.034, p = .003; Figure 5b).  

Lastly, to evaluate if L-DOPA affects the coupling between behavior and reward 

signals, we assessed if L-DOPA reduced the correspondence between MF control as captured 

by the reflexive effect of reward and BOLD response to reward. Here, we observed a reduced 

correlation between the neural and the behavioral reward effect in the ACC (rP = .36, p = 

.003; rD = -.18, p = .15; drug interaction term in HLM p = .004; voxel-based tmax = 3.38, pSVC 

= .056; 2/38/12), which would survive correction for multiple comparison across ROIs and 

stages (α < .0083). At the first stage of the following trial, we found that the neural effect of 

preceding reward corresponded with the reflexive effect of reward in the vmPFC regardless of 

the drug condition (rP = .24, p = .053; rD = .34, p = .006, no significant drug interaction; tmax = 

4.60, pSVC = .002; k = 605, pFWE.clust = .002; -4/60/-6; extending to the ACC ROI tmax = 3.52, 

pSVC = .035; -2/48/6). Furthermore, we observed a significant correlation in the orbitofrontal 

gyrus outside of our a priori ROIs (tmax = 4.64, k = 511, pFWE.clust = .004; 20/32/-8).  

To summarize, L-DOPA reduced the correspondence between the neural reward effect 

at the outcome stage and the behavioral reward effect in the ACC. Moreover, when 

participants were facing the next choice, the facilitating effect of reward on BOLD response 

was reduced throughout the brain, but the correspondence between the neural reward effect 

and behavior was not affected by L-DOPA. This suggests an attenuated net effect of the 

reward. Hence, this corroborates the observed decrease in the reflexive effect of reward on 

behavior.   
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Figure 5: A: L-DOPA reduced the effect of reward on brain activation in the ventral 

tegmental area and the ventromedial prefrontal cortex (blue color map) at the outcome stage. 

Moreover, it reduces the correlation of brain activation with the reflexive effect of reward on 

behavior (derived from stay/switch analyses) in an adjacent cluster of the anterior cingulate 

cortex (drug interaction within the ROI p = .004). This indicates that the transfer of model-

free values to action is reduced. B: In line with the attenuating effect at the outcome stage, L-

DOPA reduces the effect of preceding reward on brain activation at the onset of the next trial 

throughout the brain (c). The inset scatterplot depicts that the group t-values are reproducible 

across conditions at a voxel-by-voxel level, but that the preceding reward effect is globally 

attenuated (grey matter p = .003). D: At first-stage onset, stronger activation in the prefrontal 

cortex is associated with the effect of reward on behavior regardless of drug condition (hot 

color map; scaled analogous to the other contrasts and plotted next to the image of the Drug x 

Reward Bias interaction in a). 
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L-DOPA facilitates exploratory behavior 

Whereas both value and thrift theories predict that increases in dopamine tone reduce 

MF control as we have observed, one of the key predictions of the thrift theory is that 

heightened dopamine tone will facilitate exploratory behavior. To test this hypothesis, we 

used multilevel analyses of RT as well as first- and second-stage action values. We 

hypothesized that exploration would be indicated by less deterministic choices (“noisy” 

exploration
32

) and higher RT for switches (“strategic” exploration
32

).  

In line with the strategic aspect of exploration, we observed that L-DOPA increased 

the discrepancy in RT between stay and switch trials at stage 1 (Wilcoxon signed ranks test Z 

= -2.565, Monte Carlo p = .011 95% CI [.009, .013]), which was mainly driven by slower RT 

during switch trials in L-DOPA sessions (RTD.switch = 0.781 s vs. RTP.switch = 0.765 s; RTD.stay 

= .739 s vs. RTP.stay = .735 s). Notably, there was no general effect of L-DOPA on RT at first 

stage and no shift in the distribution of the probability of choices (Figure 6a). 

At stage 2, we observed a decrease in choices at the deterministic end (i.e., with very 

high probabilities; Figure 6a-b), which is reflected in the β2 parameter in the computational 

analysis. This observation was corroborated by the fact that L-DOPA reduced the 

correspondence between the estimated evaluations of options and resulting actions. The 

increased independence of action from value with higher dopamine tone was evidenced by the 

reduced correspondence between first- and second-stage choice probabilities (Figure 6c) and 

the reduced correspondence between first-stage prediction error signals and second-stage 

action values (Figure 6d).  

Furthermore, we assessed how increases in dopamine tone affect action control by the 

average reward rate, which has been linked to endogenous fluctuations in dopamine tone 

before 
1
. In line with the predictions of the thrift theory, L-DOPA reduced the correspondence 

between the average reward rate and choice probability at second stage (Figure 6e). 
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Moreover, L-DOPA led to a characteristic increase in second-stage RT when the average 

reward rate was high and, hence, uncertainty is expected to be low (Figure 6f). This increase 

was not seen during placebo sessions. Here, RT decreased monotonically with a recent stream 

of wins in the task as one would expect when past success is being exploited to maximize 

wins. Collectively, our data suggests that L-DOPA reduces MF control by facilitating “noisy” 

and “strategic” exploration during the task. 
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Figure 6: A: L-DOPA reduces stochasticity of choices at the second (i.e., model free; p < 

.001), but not the first stage (p = .52). B: Group density plots indicate that the net effect is 

mainly due to a reduction of choices with very high probabilities given the model’s estimation 

of choice values. C: The reduced correspondence of first-stage choice probabilities (p = .014) 

and (d) reward prediction errors with second-stage choice probabilities (p = .019) is not 

affected by transition and apparent for both rare and common transitions (Drug x Transition p 

> .27). E: The average reward rate (Av Rew), which reflects the recent history of wins 

(centered on each individual’s average percentage of wins), has less of an effect on second-

stage choice probabilities after administration of L-DOPA (p = .003). F: The increase in 

response time at a high average reward rate in the L-DOPA condition (p = .048), particularly 

in common trials, suggests that instead of a reflexive invigoration of behavior, a recent stream 

of wins may have facilitated strategic exploration. This might add to the increased 

stochasticity of choices (noisy exploration) at the second stage. For the fitted models, see SI.   
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L-DOPA does not change overall task performance 

 As we have detailed before, L-DOPA had no overall effect on the obtained model fit 

of the computational model of choice and on general RT. However, given that L-DOPA 

increases stochasticity of choices at the second stage of the task and facilitates exploration; 

does it come at the cost of the number of obtained rewards? We found that L-DOPA tended to 

increase the rate of rewards obtained during the task (t = 1.70, p = .093; MD = 48.8% vs. MP = 

47.7%). Importantly, the rate of rewards was positively correlated with the fit of the 

computational model (rD = .34, p = .006; rP = .42, p = .001) indicating that the model reflects 

differences in task performance. Consequently, there was little indication that the observed 

reduction in MF control was disadvantageous in terms of overall task performance. 

Discussion 

 Tonic and phasic dopamine signaling are known to play key roles in reinforcement 

learning and action control. In the current study, we found that increases in dopamine tone 

induced by L-DOPA reduced the reflexive MF control of behavior via reduced direct 

reinforcement of successful actions. In contrast, deliberative MB control of behavior was 

unaffected by L-DOPA. The changes in MF control of behavior were not explained by 

changes in learning rates at different stages of the task or for positive versus negative 

outcomes. Moreover, these changes were not explained by differential coding of RPE signals 

as we did not observe differences in their correspondence with BOLD response. Nevertheless, 

in line with behavioral effects, L-DOPA reduced the effect of reward in the brain. First, it 

reduced the reward effect in the mesocorticolimbic system when the outcome (reward vs. no 

reward) was presented. Second, it reduced the facilitating effect of preceding reward on 

BOLD response in general at the beginning of the next trial. Collectively, these results 

conclusively indicate that L-DOPA reduces MF control of behavior by reducing the transfer 

of learned value to overt actions, which is in line with the recent value 
16

 and thrift theories 
5
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of dopamine function. This interpretation is corroborated by increases in noisy and strategic 

exploration, which is one of the unique predictions of the thrift theory 
5-7

 that has not been 

extensively tested in humans before. Hence, our results add to the growing evidence for a 

dopaminergic contribution to exploratory decisions 
7, 32

. 

 Our main behavioral finding that L-DOPA reduces MF control without affecting MB 

control of behavior is in line with the observation that behavioral effects of phasic dopamine 

signals are dependent on their tonic baseline 
16, 27

, which prominently modulates the signal-to-

noise ratio of phasic burst signaling 
33, 34

. MF control is mainly driven by phasic firing of 

dopaminergic neurons encoding temporal difference RPEs 
8, 9, 35

. We observed that RPE 

signals and learning rates were not altered by an increase in dopamine tone, which suggests 

that reward learning per se was not affected. Whereas Pessiglione, Seymour, Flandin, Dolan 

and Frith 
19

 had reported increased amplitudes of RPE signals after L-DOPA that explained 

improvements in reward learning, these effects were only significant compared to the 

haloperidol group. Furthermore, in line with our results, Wunderlich, Smittenaar and Dolan 
13

 

did not observe significant effects of L-DOPA on learning rates. Consequently, an increased 

baseline of dopamine may reduce the throughput of phasic signals since the local change in 

dopamine is attenuated, which in turn might reduce their potential to reflexively adjust 

actions. Such a decoupling between the dopaminergic mechanisms of reward learning and 

action control with heightened tone has been conclusively demonstrated in animal models 
16, 

17
. When alterations in behavior occur without resultant changes in reward learning 

16, 36
, the 

correspondence between action and learned value is effectively reduced 
36

. Notably, 

Wunderlich, Smittenaar and Dolan 
13

 also reported an (non-significant) increase in choice 

stochasticity for L-DOPA. Since they only reported drug effects for the reduced model that 

did not differentiate choice stochasticity between the two stages of the task, it is conceivable 

that this could have masked a significant effect of L-DOPA given the marked Stage x Drug 

interaction on stochasticity that we observed. 
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 Notwithstanding, the absence of L-DOPA effects on MB control appear to be in 

contrast with the findings reported by Wunderlich, Smittenaar and Dolan 
13, 

or Sharp, Foerde, 

Daw and Shohamy 
37

. However, several aspects may contribute to the observed discrepancies. 

First, when we included the obtained fit of the computational model during the L-DOPA 

session as a covariate, we found that MB control only increased in participants whose 

behavior was well approximated by the model. Likewise, when we entered working memory 

capacity as a covariate, we found that MB control only increased in participants with high 

working memory capacity. Thus, it is possible that our representative sample of adults 

performed the task less in line with the computational model or at a lower overall level, which 

could reduce the net effect of the drug in the studied sample. In other words, this suggests that 

facilitating effects of L-DOPA on MB control do not generalize to the population because 

they could be mediated by interindividual differences in working memory capacity 
31

 or, 

perhaps, presynaptic dopamine levels in the ventral striatum 
14

 that are known to contribute to 

overall task performance. If we were to restrict our analysis to individuals with high working 

memory capacity, we could essentially replicate that L-DOPA increases MB control
13

. 

Second, effects of L-DOPA on the MF vs. MB control weighting parameter ω were 

inconsistent across the alternative computational models, which may reduce reproducibility of 

results in general. Importantly, the reduction in MF control of behavior was observed 

independently of the fit and the parametrization of the computational model suggesting that 

this was a general effect of increased dopamine tone. Third, both previous samples were small 

(N1 = 18; N2 = 22) and given our effect-size estimate of reduced MF control (r ~.30), the 

power to detect such an effect would be below 30%. In line with this interpretation, both 

studies reported decreased MF control which was, however, not significant. Collectively, 

these results suggest a complex interaction between tonic and phasic dopamine signaling on 

the one hand and the arbitration between MF vs. MB control on the other hand. Whereas L-

DOPA may reduce MF control in general yet to a moderate degree, the net effects on MB 
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control are perhaps mediated by interindividual differences in task performance and working 

memory. 

Critically, the behavioral effects of L-DOPA on MF control were also echoed in 

BOLD response. In line with reduced MF control of behavior, we observed an attenuation of 

the reward outcome signal in the mesocorticolimbic system and a global attenuation of the 

effect of preceding reward at the onset of the subsequent trial. Moreover, in the ACC, L-

DOPA abolished the correspondence between reward outcome signals and MF control of 

behavior. Taken together, these findings suggest that L-DOPA reduces the transfer of value to 

action, which is well in line with previous studies. In patients with Parkinson’s disease, L-

DOPA (on medication condition) disrupts performance of reversal learning 
28

 and NAcc 

activation during reversal learning, particularly when the final reversal error occurs (i.e., 

preceding a switch 
38

), which might be indicative of reduced transfer of value. Moreover, L-

DOPA has been shown to reduce habit learning (i.e., MF control) in the weather prediction 

task in patients off medication 
39

. Likewise, L-DOPA decreased the influence of a “Pavlovian 

controller” on instrumental action in healthy individuals such that action learning became less 

affected by outcome valence 
40

 and it increased a value-independent propensity to gamble by 

making risky options more attractive to pursue 
41

. Thus, increases in tonic dopamine may 

allow an individual to “escape” their previous reward history by embarking on a more 

effortful exploration of available options in the environment 
5, 7

. It is plausible that this 

neurobiological mechanism might also account for reported increases in switching between 

tasks 
28

 and this hypothesis calls for future research on a more comprehensive set of tasks. 

The current study has limitations that will need to be addressed in future research. 

First, whereas it is commonly assumed that the dopamine precursor L-DOPA primarily raises 

dopamine levels in the striatum, it is conceivable that the effects L-DOPA are not solely 

attributable to the transformation into dopamine and subsequent postsynaptic activation of 

dopaminergic receptors 
42

. Second, we observed that L-DOPA made decisions more 
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independent of the current evaluation of options, which would be expected to impair task 

performance. In contrast, we found that L-DOPA tended to increase the number of wins. 

Thus, it remains to be determined if L-DOPA facilitates exploratory behavior to an extent that 

is even advantageous in environments characterized by volatile reinforcement schedules.  

To conclude, we found that increases in dopamine tone lead to decreases in reflexive 

MF control of behavior by reward while deliberative MB control, which takes the learned 

transition structure of the environment into account, and value-based learning remained 

unaffected on average. These results suggest that L-DOPA reduces the transfer of learned 

value to action, which may result from the reduced local change in dopamine induced by 

phasic dopamine release when tonic levels are heightened. Our observations corroborate 

recent value 
16

 and thrift 
5
 theories of dopamine function pointing to an essential role of 

dopamine in supporting the invigoration of responses and energy expenditure
43

. As a result, 

heightened dopamine tone may allow an individual to break reflexive and habit-like chains of 

action, which have been established because of their previous reward history, and support 

exploration of available options in the environment 
5, 7

. Hence, behavioral flexibility may 

arise as a consequence of increased independence of future behavior on the preceding stream 

of success. 

Methods 

Participants 

This dataset is part of an ongoing study investigating dopaminergic modulation of 

reinforcement learning. In order to ensure that the participants of our study were 

representative of the general population, we requested for postal addresses of individuals 

randomly selected by the residents’ registration office of Dresden, Germany (N = 15,778) and 

invited them to our study. To limit a confounding effect of age 
44

, we recruited participants 

within the age range of 30-40 years. As part of the general study protocol, participants were 
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invited to a total of four visits, which comprised of a pre-screening visit and two fMRI visits 

at the Neuroimaging Center, Technische Universität Dresden, followed by a positron emission 

tomography (PET) visit at the PET center (data reported elsewhere). For the current analysis, 

we included 65 healthy participants (49 male; Mage = 37.0 years, SDage ± 3.56, range [30-42]) 

who completed both drug and placebo sessions without severe side effects (N = 10 had only 

one visit; N = 5 reported severe side effects in the second session) and passed extensive 

quality control (N = 4 were excluded because of low fMRI data quality, N = 2 because of 

>20% missing trials in one session). Furthermore, four participants had to be excluded due to 

1) brain atrophy, 2) a positive drug test for THC, 3) data loss, 4) erroneous drug manipulation. 

This sample size provides sufficient power (1 – β = .80) to detect small- to medium-sized 

effects of repeated measures at the behavioral and ROI level (α = .05, dz = .36) and medium-

sized effects at the voxel level (α = .001, dz = .54). 

Inclusion criteria for the study were as follows: (1) at least 30 years old at the date of 

the PET scan, (2) no history of neurological or mental disorders according to the Screening 

Version of the Structured Clinical Interview for DSM-IV (Wittchen et al., 1997) except for 

nicotine dependence, (3) no MRI, PET nor L-DOPA contraindications, (4) normal or 

corrected-to-normal vision, (5) no recent use of illicit drugs (urine test on first fMRI visit; 

Kombi/DOA10-Schnelltest, MAHSAN Diagnostika GmbH, Reinbek, Germany) nor alcohol 

consumption (breath-alcohol analysis on both fMRI visits; Alcotest 6510, Drägerwerk AG & 

Co. KGaA, Lübeck, Germany). Since the main goal of recruitment was to maximize 

generalization to the population, we deliberately included smokers (~30% of the adult 

population in Germany). Smokers were allowed to smoke cigarettes prior to the fMRI visit 

and breath carbon monoxide levels were measured to assess recent use of cigarettes. The 

institutional review boards of Technische Universität Dresden approved the study and we 

obtained informed consent was obtained from all participants prior to taking part in the 

experiment. 
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Paradigm 

Participants performed an adapted version 
45

 of the two-stage Markov decision task 

developed by Daw et al. 
3
 while undergoing fMRI. For the current study, (a) the instructions 

were translated into German, (b) visual stimuli were adapted to present different sets of 

stimuli across visits (pseudo-randomized across participants), and (c) outcome presentation 

times at both stages were decreased by a factor of 2 to reduce trial duration. The task 

consisted of a total of 201 trials, separated by inter-trial intervals sampled from an exponential 

distribution (M = 2 s; range: 1-7 s). For each trial, there were two stages (Figure 1a). At the 

first stage, participants had to choose between two grey boxes. After the first-stage choice, 

they were led to a second stage where they had to make a choice between two colored 

(green/yellow) boxes. After they have made the second-stage choice, the monetary outcome 

(win 20 cents or 0 cents) for the trial was presented. In order to optimize their performance, 

participants had to learn two aspects of the task. First, they had to learn the transition 

structure, that is, which grey stimulus led to the yellow pair of stimuli in 70% of the trials 

(“common” trials) and to the green pair in 30% of the trials (“rare” trials; and vice versa for 

the other grey stimulus). Second, they had to infer the reward probabilities associated with 

each second-stage stimulus, which followed random Gaussian walks that changed slowly and 

independently of each other with reflecting boundaries at 0.25 and 0.75. Both aspects were 

emphasized in the instructions and participants completed 50 practice trials using an 

independent set of stimuli. After participants completed the practice, they were queried to 

ensure that they understood a) the transition structure and the difference between common and 

rare transitions and b) that the best option changes over time due to the random walks. If 

participants did not answer the query questions correctly, the experimenter repeated the 

instructions. 
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This task has been employed previously in multiple studies for characterizing 

weighted contributions of MF and MB systems in individuals during adaptive learning e.g., 
3, 

13, 14, 45, 46
. The key feature differentiating between MF and MB strategies is how first-stage 

choices are influenced by the “model”, that is, the transition structure between the two stages 

of the task. For example, suppose an individual was rewarded for a second-stage choice 

during a rare transition trial. In order to be rewarded again for the same second-stage option, 

MF individuals would repeat their first-stage choice simply because it was rewarded. On the 

other hand, MB individuals would consider the transition probabilities of both first-stage 

stimuli. Hence, they would switch to the other first-stage stimulus. The reason is that 

according to the transition structure, switching to the other first-stage option would give them 

a higher chance to select the same second-stage stimulus, which increases the chances of 

being rewarded again 
3
. 

Procedure 

During the intake visit, we measured height and weight, drew blood samples, and 

participants completed tasks and questionnaires at a computer. Participants then returned to 

the scanning facility for their fMRI visits. In order to minimize the influence of medication on 

BOLD signal, participants were asked to abstain from medication for at least 24 h prior to 

their visit. As presence of food in the bowels influences the rate of levodopa absorption 
47

, we 

wanted to control for the amount of food present by asking participants to fast overnight 

before arriving at the scanning facility. Participants were then given a small standardized 

breakfast (about 25 g butter biscuits, ~120 kcal) upon arrival (between 05:30 – 08:45 am) and 

dextrose tablets throughout the session (about 4 g, ~17.4 kcal/h) to reduce side effect of the 

drug administration. 

Next, participants were instructed and trained on the task. In line with previous 

studies, we explained that (a) transition contingencies (mapping between first and second 
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stage) would remain fixed throughout the experiment, (b) reward probabilities of each option 

(“states”) at second stage would vary slowly over time independently of each other, and (c) 

they should try to maximize their monetary outcome throughout the experiment. To 

familiarize the participants with the task, they were given a computerized practice that 

consisted of 50 trials prior to the scanning session with the same transition contingencies 

(70%/30%). To minimize transfer of expectations to the experiment, the practice task had a 

different set of reward probabilities and stimuli from that used inside the scanner. 

Furthermore, participants were asked to complete a series of computerized and pen-

and-paper questionnaires on psychological functioning (e.g., mood). On the second fMRI 

visit, they completed working memory tests instead of being trained on the two-stage Markov 

task. After approximately 80 min, we administered 150mg/37.5mg L-DOPA/benserazide 

(Madopar; Levodopa and Berazidhydrochlorid; Winthrop Arzneimittel) orally following a 

double-blind, placebo-controlled (P-Tabletten, Lichtenstein; Roche) randomized cross-over 

design. The order of drug condition during the fMRI visits was pseudo-randomized across 

participants prior to the study. Participants then entered the scanner for structural scans and a 

second blood sampling (T1) before they proceeded with the two-stage Markov task, which 

took about 36 min. 

After participants completed the two-stage Markov task, a 6-min resting-state scan 

was collected. The resting-state scan was followed by a booster dose of L-DOPA, a second 

task inside the scanner, and additional behavioral testing outside the scanner. Participants took 

approximately five hours to complete one session. At least seven days after the first fMRI 

visit (M = 12.2 d, ±9.6 d), participants returned and completed a second visit following the 

same procedure (except for exchanging the task training for a set of working memory tests), 

but receiving the complementing drug condition instead. 
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fMRI data acquisition and preprocessing 

MRI images were acquired on a 3 Tesla Magnetom Trio Tim system (Siemens, 

Erlangen, Germany) equipped with a 32-channel head coil. During the in-scanner task, stimuli 

were presented on an MR compatible screen and rearview mirror system. Participants 

responded by pressing their index fingers on two separate button boxes, one held in each 

hand. Psychophysics Toolbox Version 3 
48, 49

 implemented within MATLAB R2010a 

software (The Mathworks, Inc., MA, USA) was used to present the stimuli and collect 

behavioral data. Functional images were acquired using a gradient echo-planar imaging (EPI) 

sequence, repetition time TR = 2.41 s; echo time TE = 25 ms; flip angle: 80°; field of view: 

192 x 192 mm
2
; matrix size: 64 x 64; voxel size: 3 x 3 x 2 mm

3 
(slice thickness: 2 mm; gap: 1 

mm). Every volume consisted of 42 transverse slices acquired descending from the top, 

manually adjusted ~25° clockwise from the anterior commissure-posterior commissure plane 

(total ~900 volumes for each participant, total scan time: ~36min). A corresponding field map 

was also recorded for distortion correction of the EPI images. Structural images were acquired 

using a T1-weighted magnetization prepared rapid acquisition with gradient echo (MPRAGE) 

sequence for normalization, anatomical localization as well as screening for structural 

abnormalities by a neuro-radiologist (TR: 1.90 s; TE: 2.52 ms; flip angle: 9°; field of view: 

256 x 256 mm
2
; number of volumes: 192; voxel size: 1 x 1 x 1 mm

3
).  

Functional brain data were preprocessed using SPM8 (Wellcome Trust Centre for 

Neuroimaging, London, UK) implemented within Nipype Version 0.9.2 
50

. The first 4 

volumes of the EPI images were discarded to allow for magnetic saturation. The remaining 

896 volumes were subjected to slice-time correction (reference: middle slice), followed by 

realignment to the first volume of the run to correct for motion. Distortion correction based on 

the field map was then applied to the realigned EPI images. Each individual anatomical T1 

image was first co-registered to the individual mean EPI image before segmentation and 
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normalization to MNI space. The resulting transformation parameters were then applied to the 

distortion-corrected EPI images to spatially normalize them to MNI space (non-linear; 

resampled to 2 x 2 x 2 mm³). Finally, normalized EPI images were spatially smoothed with an 

isotropic Gaussian kernel (full width at half maximum = 8 mm). During first-level analyses, 

the data was high-pass filtered at 128 s. As mentioned previously, four participants were 

excluded from the final analysis because of low fMRI data quality due to excessive in-scanner 

motion (N = 2, > 3 mm translation or 3° rotation volume-to-volume), anatomical abnormality 

(N = 1), and failure in image segmentation (N = 1). 

Data analysis 

Factorial analysis of model-free versus model-based behavior and response time 

We investigated the effects of increases in tonic dopamine on stay/switch behavior 

using the task conditions (reward, transition) in a factorial analysis of the two-stage Markov 

decision-task (Figure 1) 
3, 13, 14

. We had two behavioral measures of interest, namely the 

tendency to select the same choice as in the previous trial (“stay”) and response time (RT). 

For this set of behavioral analyses, we estimated the main effects of reward, transition, and 

the Reward x Transition (RxT) interaction on the repetition of the same choice at the first 

stage of the next trial using full mixed-effect logistic regression analysis of placebo and drug 

sessions as implemented in hierarchical generalized linear modeling (HGLM, outcome 

distribution Bernoulli). The two main effects and the interaction term were treated as random 

effects, that is, we computed the deviation of each individual from the group effect for drug 

and placebo sessions to freely estimate individual values of the effects. To test for significant 

differences, we used empirical Bayes (EB) estimates that take group priors into account and 

ordinary least squares (OLS) estimates, which are not affected by group priors. We used both 

estimates because OLS values are “unbiased” and provide a lower-bound estimate of the 

group effect, but they come at the cost of power. This is because the estimates are not shrunk 
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based on the likelihood of observed values across the group, unlike empirical Bayes estimates, 

leading to deviations from the normal distribution. For the second set of behavioral analyses, 

we set up two separate models for RT at first stage and RT at second stage. To estimate 

factorial effects on RT, we log transformed RT to normalize the distribution and used 

hierarchical linear modeling (HLM). The RT model at first stage was set up analogously to 

the choice model. The RT model at second stage included first-stage RT and the current 

transition as additional predictors. Both RT models included trial number as a random effect 

to account for potential reductions in RT across the run. All these analyses were conducted 

with HLM 7 
51, 52

. 

Computational model 

As detailed by Daw, Gershman, Seymour, Dayan and Dolan 
3
, we assumed that agents 

learn by updating state-action values at each trial, t,  through a weighted combination of MB 

and MF components. The MF component learns the system using a temporal difference 

algorithm, whereas the MB component does so by maximizing the expected value by taking 

the contingencies into account.  

The second stage, S
’
 , has only an MF component driven by the final reward, tr , 

 )],([),(),( 11 aSQraSQaSQ tttt 
  ,  

where 10   is the learning rate. The MF component of the state-action values at the first 

stage, S, is updated similarly with the addition of an eligibility trace parameter, 10   . 

However, the presence of different transition probabilities (the task “model”) leads to a 

potential MB learning component as 

 ),(max),|(),(max),|(),( 1,221,11 aSQaSSPaSQaSSPaSQ tMF
a

tMF
a

tMB 
 .  

The overall state-action values at the first stage are computed as a linear combination of the 

MF and MB components, 
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  )(),()1(),(),( arepaSQaSQaSQ tMFtMBt   ,  

in which 10  . The tendency to stick to the first-stage action taken at the previous trial is 

captured by a perseveration parameter  . In order to choose an action, a softmax function 

maps the state-action values to choice probabilities at every stage as 

 


actions all

))actionstate,(exp(

))actionstate,(exp(
)state|action(

Q

Q
P




, 

 

in which 0  is the so called inverse temperature. Thereby, it represents choice 

stochasticity, that is, how strongly choices made are related to expected values. The strength 

of choice consistency is related to the exploration/exploitation trade-off 
53

 and higher values 

correspond to stronger exploitation of learned values. Considering different learning rates and 

stochasticity parameters for the two stages, the model comprises seven parameters.  

Other variants of reinforcement learning models have been studied for this task before 

and further details are provided in the SI. Wunderlich, Smittenaar and Dolan 
13

 investigated 

the effects of simplifying the original model to have four parameters ),,,(   and, 

alternatively, considering different learning rates for positive and negative prediction errors 

),,,,(   . Recently, new formulations have been presented, which decouple MB and 

MF components and relax the assumption of a linear weighting 
30, 31

. Furthermore, an 

alternative is provided by integrated reinforcement learning architectures such as DYNA, 

which assume that behavior is completely controlled by the model-free system. In this model 

model-based system only has an indirect influence by training the model-free system offline 

using simulations of the state space of the task 
54

. However, due to our a priori hypotheses, 

which were focused on the original formulation of the model, we did not evaluate these 

alternatives in detail in the current study. 
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Finally, for any individual, we sought to find a set of parameters which yields the 

highest likelihood of the data for a given model. Here, we used maximum a posteriori 

estimation (MAP) to improve the estimation of parameters for parametric statistics 
14

. 

Statistical modeling of fMRI data at first level 

First and second-level analyses of fMRI data were carried out using SPM8. For this 

study, we calculated two sets of first-level statistics that correspond with each of the 

behavioral analyses. The first set of analyses was conducted in accordance to Daw, 

Gershman, Seymour, Dayan and Dolan 
3
. The regressors are based on the computational 

model of behavior e.g., 
14, 46

 and use the mean parameter values of the computational model 

across both sessions. Briefly, it incorporated the onset of stage 1 as event with the parametric 

regressors first-stage action values, P(a1,t|sA), and its partial derivative with respect to ω, a 

combined event regressor for the onset of stage 2 and the onset of outcome presentation with 

the parametric regressors MF RPEs and MB RPEs. The two events were merged to enable the 

conjoint estimation of MF and MB RPEs on one onset regressor. To capture potential 

differences in BOLD response between the two events, the onset of the outcome event was 

modeled separately in addition. Parametric predictions of MF and MB RPE were derived for 

both event onsets given the assumption of absolute MF (ω = 0) or MB (ω = 1) control, 

respectively. Notably, the MB regressor was set up to capture only variance that is not 

accounted for by MF RPEs since MB RPEs are assumed to act on top of MF control 
3
. As 

there is no transition involved at the second stage, reinforcement learning is primarily under 

MF control when the outcome is being presented and MB RPEs are therefore set to 0. 

For the second set of first-level statistics, we employed a factorial approach that 

mirrors the behavioral analysis of stay/switch behavior. Here, we used a regressor for the 

onset of stage 1 with the parametric regressors previous reward (coded as -0.5 / 0.5), previous 

transition (coded as -0.5 / 0.5), and their interaction, a regressor for the onset of a common 
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transition trial at stage 2, a regressor for the onset of a rare transition trial at stage 2, a 

regressor for a reward at outcome onset (i.e., the result of the choice at stage 2), and a 

regressor for reward omission at outcome onset. Specifically, we used the contrast rewarded – 

unrewarded trials at outcome onset and the parametric effect of preceding reward at first-stage 

onset to evaluate the simple main effects of L-DOPA on processing of reward, which were 

tested based on the observed behavioral differences between drug conditions. 

For group inferences, we computed second-level group statistics with placebo vs. L-

DOPA as repeated measures factor for the parametric contrast images (MF RPE, MB RPE, 

first-stage action values, rewarded vs. unrewarded trials). The second-level statistics based on 

the computational model included order as a nuisance variable. Since the effects of order were 

negligible, we included only the estimated effect of the reflexive effect of reward on stay 

behavior when we evaluated brain-behavior interactions.  

ROI analyses were focused a priori on the NAcc and vmPFC where both types of 

signal correlates are evident 
3, 14

. Valence effects of reward and MF RPE signals were also 

expected a priori to occur in the VTA/SN (e.g., see the term “reward” at www.neurosynth.org; 

55
). For brain–behavior coupling, we furthermore included the ACC since it is critically 

involved in the allocation of effort according to learned action policies 
56, 57

.  

Full mixed-effects modeling of time courses 

To maximize the sensitivity in detecting potential drug effect on RPE signals, we 

complemented the common so-called summary statistic random effects analysis by 

implementing a full mixed-effects design (i.e., two-level HLM). Here, we estimated drug 

effects by incorporating group priors based on extracted ROI time series as described by 

Kroemer, Guevara, Ciocanea Teodorescu, Wuttig, Kobiella and Smolka 
58

. To this end, we 

extracted the first eigenvariates from anatomical masks of the nucleus accumbens (NAcc) and 

ventromedial prefrontal cortex (vmPFC) where both MF and MB RPE signals can be 
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observed. This method improves sensitivity of parametric statistics similar to MAP estimation 

for the behavioral data. To estimate drug effects on variables of interest, we allowed for 

interactions of L-DOPA with MF RPEs, MB RPEs, and first-stage action values. All events, 

parametric regressors, and interactions of L-DOPA with parametric regressors were modeled 

as random effects at the participant level and, thereby, led to parameter estimates for each 

individual. 

Full mixed-effects modeling of exploratory behavior (as depicted in Figure 6) 

We evaluated choice probabilities and RT in more detail using the fitted predictions of 

the computational model (M7P) obtained after the MAP estimation for each individual 

participant. We concatenated data from placebo and drug sessions and predicted choice 

probabilities at the first (Figure 6a-b) and second stage (Figure 6a-e). For Figure 6f, we 

predicted second stage RT as the outcome (ln transformed to meet distributional 

assumptions). The setup and output of the full-mixed effects models is detailed in the SI 

(Table S.4). The average reward rate was computed by using a Gaussian moving window 

incorporating the past 5 wins according to a recency-weighting scheme and varied between 0 

(5 omissions in a row) and 1 (5 wins in a row). For statistical analyses, we centered the 

reward rate for each individual session. Thus, the regressor captures residual variance 

throughout a session that is accounted for by the recent stream of success. 

Statistical threshold and software 

For behavioral and ROI analyses, we used α = .05 (two-tailed) as significance 

threshold and performed correction for multiple comparisons based on the hypothesis test as 

detailed in the results section. For fMRI whole-brain analyses, we used one-sided contrast 

maps (mass-univariate t-tests) thresholded at p < .001 to assess cluster size. To facilitate the 

visualization of the involved brain structures, we show the images at a slightly lower 
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threshold as indicated in the figures. To check for robustness, key parametric results were also 

assessed with non-parametric equivalents and corresponding p-values were derived by Monte 

Carlo simulations. To analyze and plot data, we used SPSS v21-23, R v3.2.2 
59

, R Deducer 
60

, 

HLM v7 
51, 52

, Mango v3.6-3.8, and MATLAB v2012-2015. 
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