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Abstract (250 words) 17 

 18 

The vast majority of genome-wide association studies are performed in Europeans, and 19 

their transferability to other populations is dependent on many factors (e.g. linkage 20 

disequilibrium, allele frequencies, genetic architecture). As medical genomics studies 21 

become increasingly large and diverse, gaining insights into population history and 22 

consequently the transferability of disease risk measurement is critical. Here, we 23 
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 2 

disentangle recent population history in the widely-used 1000 Genomes Project 24 

reference panel, with an emphasis on populations underrepresented in medical studies. 25 

To examine the transferability of single-ancestry GWAS, we used published summary 26 

statistics to calculate polygenic risk scores for six well-studied traits and diseases. We 27 

identified directional inconsistencies in all scores; for example, height is predicted to 28 

decrease with genetic distance from Europeans, despite robust anthropological 29 

evidence that West Africans are as tall as Europeans on average. To gain deeper 30 

quantitative insights into GWAS transferability, we developed a complex trait 31 

coalescent-based simulation framework considering effects of polygenicity, causal allele 32 

frequency divergence, and heritability. As expected, correlations between true and 33 

inferred risk were typically highest in the population from which summary statistics were 34 

derived. We demonstrated that scores inferred from European GWAS were biased by 35 

genetic drift in other populations even when choosing the same causal variants, and 36 

that biases in any direction were possible and unpredictable. This work cautions that 37 

summarizing findings from large-scale GWAS may have limited portability to other 38 

populations using standard approaches, and highlights the need for generalized risk 39 

prediction methods and the inclusion of more diverse individuals in medical genomics. 40 

 41 

Introduction 42 

 43 

The majority of genome-wide association studies (GWAS) have been performed in 44 

populations of European descent1-4. An open question in medical genomics is the 45 

degree to which these results transfer to new populations. GWAS have yielded tens of 46 
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thousands of common genetic variants significantly associated with human medical and 47 

evolutionary phenotypes, most of which have replicated in other ethnic groups5-8. 48 

However, GWAS are optimally powered to discover common variant associations, and 49 

the European bias in GWAS results in associated SNPs with higher minor allele 50 

frequencies on average compared to other populations. The predictive power of GWAS 51 

findings in non-Europeans are therefore limited by population differences in allele 52 

frequencies and linkage disequilibrium structure.  53 

 54 

As GWAS sample sizes grow to hundreds of thousands of samples, they also become 55 

better powered to detect rare variant associations9-11. Large-scale sequencing studies 56 

have demonstrated that rare variants show stronger geographic clustering than 57 

common variants12-14. Rare, disease-associated variants are therefore expected to track 58 

with recent population demography and/or be population restricted13,15-17. As the next 59 

era of GWAS expands to evaluate the disease-associated role of rare variants, it is not 60 

only scientifically imperative to include multi-ethnic populations, it is also likely that such 61 

studies will encounter increasing genetic heterogeneity in very large study populations. 62 

A comprehensive understanding of the genetic diversity and demographic history of 63 

multi-ethnic populations is critical for appropriate applications of GWAS, and ultimately 64 

for ensuring that genetics does not contribute to or enhance health disparities4. 65 

 66 

The most recent release of the 1000 Genomes Project (phase 3) provides one of the 67 

largest global reference panels of whole genome sequencing data, enabling a broad 68 

survey of human genetic variation18. The depth and breadth of diversity queried 69 
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facilitates a deep understanding of the evolutionary forces (e.g. selection and drift) 70 

shaping existing genetic variation in present-day populations that contribute to 71 

adaptation and disease19-25. Studies of admixed populations have been particularly 72 

fruitful in identifying genetic adaptations and risk for diseases that are stratified across 73 

diverged ancestral origins26-34. Admixture patterns became especially complex during 74 

the peopling of the Americas, with extensive recent admixture spanning multiple 75 

continents. Processes shaping structure in these admixed populations include sex-76 

biased migration and admixture, isolation-by-distance, differential drift in mainland 77 

versus island populations, and variable admixture timing13,35,36.  78 

 79 

Standard GWAS strategies approach population structure as a nuisance factor. A 80 

typical step-wise procedure first detects dimensions of global population structure in 81 

each individual, using principal component analysis (PCA) or other methods37-40, and 82 

often excludes “outlier” individuals from the analysis and/or corrects for inflation arising 83 

from population structure in the statistical model for association. Such strategies reduce 84 

false positives in test statistics, but can also reduce power for association in 85 

heterogeneous populations, and are less likely to work for rare variant association41-44. 86 

Recent methodological advances have leveraged patterns of global and local ancestry 87 

for improved association power30,45,46, fine-mapping47 and genome assembly48. At the 88 

same time, population genetic studies have demonstrated the presence of fine-scale 89 

sub-continental structure in the African, Native American, and European components of 90 

populations from the Americas49-52. If trait-associated variants follow the same patterns 91 
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of demography, then we expect that modeling sub-continental ancestry may enable 92 

their improved detection in admixed populations. 93 

 94 

In this study, we explore the impact of population diversity on the landscape of variation 95 

underlying human traits. We infer demographic history for the global populations in the 96 

1000 Genomes Project, focusing particularly on admixed populations from the 97 

Americas, which are under represented in medical genetic studies4. We disentangle 98 

local ancestry to infer the ancestral origins of these populations. We link this work to 99 

ongoing efforts to improve study design and disease variant discovery by quantifying 100 

biases in clinical databases and GWAS in diverse and admixed populations. These 101 

biases have a striking impact on genetic risk prediction; for example, a previous study 102 

calculated polygenic risk scores for schizophrenia in East Asians and Africans based on 103 

GWAS summary statistics derived from a European cohort, and found that prediction 104 

accuracy was reduced by more than 50% in non-European populations53. To 105 

disentangle the role of demography on polygenic risk prediction derived from single-106 

ancestry GWAS, we designed a novel coalescent-based simulation framework reflecting 107 

modern human population history and show that polygenic risk scores derived from 108 

European GWAS are biased when applied to diverged populations. Specifically, we 109 

identify reduced variance in risk prediction with increasing divergence from Europe 110 

reflecting decreased overall variance explained, and demonstrate that an enrichment of 111 

low frequency risk and high frequency protective alleles contribute to an overall 112 

protective shift in European inferred risk on average across traits. Our results highlight 113 
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the need for the inclusion of more diverse populations in GWAS as well as genetic risk 114 

prediction methods improving transferability across populations. 115 

 116 

Material and Methods  117 

Ancestry deconvolution 118 

We used the phased haplotypes from the 1000 Genomes consortium. We phased 119 

reference haplotypes from 43 Native American samples from54 inferred to have > 0.99 120 

Native ancestry in ADMIXTURE using SHAPEIT2 (v2.r778)55, then merged the 121 

haplotypes using scripts made publicly available. These combined phased haplotypes 122 

were used as input to the PopPhased version of RFMix v1.5.456 with the following flags: 123 

-w 0.2, -e 1, -n 5, --use-reference-panels-in-EM, --forward-backward. The node size of 5 124 

was selected to reduce bias in random forests resulting from unbalanced reference 125 

panel sizes (AFR panel N=504, EUR panel N=503, and NAT panel N=43). We used the 126 

default minimum window size of 0.2 cM to enable model comparisons with previously 127 

inferred models using Tracts57. We used 1 EM iteration to improve the local ancestry 128 

calls without substantially increasing computational complexity. We used the reference 129 

panel in the EM to take better advantage of the Native American ancestry tracts from 130 

the Hispanic/Latinos in the EM given the small NAT reference panel. We set the LWK, 131 

MSL, GWD, YRI, and ESN as reference African populations, the CEU, GBR, FIN, IBS, 132 

and TSI as reference European populations, and the samples from Mao et al54 with 133 

inferred > 0.99 Native ancestry as reference Native American populations, as 134 

previously58. 135 

 136 
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Ancestry-specific PCA 137 

We performed ancestry-specific PCA, as described in35. The resulting matrix is not 138 

necessarily orthogonalized, so we subsequently performed singular value 139 

decomposition in python 2.7 using numpy. There were a small number of major outliers, 140 

as seen previously35. There was one outlier (ASW individual NA20314) when analyzing 141 

the African tracts, which was expected as this individual has no African ancestry. There 142 

were 8 outliers (PUR HG00731, PUR HG00732, ACB HG01880, ACB HG01882, PEL 143 

HG01944, ACB HG02497, ASW NA20320, ASW NA20321) when analyzing the 144 

European tracts. Some of these individuals had minimal European ancestry, had South 145 

or East Asian ancestry misclassified as European ancestry resulting from a limited 3-146 

way ancestry reference panel, or were unexpected outliers. As described in the 147 

PCAmask manual, a handful of major outliers sometimes occur. As AS-PCA is an 148 

iterative procedure, we therefore removed the major outliers for each sub-continental 149 

analysis and orthogonalized the matrix on this subset. 150 

 151 

Tracts 152 

The RFMix output was collapsed into haploid bed files, and “UNK” or unknown ancestry 153 

was assigned where the posterior probability of a given ancestry was < 0.90. These 154 

collapsed haploid tracts were used to infer admixture timings, quantities, and 155 

proportions for the ACB and PEL (new to phase 3) using Tracts57. Because the ACB 156 

have a very small proportion of Native American ancestry, we fit three 2-way models of 157 

admixture, including one model of single- and two models of double-pulse admixture 158 

events, using Tracts. In both of the double-pulse admixture models, the model includes 159 
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an early mixture of African and European ancestry followed by another later pulse of 160 

either European or African ancestry. We randomized starting parameters and fit each 161 

model 100 times and compared the log-likelihoods of the model fits. The single-pulse 162 

and double-pulse model with a second wave of African admixture provided the best fits 163 

and reached similar log-likelihoods, with the latter showing a slight improvement in fit. 164 

 165 

We next assessed the fit of 9 different models in Tracts for the PEL57, including several 166 

two-pulse and three-pulse models. Ordering the populations as NAT, EUR, and AFR, 167 

we tested the following models: ppp_ppp, ppp_pxp, ppp_xxp, ppx_xxp, ppx_xxp_ppx, 168 

ppx_xxp_pxx, ppx_xxp_pxp, ppx_xxp_xpx, and ppx_xxp_xxp, where the order of each 169 

letter corresponds with the order of populations given above, an underscore indicates a 170 

distinct migration event with the first event corresponding with the most generations 171 

before present, p corresponding with a pulse of the ordered ancestries, and x 172 

corresponding with no input from the ordered ancestries. We tested all 9 models 173 

preliminarily 3 times, and for all models that converged and were within the top 3 174 

models, we subsequently fit each model with 100 starting parameters randomizations. 175 

 176 

Imputation accuracy 177 

Imputation accuracy was calculated using a leave-one-out internal validation approach. 178 

Two array designs were compared for this analysis: Illumina OmniExpress and 179 

Affymetrix Axiom World Array LAT. Sites from these array designs were subset from 180 

chromosome 9 of the 1000 Genomes Project Phase 3 release for admixed populations. 181 
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After fixing these sites, each individual was imputed using the rest of the dataset as a 182 

reference panel. 183 

 184 

Overall imputation accuracy was binned by minor allele frequency (0.5-1%, 1-2%, 2-3%, 185 

3-4%, 4-5%, 5-10%, 10-20%, 20-30%, 30-40%, 40-50%) comparing the genotyped true 186 

alleles to the imputed dosages. A second round of analyses stratified the imputation by 187 

local ancestry diplotype, which was estimated as described earlier. Within each 188 

ancestral diplotype (AFR_AFR, AFR_NAT, AFR_EUR, EUR_EUR, EUR_NAT, 189 

NAT_NAT), imputation accuracy was again estimated within MAF bins.  190 

 191 

Empirical polygenic risk score inferences 192 

To compute polygenic risk scores in the 1000 Genomes samples using summary 193 

statistics from previous GWAS, we first filtered to biallelic SNPs and removed 194 

ambiguous AT/GC SNPs from the integrated 1000 Genome call set. To get relatively 195 

independent associations taking LD into account when multiple significant p-value 196 

associations are in the same region in a GWAS, we performed LD clumping in plink (--197 

clump) for all variants with MAF ≥ 0.0159, which uses a greedy algorithm ordering SNPs 198 

by p-value, then selectively removes SNPs within close proximity and LD in ascending 199 

p-value order (i.e. starting with the most significant SNP). As a population cohort with 200 

similar LD patterns to the study sets, we used European 1000 Genomes samples (CEU, 201 

GBR, FIN, IBS, and TSI). To compute the polygenic risk scores, we considered all 202 

SNPs with p-values ≤ 1e-2 in the GWAS study, a window size of 250 kb, and an R2 203 
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threshold of 0.5 in Europeans to group SNPs. After obtaining the top clumped signals, 204 

we computed scores using the --score flag in plink. 205 

 206 

Polygenic risk score simulations 207 

We simulated genotypes in a coalescent framework with msprime v0.4.060 for 208 

chromosome 20 incorporating a recombination map of GRCh37 and an assumed 209 

mutation rate of 2e-8 mutations / (base pair * generation). We used a demographic 210 

model previously inferred using 1000 Genomes sequencing data13 to simulate 211 

individuals that reflect European, East Asian, and African population histories. We focus 212 

on these populations as the demography has previously been modeled and this avoids 213 

the challenges of simulating the geographically heterogeneous52 and sex-biased 214 

process of admixture in the Americas61. To imitate a GWAS with European sample bias 215 

and evaluate polygenic risk scores in other populations, we simulated 200,000 216 

European individuals, 200,000 East Asian, and 200,000 African individuals. Next, we 217 

assigned “true” causal effect sizes to m evenly spaced alleles. Specifically, we randomly 218 

assigned effect sizes as: 219 

  220 

where the normal distribution is specified by the mean and standard deviation (as in 221 

python’s numpy package). For all other non-causal sites, the effect size is zero. We 222 

then define X as: 223 

 224 

� ⇠ N(0,
h2

m
)

X =
mX

i=1

gi�i
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where the gi are the genotype states (i.e. 0, 1, or 2). To handle varying allele 225 

frequencies, potential weak LD between causal sites, ensure a neutral model with 226 

random true polygenic risks with respect to allele frequencies, and to obtain the total 227 

desired variance, we normalize X as: 228 

 229 

We then compute the true polygenic risk score, as: 230 

 231 

such that the total variance of the scores is h2. We also simulated environmental noise 232 

and standardize to ensure equal variance between normalized genetic and 233 

environmental effects before, defining the environmental effect E as: 234 

 235 

such that the total variance of the environmental effect is 1 – h2. We then define the 236 

total liability as: 237 

 238 

We assigned 10,000 European individuals at the most extreme end of the liability 239 

threshold “case” status assuming a prevalence of 5%. We randomly assigned 10,000 240 

different European individuals “control” status. We ran a GWAS with these 10,000 241 

European cases and 10,000 European controls, computing Fisher’s exact test for all 242 

ZX =
X � µX

�X

G =
p
h2 ⇤ ZX

✏ =N(0, 1� h2)

Z✏ =
✏� µ✏

�✏

E =
p

1� h2 ⇤ Z✏

L =
p
h2 ⇤ ZX +

p
1� h2 ⇤ Z✏

=G+ E
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sites with MAF > 0.01. As before for empirical polygenic risk score calculations from real 243 

GWAS summary statistics, we clumped these SNPs into LD blocks for all sites with p ≤ 244 

1e-2, R2 ≥ 0.5 in Europeans, and within a window size of 250 kb. We used these SNPs 245 

to compute inferred polygenic risk scores as before, summing the product of the log 246 

odds ratio and genotype for the true polygenic risk in a cohort of 10,000 simulated 247 

European, African, and East Asian individuals (all not included in the simulated GWAS). 248 

We compared the true versus inferred polygenic risk scores for these individuals across 249 

varying complexities (m = 200, 500, 1000) and heritabilites (h2
 = 0.33, 0.50, 0.67). 250 

 251 

Results 252 

Genetic diversity within and between populations in the Americas 253 

We first assessed the overall diversity at the global and sub-continental level of the 254 

1000 Genomes Project (phase 3) populations18 using a likelihood model via 255 

ADMIXTURE62 and PCA63 (Figure S1 and Figure S2). The six populations from the 256 

Americas demonstrate considerable continental admixture, with genetic ancestry 257 

primarily from Europe, Africa, and the Americas, recapitulating previously observed 258 

population structure18. To quantify continental genetic diversity in these populations, we 259 

repeated the analysis using YRI, CEU, and NAT samples54 as reference panels 260 

(population labels and abbreviations in Table S1). We observed widely varying 261 

continental admixture contributions in the six populations from the Americas at K=3 262 

(Figure 1A and Table S2). For example, when compared to the ASW, the ACB have a 263 

higher proportion of African ancestry (μ = 0.88, 95% CI = [0.87-0.89] versus μ = 0.76, 264 

95% CI = [0.73-0.78]; two-sided t-test p=3.0e-13) and a smaller proportion of EUR and 265 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2016. ; https://doi.org/10.1101/070797doi: bioRxiv preprint 

https://doi.org/10.1101/070797
http://creativecommons.org/licenses/by-nc/4.0/


 13 

NAT ancestry. The PEL have more NAT ancestry than all of the other AMR populations 266 

(μ = 0.77, 95% CI = [0.75-0.80] versus CLM: μ = 0.26, 95% CI = [0.24, 0.27], p=2.9e-95; 267 

PUR: μ = 0.13, 95% CI = [0.12, 0.13], p=4.8e-93; and MXL: μ = 0.47, 95% CI = [0.43, 268 

0.50], p=1.7e-28) ascertained in 1000 Genomes. 269 

 270 

We explored the origin of the subcontinental-level ancestry from recently admixed 271 

individuals by identifying local ancestry tracts29,35,56,64 (Methods, Figure S3). As proxy 272 

source populations for the recent admixture, we used EUR and AFR continental 273 

samples from the 1000 Genomes Project as well as NAT samples genotyped 274 

previously54. Concordance between global ancestry estimates inferred using 275 

ADMIXTURE at K=5 and RFMix was typically high (Pearson’s correlation ≥ 98%, see 276 

Figure S4). Using Tracts57, we modeled the length distribution of the AFR, EUR, and 277 

NAT tracts to infer that admixing began ~12 and ~8 generations ago in the PEL and 278 

ACB populations, respectively (Figure S5), consistent with previous estimates from 279 

other populations from the Americas49,57,65. 280 

 281 

We further investigated the subcontinental ancestry of admixed populations from the 282 

Americas one ancestry at a time using a version of PCA modified to handle highly 283 

masked data (ancestry-specific or AS-PCA) as implemented in PCAmask66. Example 284 

ancestry tracts in a PEL individual subset to AFR, EUR, and NAT components are 285 

shown in Figure 1B, D, and F, respectively. Consistent with previous observations, the 286 

inferred European tracts in Hispanic/Latino populations most closely resemble southern 287 

European IBS and TSI populations with some additional drift35 (Figure 1E). The 288 
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European tracts of the PUR are more differentiated compared to the CLM, MXL, and 289 

PEL populations, consistent with sex bias (Figure S6 and Table S3) and excess drift 290 

from founder effects in this island population35. In contrast to the southern European 291 

tracts from the Hispanic/Latino populations, the African descent populations in the 292 

Americas have European admixture that more closely resembles the northwestern CEU 293 

and GBR European populations. The clusters are less distinct, owing to lower overall 294 

fractions of European ancestry, however the European components of the 295 

Hispanic/Latino and African American populations are significantly different (Wilcoxan 296 

rank sum test p=2.4e-60).  297 

 298 

The ability to localize aggregated ancestral genomic tracts enables insights into the 299 

evolutionary origins of admixed populations. To disentangle whether the considerable 300 

Native American ancestry in the ASW individuals arose from recent admixture with 301 

Hispanic/Latino individuals or recent admixture with indigenous Native American 302 

populations, we queried the European tracts. We find that the European tracts of all 303 

ASW individuals with considerable Native American ancestry are well within the ASW 304 

cluster and project closer in Euclidean distance with AS-PC1 and AS-PC2 to 305 

northwestern Europe than the European tracts from Hispanic/Latino samples (p=1.15e-306 

3), providing support for the latter hypothesis and providing regional nuance to previous 307 

findings49.  308 

 309 

We also investigated the African origin of the admixed AFR/AMR populations (ACB and 310 

ASW), as well as the Native American origin of the Hispanic/Latino populations (CLM, 311 
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MXL, PEL, and PUR). The African tracts of ancestry from the AFR/AMR populations 312 

project closer to the YRI and ESN of Nigeria than the GWD, MSL, and LWK populations 313 

(Figure 1C). This is consistent with slave records and previous genome-wide analyses 314 

of African Americans indicating that most sharing occurred in West and West-Central 315 

Africa67-69. There are subtle differences between the African origins of the ACB and 316 

ASW populations (e.g. difference in distance from YRI on AS-PC1 and AS-PC2 p=6.4e-317 

6), likely due either to mild island founder effects in the ACB samples or differences in 318 

African source populations for enslaved Africans who remained in Barbados versus 319 

those who were brought to the US. The Native tracts of ancestry from the AMR 320 

populations first separate the southernmost PEL populations from the CLM, MXL, and 321 

PUR on AS-PC1, then separate the northernmost MXL from the CLM and PUR on AS-322 

PC2, consistent with a north-south cline of divergence among indigenous Native 323 

American ancestry (Figure 1G). 35,70 324 

 325 

Impact of continental and sub-continental diversity on disease variant mapping 326 

To investigate the role of ancestry in phenotype interpretation from genetic data, we 327 

assessed diversity across populations and local ancestries for recently admixed 328 

populations across the whole genome and sites from two reference databases: the 329 

GWAS catalog and ClinVar pathogenic and likely pathogenic sites. We recapitulate 330 

results showing that there is less variation across the genome (both genome-wide and 331 

on the Affymetrix 6.0 GWAS array sites used in local ancestry calling) in out-of-Africa 332 

versus African populations, but that GWAS variants are more polymorphic in European 333 

and Hispanic/Latino populations (Figure S7A-B, Figure S8A-B). We use a normalized 334 
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measure of the minor allele frequency, an indicator of the amount of diversity captured 335 

in a population, to obtain a background coverage of each population, as done previously 336 

(e.g. Figure S4 from phase 3 of the 1000 Genomes Project18). We show that the 337 

Affymetrix 6.0 array has a slight European bias (Figure S5A and Figure S6A). We 338 

compared the site frequency spectrum of variants across the genome versus at GWAS 339 

catalog sites, and identify elevated allele frequencies at GWAS catalog loci, particularly 340 

in populations with more European ancestry (e.g. the EUR, AMR, and SAS super 341 

populations, Figure S5C-D). We further compared heterozygosity (estimated here as 342 

2pq) and the site frequency spectrum in recently admixed populations across diploid 343 

and haploid local ancestry tracts, respectively. Sites in the GWAS catalog and ClinVar 344 

are more and less common than genome-wide variants, respectively (Figure 2). 345 

Whereas heterozygosity across the whole genome is highest in African ancestry tracts, 346 

it is consistently the greatest in European ancestry tracts across these databases 347 

(Figure 2 and Figure S8C-D), reflecting a strong bias towards European study 348 

participants1-4,18,71. These results highlight imbalances in genome interpretability across 349 

local ancestry tracts in recently admixed populations and the utility of analyzing these 350 

variants jointly with these ancestry tracts over genome-wide ancestry estimates alone. 351 

 352 

We also assessed imputation accuracy across the 3-way admixed populations from the 353 

Americas (CLM, MXL, PEL, PUR) for two arrays: the Illumina OmniExpress and the 354 

Affymetrix Axiom World Array LAT. Imputation accuracy was estimated as the 355 

correlation (r2) between the original genotypes and the imputed dosages. For both array 356 

designs, imputation accuracy across all minor allele frequency (MAF) bins was highest 357 
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for populations with the largest proportion of European ancestry (PUR) and lowest for 358 

populations with the largest proportion of Native American ancestry (PEL, Figure S9A-359 

B). We also stratified imputation accuracy by local ancestry tract diplotype within the 360 

Americas. Consistently, tracts with at least one Native American ancestry tract had 361 

lower imputation accuracy when compared to tracts with only European and/or African 362 

ancestry (Figure 3 and Figure S10).  363 

 364 

Transferability of GWAS findings across populations 365 

To quantify the transferability of European-biased genetic studies to other populations, 366 

we next used published GWAS summary statistics to infer polygenic risk scores72 367 

across populations for well-studied traits, including height9, waist-hip ratio73, 368 

schizophrenia10, type II diabetes74,75, and asthma76 (Figure 4A-D, Figure S11, 369 

Methods). Most of these summary statistics are derived from studies with primarily 370 

European cohorts, although GWAS of type II diabetes have been performed in both 371 

European-specific cohorts as well as across multi-ethnic cohorts. We identify clear 372 

directional inconsistencies in these score inferences. For example, although the height 373 

summary statistics show the expected cline of southern/northern cline of increasing 374 

European height (FIN, CEU, and GBR populations have significantly higher polygenic 375 

risk scores than IBS and TSI, p=1.5e-75, Figure S9A), polygenic scores for height 376 

across super populations show biased predictions. For example, the African populations 377 

sampled are genetically predicted to be considerably shorter than all Europeans and 378 

minimally taller than East Asians (Figure 4A), which contradicts empirical observations 379 

(with the exception of some indigenous pygmy/pygmoid populations)77,78. Additionally, 380 
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polygenic risk scores for schizophrenia, while at a similar prevalence across populations 381 

where it has been well-studied79 and sharing significant genetic risk across 382 

populations80, shows considerably decreased scores in Africans compared to all other 383 

populations (Figure 4B). Lastly, the relative order of polygenic risk scores computed for 384 

type II diabetes across populations differs depending on whether the summary statistics 385 

are derived from a European-specific (Figure 4C) or multi-ethnic (Figure 4D) cohort. 386 

 387 

Ancestry-specific biases in polygenic risk score estimates 388 

We performed coalescent simulations to determine how GWAS signals discovered in 389 

one ancestral case/control cohort (i.e. ‘single-ancestry’ GWAS) are expected to impact 390 

polygenic risk score estimates in other populations under neutrality using summary 391 

statistics (for details, see Methods). Briefly, we simulated variants according to a 392 

previously published demographic model inferred from Africans, East Asians, and 393 

Europeans13. We specified “causal” alleles and effect sizes randomly, such that each 394 

causal variant has evolved neutrally and has a mean effect of zero with the standard 395 

deviation equal to the global heritability divided by number of causal variants. We then 396 

computed the true polygenic risk for each individual as the product of the estimated 397 

effect sizes and genotypes, then standardized the scores across all individuals. We 398 

calculated the total liability as the sum of the genetic and random environmental 399 

contributions, then identified 10,000 European cases with the most extreme liabilities 400 

and 10,000 other European controls. We then computed Fisher’s exact tests with this 401 

European case-control cohort, then quantified inferred polygenic risk scores as the sum 402 
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of the product of genotypes and log odds ratios for 10,000 samples per population not 403 

included in the GWAS.  404 

 405 

In our simulations and consistent with realistic coalescent models, most variants are 406 

rare and population-specific; “causal” variants are sampled from the global site 407 

frequency spectrum, resulting in subtle differences in true polygenic risk across 408 

populations (Figure S12, Figure 5B-D). We mirrored standard practices for performing 409 

a GWAS and computing polygenic risk scores (see above and Methods). We find that 410 

the correlation between true and inferred polygenic risk is generally low (Figure 5A, 411 

Figure S13), consistent with limited variance explained by polygenic risk scores from 412 

GWAS of these cohort sizes for height (e.g. ~10% of variance explained for a cohort of 413 

size 183,72781) and schizophrenia (e.g. ~7% variance explained for a cohort of size 414 

36,989 cases and 113,075 controls10). Low correlations in our simulations are most 415 

likely because common tag variants are a poor proxy for rare causal variants. As 416 

expected, correlations between true and inferred risk within populations are typically 417 

highest in the European population (i.e. the population in which variants were 418 

discovered, Figure 5A and Figure S13). Across all populations, the mean Spearman 419 

correlations between true and inferred polygenic risk increase with increasing heritability 420 

while the standard deviation of these correlations significantly decreases (p=0.05); 421 

however, there is considerable within-population heterogeneity resulting in high 422 

variation in scores across all populations. We find that in these neutral simulations, a 423 

polygenic risk score bias in essentially any direction is possible even when choosing the 424 

exact same causal variants, heritability, and varying only fixed effect size (i.e. inferred 425 
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polygenic risk in Europeans can be higher, lower, or intermediate compared to true risk 426 

relative to East Asians or Africans, Figure S12, Figure 5B-D).  427 

 428 

While causal variants in our simulations are drawn from the global site frequency 429 

spectrum and are therefore mostly rare, inferred scores are derived specifically from 430 

common variants that are typically much more common in the study population than 431 

elsewhere (here Europeans with case/control MAF ≥ 0.01). Consequently, the 432 

distribution of mean true polygenic risk across simulation runs for each population are 433 

not significantly different (Figure 5E); however, inferred risk is considerably less than 434 

zero in Europeans (p=1.9e-54, 95% CI=[-84.3, -67.4]), slightly less than zero in East 435 

Asians (p=5.9e-5, 95% CI=[-19.1, -6.6]) and not significantly different from zero in 436 

Africans, with variance in risk scores decreasing with this trend (Figure 5F). The scale 437 

is orders of magnitude different between the true and inferred unstandardized scores, 438 

cautioning that while they are informative on a relative scale (Figure 5A and Figure 439 

S11), their absolute scale should not be overinterpreted. The inferred risk difference 440 

between populations is driven by the increased power to detect minor risk alleles rather 441 

than protective alleles in the study population82, given the differential selection of cases 442 

and controls in the liability threshold model. We demonstrate this empirically in these 443 

neutral simulations within the European population (Figure 5G), indicating that this 444 

phenomenon occurs even in the absence of population structure and when case and 445 

control cohort sizes are equal. 446 

 447 

Discussion 448 
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To date, GWAS have been performed opportunistically in primarily single-ancestry 449 

European cohorts, and an open question remains about their biomedical relevance for 450 

disease associations in other ancestries. As studies gain power by increasing sample 451 

sizes, effect size estimates become more precise and novel associations at lower 452 

frequencies are feasible. However, rare variants are largely population-private, and their 453 

effects are unlikely to transfer to new populations. Because linkage disequilibrium and 454 

allele frequencies vary across ancestries, effect size estimates from diverse cohorts are 455 

typically more precise than from single-ancestry cohorts (and often tempered)5, and the 456 

resolution of causal variant fine-mapping is considerably improved75. Across a range of 457 

genetic architectures, diverse cohorts provide the opportunity to reduce false positives. 458 

At the Mendelian end of the spectrum, for example, disentangling risk variants with 459 

incomplete penetrance from benign false positives and localizing functional effects in 460 

genes is much more feasible with large diverse population cohorts than possible with 461 

single-ancestry analyses83,84. Multiple false positive reports of pathogenic variants 462 

causing hypertrophic cardiomyopathy, a disease with relatively simple genomic 463 

architecture, have been returned to patients of African descent or unspecified ancestry 464 

that would have been prevented if even a small number of African American samples 465 

were included in control cohorts85. At the highly complex end of the polygenicity 466 

spectrum, we and others have shown that the utility of polygenic risk inferences and the 467 

heritable phenotypic variance explained in diverse populations is improved with more 468 

diverse cohorts80,86. 469 

 470 
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Standard single-ancestry GWAS typically apply linear mixed model approaches and/or 471 

incorporate principal components as covariates to control for confounding from 472 

population structure with primarily European-descent cohorts1-3. A key concern when 473 

including multiple diverse populations in a GWAS is that there is increasing likelihood of 474 

identifying false positive variants associated with disease that are driven by allele 475 

frequency differences across ancestries. However, previous studies have analyzed 476 

association data for diverse ancestries and replicated findings across ethnicities, 477 

assuaging these concerns7,75,87. In this study, we show that this ancestry stratification is 478 

not continuous along the genome: long tracts of ancestrally diverse populations present 479 

in admixed samples from the Americas are easily and accurately detected. Querying 480 

population substructure within these tracts recapitulates expected trends, e.g. European 481 

ancestry in African Americans primarily descends from northern Europeans in contrast 482 

to European ancestry from Hispanic/Latinos, which primarily descends from southern 483 

Europeans, as seen previously49. Additionally, population substructure follows a north-484 

south cline in the Native component of Hispanic/Latinos, and the African component of 485 

admixed African descent populations in the Americas most closely resembles reference 486 

populations from Nigeria (albeit given the limited set of African populations from The 487 

1000 Genomes Project). Admixture mapping has been successful at large sample sizes 488 

for identifying ancestry-specific genetic risk factors for disease88. Given the level of 489 

accuracy and subcontinental-resolution attained with local ancestry tracts in admixed 490 

populations, we emphasize the utility of a unified framework to jointly analyze genetic 491 

associations with local ancestry simultaneously45.  492 

 493 
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The transferability of GWAS is aided by the inclusion of diverse populations89. We have 494 

shown that European discovery biases in GWAS are recapitulated in local ancestry 495 

tracts in admixed samples. We have quantified GWAS study biases in ancestral 496 

populations and shown that GWAS variants are at lower frequency specifically within 497 

African and Native tracts and higher frequency in European tracts in admixed American 498 

populations. Imputation accuracy is also stratified across diverged ancestries, including 499 

across local ancestries in admixed populations. With decreased imputation accuracy 500 

especially on Native American tracts, there is decreased power for potential ancestry-501 

specific associations. This differentially limits conclusions for GWAS in an admixed 502 

population in a two-pronged manner: the ability to capture variation and the power to 503 

estimate associations.  504 

 505 

As GWAS scale to sample sizes on the order of hundreds of thousands to millions, 506 

genetic risk prediction accuracy at the individual level improves90. However, we show 507 

that the utility of polygenic risk scores computed using GWAS summary statistics are 508 

dependent on genetic similarity to the discovery cohort. BLUP risk prediction methods 509 

have been proposed to improve risk scores, but they require access to raw genetic data 510 

typically from very large datasets, are also dependent on LD structure in the study 511 

population, and only offer modest improvements in prediction accuracy91. Furthermore, 512 

polygenic risk scores contain a mix of true positives (which have the bias described 513 

above) and false positives in the training GWAS. False positives, being chance 514 

statistical fluctuations, do not have the same allele frequency bias and therefore 515 

unfortunately play an outsized role in applying a PRS in a new population.  516 
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 517 

We have demonstrated that polygenic risk computed from summary statistics in a 518 

single-ancestry cohort can be biased in essentially any direction across diverse 519 

populations simply as a result of genetic drift, limiting their interpretability; directional 520 

selection is expected to bias polygenic risk inferences even more. Because biases arise 521 

from genetic drift alone, we recommend: 1) avoiding interpretations from polygenic risk 522 

score differences extrapolated across populations, as these are likely confounded by 523 

latent population structure that is not properly corrected for with current methods, 2) 524 

mean-centering polygenic risk scores for each population, and 3) computing polygenic 525 

risk scores in populations with similar demographic histories as the study sample to 526 

ensure maximal predictive power. Further, additional methods that account for local 527 

ancestry in genetic risk prediction to incorporate different ancestral linkage 528 

disequilibrium and allele frequencies are needed. This study demonstrates the utility of 529 

disentangling ancestry tracts in recently admixed populations for inferring recent 530 

demographic history and identifying ancestry-stratified analytical biases; we also 531 

motivate the need to include more ancestrally diverse cohorts in GWAS to ensure that 532 

health disparities arising from genetic risk prediction do not become pervasive in 533 

individuals of admixed and non-European descent.  534 
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Figure 1 – Sub-continental diversity and origins of African, European, and Native 577 

American components of recently admixed Americas populations. A) ADMIXTURE 578 

analysis at K=3 focusing on admixed Americas samples, with the NAT54, CEU, and YRI 579 

as reference populations. B,D,F) Local ancestry karyograms for representative PEL 580 

individual HG01893 with B) African, D) European, and F) Native American components 581 

shown. C,E,G) Ancestry-specific PCA applied to admixed haploid genomes as well as 582 

ancestrally homogeneous continental reference populations from 1000 Genomes 583 

(where possible) for C) African tracts, E) European tracts, and G) Native American 584 

tracts. A small number of admixed samples that constituted major outliers from the 585 

ancestry-specific PCA analysis were removed, including C) 1 ASW sample (NA20314) 586 

and E) 8 samples, including 3 ACB, 2 ASW, 1 PEL, and 2 PUR samples. 587 
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Figure 2 – Heterozygosity (estimated here as 2pq) in admixed populations stratified by 589 

diploid local ancestry in A) the whole genome, B) sites from the GWAS catalog, and C) 590 

sites from ClinVar classified as “pathogenic” or “likely pathogenic.” The mean and 95% 591 

confidence intervals were calculatated by bootstrapping 1000 times. Populations not 592 

shown in a given panel have too few diploid ancestry tracts overlapping sites to 593 

calculate heterozygosity. 594 

 595 

 596 

Figure 3 - Imputation accuracy by population assessed using a leave-on-out strategy, 597 

stratified by diploid local ancestry on chromosome 9 for the Illumina OmniExpress 598 

genotyping array. 599 
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 600 
Figure 4 - Biased genetic discoveries influence disease risk inferences. A-D) Inferred 601 

polygenic risk scores across individuals colored by population for: A) height based on 602 

summary statistics from 9. B) schizophrenia based on summary statistics from 10. C) 603 

type II diabetes summary statistics derived from a European cohort from 74. D) type II 604 

diabetes summary statistics derived from a multiethnic cohort from 75. 605 
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 606 
Figure 5 - Coalescent simulation results for true vs inferred polygenic risk scores 607 

computed from GWAS summary statistics with 10,000 cases and 10,000 controls 608 

modeling European, East Asian, and African population history (demographic 609 

parameters from 13). A) Violin plots show Pearson’s correlation across 50 iterations per 610 

parameter set between true and inferred polygenic risk scores across differing genetic 611 

architectures, including m=200, 500, and 1,000 causal variants and h2=0.67. The “ALL” 612 

population correlations were performed on population mean-centered true and inferred 613 

polygenic risk scores. B-D) Standardized true versus inferred polygenic risk scores for 3 614 
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different coalescent simulations showing 10,000 randomly drawn samples from each 615 

population not included as cases or controls. E-F) The distribution for each population 616 

across 500 simulations with m=1000 causal variants and h2=0.67 of: E) unstandardized 617 

mean true polygenic risk and F) unstandardized mean inferred polygenic risk. G) Allele 618 

frequency versus inferred odds ratio for sites included in inferred polygenic risk scores 619 

for each population across 500 simulations, as in E-F). 620 
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