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both the attended and the ignored stimulus stream. Two alternative EEG signals representing the 

scenarios Attend A and Attend B were predicted. The prediction corresponding to the to-be-attended 

stream was called true and the other one false. Goodness of fit was quantified by Pearson-correlation 

coefficient of the true predicted and the measured EEG signal. For further statistical analyses, this 

coefficient was Fisher-z-transformed and called ztrue, whereas its counterpart zfalse was equivalently 

computed by correlation of the false prediction and the measured EEG signal. Our approach to 

classification relies on the assumption that the true prediction better fits the measured EEG signal and 

thus leads to more positive correlation coefficients than the false prediction. Based on that, the 

percentage of correctly classified trials will be referred to as classification accuracy. 

 

3.1 Response functions reveal consistent attention-related differences 

Applying ridge regression to obtain a forward models is known to return response functions comparable 

to ERPs (Lalor et al 2009, Fiedler et al 2016). Beyond that, ridge regression can be applied on data 

measured during the presentation of continuous stimuli such as speech. According to (5), the 

aforementioned difference between the correlation coefficients ztrue and zfalse (see below) has to arise 

from differences between the response functions of the attended and ignored stimuli. 

An inspection of the grand average response functions in the dichotic oddball task (figure 4A) indicated 

that we extracted components equivalent to a P50-N100-P200 complex. The grand average response 

functions (figure 4A) suggest an enhanced N100-equivalent component in responses to attended tones, 

which can be confirmed by the consistent differences of the responses to attended and ignored tones 

(figure 4C). All subjects show a negative deflection in responses to attended tones at around 160 ms, 

while all but one of the subjects show a positive deflection in responses to attended tones at around 380 

ms. The topographies of the differences at time lag of maximal deflections show a bilateral pattern.  

In the audiobooks task, a clear P50-N100-P200-equivalent complex could be found in the responses to 

the attended speaker (figure 4B). The responses to the ignored speaker show only weak magnitudes and 

suggest a suppression of the responses to the ignored speaker. Compared to the oddball task, this is 

leading to a greater difference between the responses to the attended and the ignored speaker (figure 

4D). Again, the differences of the single subject’s response functions show a consistent pattern with a 

common negative deflection at a time lag of 130 ms and a later positive deflection at around 250 ms 

(figure 5D). The topographies of the components at 130 ms and 260 ms both have fronto-central patterns, 

spreading out towards temporal regions. 

In both tasks, we have found response functions that show consistent patterns across subjects. In 

particular, the deflections between responses to attended and ignored stimuli are prerequisites for a 
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single channel classification approach (see above). Most interesting, these deflections could even be 

recorded at scalp-EEG electrodes located close to its in-Ear-EEG reference electrode. 

 

 

Figure 4: Response functions. Response functions shown here were obtained from potential difference 

between left in-Ear-EEG and FT7 electrode.   A) Grand average response functions to both attended and 

ignored tones in the oddball task. B) Grand average response functions to both attended and ignored 

speaker in the audiobooks task. C) and D) show single subject data of difference between response 

functions in the oddball task and in the audiobooks task, respectively. Topographies show grand average 

weightings at time lags of maximal difference between the response functions (i.e., attended–ignored). 

 

3.2 Goodness of fit as a basis for identifying the attended stream 

Goodness of fit was defined as correlation coefficient resulting from the Pearson-correlation of the 

measured EEG signal and the predicted EEG signal that consists of the responses to the to-be-attended 

and to-be-ignored stream (i.e., true prediction).  
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In Figure 3A & B, goodness of fit in dependence of λ is shown. Generally, the average goodness of fit 

with values in a range of 0.02–0.15 (oddballs: mean = 0.12, range 0.08–0.15; audiobooks: mean = 0.04, 

range: 0.02–0.06) seems weak. In order to statistically evaluate if the correlations of the predicted and 

the measured EEG signals provide valuable information for classification, we investigated the 

distribution of the Fisher-z-transformed Pearson-correlation coefficients ztrue and zfalse. Figure 5A & B 

show the distribution of the correlation coefficients in both tasks, where every single dot represents a 

single trial performed by a (colour-coded) single subject. The correlation of the true prediction and the 

measured EEG signal (ztrue) tends to be greater than its counterpart zfalse in the majority of the trials 

(figure 5A & B). The difference ztrue — zfalse was found to be significantly above zero for each subject 

(one-sample t-test, oddballs: six subjects p < 0.001, one subject p < 0.01, dof = 40, figure 5C; 

audiobooks: two subjects p < 0.001, one subject p < 0.01, one subject p < 0.05, dof = 60, figure 5D), 

suggesting it to be a valuable basis for deciding which of the streams is attended. 

In order to evaluate which electrode configuration provides best inference on identification of the 

attended speaker, we inspected the grand average topographies (figure 5C & D) of the single subject t-

values obtained from the distribution of the difference between ztrue and zfalse (see above). Strongest 

effects were found at in-Ear-EEG configurations incorporating fronto-central scalp-EEG channels. 

Interestingly, in both tasks highest t-values were observed for configurations consisting of scalp-EEG 

electrodes (i.e. FT7, FT8, T7, T8) close to the ear that the reference in-Ear-EEG electrode was placed 

in. 

Generally, the analysis of goodness of fit gave insight how a set of two electrodes consisting of one 

electrode in the ear canal and another at the scalp close to the ear should be oriented in order to explain 

attention related variance in the EEG signal caused by auditory stimulation. 
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Figure 5: Prediction and classification accuracy. Single subject data shown here were 

obtained from potential difference between left in-Ear-EEG and FT7 electrode. Topographies 

show grand average data. A&B) Each dot represents the relation of both Pearson-correlations 

ztrue and zfalse in single trials of the oddball task. C&D) Distributions of the difference ztrue – zfalse 

for single subjects, which were tested against zero (t-test). Topographies show grand average t-

values. E&F) Classification accuracy based on the difference ztrue–zfalse. horizontal lines indicate 

significance above chance based in a binominal distribution. Topographic maps show grand 

average classification accuracy. At highlighted channels, classification accuracy was found to be 

above chance consistently across subjects (bootstrap, 2000 iterations). 
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3.3 The attended stream can be identified from single-channel configurations 

Classification accuracy was defined as the percentage of trials the predicted EEG signal labeled true 

yields a more positive Pearson-correlation coefficient with the measured EEG signal than the predicted 

EEG signal labeled false. For statistical analyses, Pearson-correlation coefficients were Fisher-z-

transformed and called ztrue and zfalse.  

The classification accuracy at FT7 referenced to the left in-Ear-EEG electrode is shown in Figure 5E & 

F. Classification accuracy was found to be significantly above chance (p < 0.05) for all subjects and 

both the oddball task (mean: 77%, range 69–85%, figure 5E) and the audiobooks task (mean: 70%, range 

62–80%, figure 5F) at this exemplary electrode configuration. 

Grand average topographies of classification accuracy (figure 5E & F) show patterns similar to the t-

value topographies above (figure 4C & D). Evaluated by bootstrapping (2000 iterations), highlighted 

channels in Figure 5 E & F indicate that classification accuracy of single subjects was above chance (p 

< 0.05) consistently across subjects. Interestingly, channels close to the ear the reference in-Ear-EEG 

electrode was placed in showed classification results above chance consistently across subjects.  

Due to the low number of subjects, drawing a general conclusion on the most appropriate electrode 

configuration is not possible. However, for the present data we can state that we have found a 

configuration, showing classification results above chance for every subject consisting of only two 

electrodes, FT7 referenced to left in-Ear-EEG electrode. 

 

4. Discussion 

It is a frequently stated long-term goal to fuse EEG recordings with hearing aid technology in order to 

attune the hearing aid to an attended sound source. Here, we investigated whether the attended sound 

stream out of two concurring streams can be identified from single channel EEG-recordings. Single 

channels were electrode configurations consisting of one reference in-Ear-EEG and one scalp-EEG 

electrode. We focused our analyses on a configuration consisting of a left in-Ear-EEG electrode and 

scalp-EEG electrode FT7. 

Participants performed two tasks. In both tasks, concurrent sound streams (i.e. tones and speech) were 

presented. We hypothesized single channel in-Ear-EEG data to provide valuable information to identify 

the attended stream. 
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4.1 Response functions consistently reveal listeners’ focus of attention 

In contrast to backward models, the estimation of forward models allows the comparison of the obtained 

response functions with conventional ERPs (Lalor et al 2009). An attention-related difference between 

response functions is a prerequisite for identification of the attended speaker (see Methods).  

In both tasks, we have found an enhanced N100-equivalent component in the responses to attended 

stimuli compared with ignored stimuli for each subject (figure 4A & B). This is in line with auditory 

evoked potential (AEP) studies, showing that the N100 component is enhanced if the stimulus is 

attended (e.g., Näätänen et al 1981). 

Notably, attention-related differences in the response functions could be found even in short-distance 

configurations consisting of a reference in-Ear-EEG electrode and a scalp-EEG electrode close to the 

ear, as exemplarily shown for FT7 referenced to left in-Ear-EEG electrode. In regards to hearing aid 

applications, these findings encourage the attachment of only a few electrodes in the periphery of the 

ear (Mirkovic et al 2016). 

The consistent morphology of the difference between responses to attended and to ignored stimuli 

(figure 4C & D) further suggests the training of a model based on the data of all but one subject and test 

it on the latter (i.e., generic model). Even if not as accurate, O’Sullivan et al. (2015) showed that a 

generic model still allows predicting the attentional focus. With respect to its application in hearing aids, 

a generic model could provide a default set of parameter values before a listener-specific model is 

adapted over time (Mirkovic et al 2015). In the current study, the training of a robust generic model was 

hindered by the low number of subjects and should be further investigated. 

The dichotic oddball paradigm employed here also is appropriate when investigating neural responses 

to discrete and spatially separated stimuli. However, such a paradigm is removed from real-world 

listening scenarios, since two or more sound sources in natural environments are rarely separated in a 

dichotic fashion and are rarely as stationary regarding their rhythm and spectral content. 

In contrast, the audiobooks paradigm with two diotically presented speakers represents a challenging 

listening situation and is more akin to realistic scenarios (also with respect to a listener’s goal, that is, 

following a sound source and comprehending what is being conveyed (Obleser 2014). Since no spatial 

information is contained in the audio signal, a ‘worst case’ scenario was presented. Sound source 

separation can only be achieved based on spectral-temporal cues of the two speakers. Since each 

participant attended to either the male or to the female voice in the same number of trials, the revealed 

differences of the response function can’t be explained by spatially separated stimuli nor from speaker 

specific features. 
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Of course, the low number of individually in-Ear-fitted subjects tested here (n = 4–7) allows only limited 

conclusions. However, the notably consistent morphologies of the response functions and the 

individually significant prediction successes suggest that differential responses to attended and ignored 

auditory stimuli, even continuous speech, can be recorded from short-distance electrode configurations. 

These configurations here consisted only of one electrode in the ear canal and another close to the same 

ear, as exemplarily shown in Figure 5E & F for a left in-Ear-EEG electrode referenced to scalp-EEG 

electrode FT7.  

 

4.2 Goodness of fit provides basis for identification of the attended stream 

Former studies about approaches to identification of the attended speaker mainly used backward 

decoding models (O’Sullivan et al 2015, Mirkovic et al 2015, 2016, Van Eyndhoven et al 2016). 

Backward models are trained on multi-channel EEG data and used to reconstruct a single speech 

envelope. In contrast, we used forward models to predict the EEG signal in response to the stimulus, 

which allowed us to quantify the goodness of fit at every single EEG channel (see Methods).  

The goodness of fit was quantified by Pearson’s correlation-coefficient for the predicted versus the 

measured EEG signal. In the previous backward model studies cited above, correlation-coefficients 

obtained from Pearson-correlation of the reconstructed and the original speech envelope between 0.02 

and 0.10 were reported. Here, we obtained correlation coefficients of similar magnitude (Figure 3A & 

B), but they were here obtained solely on the basis of a potential difference recorded at a single EEG-

channel consisting of left in-Ear-EEG and scalp-EEG electrode FT7. Crucially, the topographies of 

single-trial-derived t-values (Fig. 3C & D) show that meaningful differences can be found satisfyingly 

at single electrodes close to the referenced in-Ear-EEG electrode. 

We thus conclude that short-distance electrode configurations like the exemplary configuration 

consisting of the left in-Ear-EEG reference and FT7 electrode capture information about the listener’s 

attentional focus and thus provide a basis for the identification of the attended sound source. To achieve 

this, we based our analyses on certain assumptions. First, we assumed that strongest responses can be 

found at stimulus onsets and thus extracted respective representations (see Methods). Especially for 

speech, features known to evoke responses are manifold and rarely mutually exclusive, since all are, to 

some extent, nested or derived from the broad-band temporal envelope (Ding and Simon 2014). Second, 

we applied ridge regression in order to train a model under the assumption of linearity and with the goal 

to reduce the mean squared error of the prediction. The extraction of features from speech is wedded to 

the selection of an appropriate model and both affect the contrast between responses to attended and 

ignored speech. 
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Comparing several methods of extracting features of speech and going beyond the simple assumption 

of linearity as well as incorporating several loss-functions might further boost the contrast between the 

two predicted EEG signals and thus further refine the information about the attentional focus. 

 

4.3 The attended stream can be identified from single-channel configurations 

The major goal of this study was to identify the attended sound stream based on single-channel hearing 

aid-compatible EEG channel configurations. Considering that, classification accuracy is the most 

important measure to evaluate the performance of our approach of single channel classification. 

As stated above, former studies have used backward models to bring in the advantage of having multiple 

EEG signals to reconstruct one single speech envelope. In order to reduce the number of channels, 

Mirkovic et al. (2015) already applied an approach of recursive channel elimination. Starting from a 

grid of 96 channels, it was shown that a stepwise exclusion of worst performing channels doesn’t affect 

classification accuracy up until approximately 25 channels were left. The best performing electrodes 

were concentrated at temporal positions close to the ear. However, the average of all electrodes served 

as reference potential which hinders a conclusion for single channel configurations consisting of only 

two electrodes. In a recent study (Mirkovic et al 2016), it was shown that based on the data of a grid of 

ten electrodes around the ear the attended speaker could be identified with a backward model.  Here, we 

go even further and show that a montage of only two electrodes, left in-Ear-EEG electrode and scalp-

EEG-electrode FT7, is sufficient to identify the attended sound source in two experimental tasks. In line 

with Mirkovic et al. (2016), we presume that placing a few electrodes at positions favorable for 

identifying the attended speaker is more crucial than obtaining more or less redundant EEG signals from 

multiple channels. 

With respect to the long-term goal of controlling a hearing aid in real-time, our results provide valuable 

insight. First, in a hearing aid, computational resources are limited. We thus decided not to apply any 

method of artifact rejection or other methods of signal enhancement other than band-limiting the EEG-

signal. Once a model is trained, the algorithm consists of only four convolutional operations and two 

correlations. Considering the comparably low sampling rate of 125 Hz and one-minute trials of 7500 

samples, the computational effort is comparably low. Nevertheless, a classification accuracy of around 

70% after one minute might not yet comply with the requirements of a hearing-aid user. Furthermore, 

data were recorded in a shielded room which reduced environmental noise as well as subjects were asked 

to move as less as possible which lead to a minimum of muscle artifacts. Thus, for real-life applications, 

there are still major challenges ahead. Our findings however do map out a significant step towards the 

application of single channel in-Ear-EEG in future hearing aids. 
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5. Conclusion 

The identification of attended sound sources based on neural data has become increasingly important 

for both, neuro-scientists and hearing aid developers, since it contains the potential to control a hearing 

prosthesis in a brain–computer interface fashion. One unsolved problem is the embedding of EEG 

electrodes and utilization of EEG signals in the hearing-aid periphery. 

In the current study we have shown that in-Ear-EEG can feasibly capture information about the listeners’ 

attentional focus. Thus, with only two electrodes attached, an auditory brain-computer interface could 

constantly track a listener’s attentional focus. This information could be fed back to other hearing aid 

algorithms in real-time (e.g., controlling for directional microphones and noise suppression) at low 

computational cost. 
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