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ABSTRACT  
   
Identification of drug targets and mechanism of action (MoA) for new and uncharacterized drugs 
is important for optimization of drug efficacy. Current MoA prediction approaches largely rely on 
prior information including side effects, therapeutic indication and/or chemo-informatics. Such 
information is not transferable or applicable for newly identified, previously uncharacterized 
small molecules. Therefore, a shift in the paradigm of MoA predictions is necessary towards 
development of unbiased approaches that can elucidate drug relationships and efficiently 
classify new compounds with basic input data. We propose a new integrative computational 
pharmacogenomic approach, referred to as Drug Network Fusion (DNF), to infer scalable drug 
taxonomies that relies only on basic drug characteristics towards elucidating drug-drug 
relationships. DNF is the first framework to integrate drug structural information, high-throughput  
drug perturbation and drug sensitivity profiles, enabling drug classification of new experimental 
compounds with minimal prior information. We demonstrate that the DNF taxonomy succeeds in 
identifying pertinent and novel drug-drug relationships, making it suitable for investigating 
experimental drugs with potential new targets or MoA. We highlight how the scalability of DNF 
facilitates identification of key drug relationships across different drug categories, and poses as 
a flexible tool for potential clinical applications in precision medicine. Our results support DNF as 
a valuable resource to the cancer research community by providing new hypotheses on the 
compound MoA and potential insights for drug repurposing. 
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INTRODUCTION 
 
Continuous growth and ongoing deployment of large-scale pharmacogenomic datasets has 
opened new avenues of research for the prediction of biochemical interactions of small 
molecules with their respective targets and therapeutic effects, also referred to as drug 
mechanisms of action (MoA). Development of computational methods to predict MoA of new 
compounds is an active field of research in the past decade 1,2. Despite major advancements in 
this field, key challenges still remain in the (i) design of classification approaches that rely on 
minimal drug characteristics to classify drugs, and (ii) selection and integration of 
complementary datasets to best characterize drugs’ effects on biological systems. 

The notion of a ‘minimalist’ approach to represent similarities among drug compounds 
has been extensively explored, with varying results. Several computational strategies have 
solely relied on chemical structure similarity to infer drug-target interactions 3–5, based on the 
assumption that structurally-similar drugs share similar targets, and ultimately, similar 
pharmacological and biological activity 6. However, sole dependence on chemical structure 
information fails to consider drug-induced genomic and phenotypic perturbations, which directly 
connect with biological pathways and molecular disease mechanisms 7,8. Seminal approaches 
by Iorio et al. 9 and Iskar et al. 10 leveraged drug-induced transcriptional profiles from 
Connectivity Map (CMAP) 11 towards identification of drug-drug similarities and MoA solely 
based on gene expression profiles 12. The major limitation of CMAP however is the lack of 
global scope, as only 1,309 drugs are characterized across 5 cancer cell lines 11. Other methods 
have integrated prior knowledge such as adverse effects annotations 13,14 and recent 
approaches showed that integrating multiple layers of information had improved ATC prediction 
for FDA-approved drugs 15. While these initiatives have paved great strides towards 
characterizing drug MoA, comparing the consistency of such efforts towards prediction of new, 
uncharacterized small molecules remains a challenge. 

Ongoing efforts towards understanding drug behavior have yet to capitalize on newly 
developed, high-throughput data types towards providing improved classification of drug action 
mechanisms. The published CMAP has recently been superseded by the L1000 dataset from 
the NIH Library of Integrated Network-based Cellular Signatures (LINCS) consortium 16, which 
has expanded upon the conceptual framework of CMAP and contains over 1.8 million gene 
expression profiles spanning 20,413 chemical and genetic perturbations. A recent study of the 
LINCS data showed that structural similarity are significantly associated with similar 
transcriptional changes 8. While the L1000 dataset provides an unprecedented compendium of 
both structural and transcriptomic drug data, its integration with other pharmacogenomics data 
types has not been explored extensively.  

The advent of high-throughput in vitro drug screening promises to provide additional 
insights into drug MoA. The pioneering initiative of the NCI60 panel provided an assembly of 
tumour cell lines that have been treated against a panel of over 100,000 small molecules 17,18, 
and served as the first large-scale resource enabling identification of lineage-selective small 
molecule sensitivities 19. However, its relatively small number of cancer cell lines (n=59) 
restricted the relevance of these data for prediction of drug MoA. To address this issue, the 
Cancer Therapeutics Response Portal (CTRP) initiative screened 860 cancer cell lines against 
a set of 481 small molecule compounds 20,21, which makes it the largest repository of in vitro 
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drug sensitivity measurements to date. Individual assessment of these in vitro sensitivity 
datasets have highlighted their use towards determining mechanism of growth inhibition, and 
inference of MoA of compounds from natural products. It remains to be demonstrated, however, 
whether integration of drug sensitivity data with other drug-related data, such as drug structures 
and drug-induced transcriptional signatures, can be used to systematically infer drug MoA. 

To efficiently harness these recent high-throughput datasets, we have developed a 
scalable approach that maximizes complementarity between different data types to provide a 
complete landscape of drug-drug relationships and similarities. We leveraged our recent 
Similarity Network Fusion algorithm 22 to integrate drug structure, sensitivity, and perturbation 
data towards developing a large-scale molecular drug taxonomy, called Drug Network Fusion 
(DNF) (Fig. 1). We demonstrate how the resulting integrative drug taxonomies improve 
characterization of drug MoA compared to taxonomies based on single data types. We 
demonstrate how these new drug networks can be harnessed to evaluate drug-drug similarities 
across drug targets and ATC classification benchmarks. Importantly, we show how the DNF 
taxonomy can be used to infer MoA for new compounds that lack deep pharmacological and 
biochemical characterization.   
 
  
RESULTS 
 

We developed the DNF approach to generate a large-scale molecular taxonomy by 
integrating drug similarity matrices from structural information, transcriptomic perturbation, and 
sensitivity profiles (Supplementary Fig. 1). Drug structure profiles (SMILES representations) 
were extracted from the PubChem database. Drug perturbation signatures, representing drug-
induced gene expression changes, were extracted from the recent LINCS L1000 dataset. Drug 
sensitivity profiles representing cell line viability across cancer cell lines were extracted from our 
PharmacoGx platform 23, which contains pharmacological profiles of several hundred cell lines 
generated by the CTRP 20,21 and NCI60 19 initiatives. By integrating these three data types, we 
have generated a similarity network composed of over 200 drugs (Supplementary Fig. 2). The 
drug similarity matrices computed from single data layers and fusion estimates are provided in 
Supplementary Tables 1 and 2 for the CTRPv2 and NCI60 taxonomies. 

To assess the relevance and benefits of our integrative drug taxonomies we first tested 
whether the different data layers were redundant or complementary. We then tested whether 
DNF enables prediction of drug MoA. While definitions may vary in the literature, for the context 
of this study, we refer to drug mechanisms of action specifically as determining drug targets for 
query drugs, as well as identification of the anatomical therapeutic classification (ATC) for 
different drugs. We further tested whether DNF enables clustering of drugs sharing common 
action mechanisms, and we demonstrated how identified drug communities from this clustering 
may be used towards novel discoveries for drug repositioning approaches and clinical 
applications.  
 
Complementarity of drug structure, perturbation, and sensitivity profiles 
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We investigated the potential complementarity between drug structure, perturbation, and 
sensitivity profiles to assess their potential for drug taxonomies as part of DNF. We generated 
similarity networks (similarity matrices) representing each of the single-layer drug taxonomies of 
drug structure, drug perturbation, and drug sensitivity (Supplementary Tables 1 and 2). In 
brief, we used the Tanimoto index to calculate the similarity between two drug structures. We 
used Pearson correlation to quantify the extent to which pairs of drugs affect similar genes at 
the expression level or whether drugs kill the same cancer cell lines for drug perturbation and 
drug sensitivity similarity matrices, respectively. We then computed the correlation between all 
pairs of similarity matrices (Fig. 2, Supplementary Table 3) using the spearman correlation. 
The single-layers are only weakly correlated, with a maximum absolute spearman correlation 
coefficient of 0.091 between the perturbation and sensitivity layers using the CTRPv2 sensitivity 
dataset (Fig. 2A), as well as a maximum of 0.085 between the structure and sensitivity layers 
using the NCI60 sensitivity dataset (Fig. 2B). In contrast, the integrative drug taxonomy (DNF) 
is more highly correlated to each of the single layers, across both CTRP (Fig. 2A) and NCI60 
(Fig. 2B). These findings highlight that the structural, sensitivity, and transcriptional perturbation 
data are non-redundant, thereby presenting a diversity of drug-drug relationships across the set 
of drugs that commonly share all three data types. These findings also highlight that the DNF 
network maximizes fusion between the three data types, such that it is not driven by only a 
single layer.   

 
Performance of drug taxonomies against known drug targets 
 

Determining novel drug-target interactions opens new avenues for drug repurposing 
efforts, and suggests mechanisms by which drugs can operate in cells. We explored the 
relevance of our DNF taxonomy by demonstrating its predictive value towards identification of 
drug targets. Of the 239 drugs represented in our DNF taxonomy generated using CTRPv2, 141 
could be matched against the drug target benchmarks (Supplementary Fig. 2). Similarity, for 
the DNF taxonomy generated using the NCI60 dataset, 86 drugs out of 238 drugs could be 
matched to known drug target (Supplementary Fig. 2).  We assessed the predictive value of 
our single-data layer and integrative drug taxonomies (DNF) against known drug targets 
(Supplementary Fig. 3). We performed a receiver operating characteristics (ROC) analysis to 
quantify how well our drug taxonomies align with established drug target, by statistically 
comparing the area under the ROC curve (AUROC) values for each drug taxonomy under 
evaluation 24. Similarly, we calculated the area under the precision-recall (PR) curve (AUPRC) 
25. Of the three single-layer taxonomies validated against annotated drug targets from CTRPv2, 
the drug sensitivity layer outperformed the structure and perturbation taxonomies (AUROC of 
0.83, 0.71 and 0.64 for sensitivity, structural and perturbation data layers, respectively) (Fig. 
3A). Importantly, DNF yielded the best predictive value (AUROC of 0.89), and was significantly 
higher than any single-layer taxonomy (one-sided t test p-value < 1E-16, Supplementary Table 
4). We further computed PR curves (Fig. 3B). These curves demonstrate that DNF supersedes 
the single layers taxonomies except for sensitivity, where it performs equivalently (AUPRC of 
0.413 and 0.406 for DNF and drug sensitivity, respectively; Fig. 3B).  

We further tested the predictive value of our DNF taxonomy using the set of drug 
sensitivity profiles obtained from the NCI60 dataset, where a much smaller panel of cell lines 
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has been screened (60 vs 860 cell lines for NCI60 and CTRPv2, respectively; Supplementary 
Fig. 2). Our evaluation of single-layer taxonomies demonstrates that drug similarities based on 
structure and sensitivity profiles were the most efficient in predicting drug-target associations 
(AUROC of 0.8 for both layers; Supplementary Fig. 4A) compared to perturbation (AUROC of 
0.62; Supplementary Fig. 4A). DNF was significantly more predictive of drug-target 
associations compared to single-layer taxonomies (AUROC of 0.88 and one-sided superiority 
test p-values < 0.05, Supplementary Fig. 4A, Supplementary Table 4 and AUPRC of 0.552; 
Supplementary Fig. 4B).  
 
Performance of drug taxonomies against anatomical classification (ATC) 
 

Predicting the anatomical therapeutic chemical classification (ATC) of a drug provides  
insights about its pharmacological mechanism, and ultimately presents new potential indications 
for previously uncharacterized drugs. We demonstrated the relevance of our DNF network by 
testing its predictive value for ATC drug classifications (Fig. 3, Supplementary Fig. 4). We 
explored the value of the DNF taxonomies towards classifying drugs up to ATC level 4, which 
reports the chemical/therapeutic/pharmacological subgroup of a given drug 26. A total of 51 and 
72 drugs could be matched against the ATC benchmarks for the CTRPv2 and NCI60 
taxonomies, respectively. We implemented a similar benchmarking approach to that previously 
conducted for drug target classification. We observed that drug sensitivity was no longer the 
most predictive layer for ATC classification, and instead exhibited comparable predictive power 
to drug perturbation (Fig. 3C, Supplementary Fig. 4C). Conversely, the structure-based 
taxonomy (Fig. 3C, Supplementary Fig. 4C) was the most predictive amongst single-layer 
taxonomies (AUROC of 0.72, 0.6 and 0.58 for structure, sensitivity, and perturbation layers, 
respectively, for the CTRPv2 taxonomy; see Supplementary Fig. 4 for the NCI60 taxonomy). 
DNF significantly outperformed single-layer taxonomies (Fig. 3C-D, Supplementary Fig. 4C-D) 
(AUROC of 0.8 and 0.85 for DNF based on CTRPv2 and NCI60, respectively, with one-sided t 
test p-value < 0.05; and AUPRC of 0.558 and 0.492 vs. random classifiers’ AUPRCs of 0.212 
and 0.095, respectively)  Fig. 3C, Supplementary Fig. 4C, Supplementary Table 4).  

 
Identification of drug communities 
 

We assessed the biological relevance of DNF in discovering drugs with similar MoA by 
applying the affinity cluster propagation algorithm 27 to identify clusters of highly similar drugs, 
referred to as drug communities. These communities can be represented by their most 
representative (‘exemplar’) drug, and similarities between communities are subsequently 
represented a network where each node is labeled by the exemplar drug. Community detection 
was implemented on the full set of 239 and 238 drugs of the DNF taxonomy (based on using 
CTRPv2 and NCI60 sensitivity data; Fig. 4 and Supplementary Fig. 5 respectively).  

We  identified 53 communities in the CTRPv2 DNF (Supplementary Table 5), which 
resulted in a set of 39 drug communities with at least 2 drugs with known drug targets 
(permutation test p-value < 1E-4; Supplementary Table 6). Overall, DNF has produced a 
consistent classification of drugs for a variety of known functional classes (Supplementary 
Table 7). Our classifications recapitulate most of the protein target-drug associations 
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represented in CTRPv2 (Fig. 4). Receptor tyrosine kinases and non-receptor tyrosine kinases, 
including EGFR/ERBB2 (community C2), MEK1/2 (C41), TGFRB1 (C39), BRAF (C18), IGFR-1 
(C6) KDR/FLT1 (C50) inhibitors. In addition to PI3K/mTOR  inhibitors (C28), epigenetic 
regulators: HDACs (C45) and DNMT1 (C20)  inhibitors, HMG CoA (C30) and proteasome 
inhibitors (C7) (Supplementary Tables 5 and 8). Notably, all BRAF (V600E mutation) inhibitors 
were classified correctly, which include drugs already tested in metastatic melanoma 
(community C18: dabrafenib, GDC0879, PLX4720; Fig. 4) and mitogen-activated protein 
kinase/ERK kinase (MEK) inhibitors (C41: namely trametinib and selumetinib; Fig. 4). BRAF 
regulates the highly conserved MAPK/ERK signaling pathway, and BRAF mutational status has 
been proposed as a biomarker of sensitivity towards selumetinib and other MEK inhibitors28,29. 
This explains the tight connection of these two communities (Fig. 4).  

Using the NCI60 DNF, we identified 51 communities (Supplementary Fig. 5, 
Supplementary Table 9) with 20 of those containing at least two known drug targets 
(permutation test p-value < 1E-4; Supplementary Table 10). In this case, we also identified a 
number of well-characterized drug communities. These include the community composed of 
EGFR inhibitors (C20; Supplementary Fig. 5). The community C14, including cardiac 
glycosides also concur with the study of Khan et al. 7, showing that these compounds inhibit 
Na+/K+ pumps in cells. Bisacodyl, a laxative drug, is part of the C14 community, which concurs 
with Khan et al. who demonstrated a sharing a MoA similar to cardiac glycosides, despite its 
structural dissimilarity to that class of compounds 7.  
 
Enrichment of DNF drug communities for drug targets and ATC classifications 
 

We conducted a quantitative community enrichment analysis to test whether DNF 
succeeds in identifying drug communities that are enriched for drug targets and ATC 
classifications. A fisher test was conducted between all the drugs in each community versus all 
drugs attributed to a specific drug target or ATC class. This approach allowed us to test which 
specific drug targets or ATC classifications are significantly enriched in the computed 
communities (Fig. 5, Supplementary Fig. 6), independent of the benchmarking analyses. The 
analysis was conducted using all of the communities of DNF based on CTRPv2 (n=53 
communities, Fig. 5, Supplementary Table 11) as well as DNF based on NCI60 sensitivity data 
(n=51 communities, Supplementary Fig. 6, Supplementary Table 12). 

Clustering of the DNF drug taxonomies identified a wide range of community sizes 
(Supplementary Fig. 7), with a median community size of 4 drugs both CTRPv2 and NCI60-
based DNF taxonomies. Many of these communities were significantly enriched for drug targets 
and ATC classes (Fig. 5, Supplementary Fig. 6). Among these, for example,  community C2 in 
CTRPv2 is statistically enriched against the ERBB2 and EGFR targets and contains well known 
inhibitors for these targets, such as afatinib, erlotinib and lapatinib (Fig. 4, Fig. 5A). Similarly, 
C30 hosts almost all of the members of the statin family, which are known to affect the 
mevalonate pathway and HMGCR (Fig. 4, Fig. 5A). We identified enrichment of DNF 
communities (based on NCI60) against several representative ATC categories (Supplementary 
Fig. 6B). These include communities enriched for known anticancer and other therapeutic 
classes, including antimalarial drugs (C4, ATC P01BE [Artemisinin and derivatives], 
anthracyclines (C12, L01DB [anthracyclines and related substances]) , antimetabolites (C9, 
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ATC L01BB [purine analogues]), cholesterol lowering agents (C33, ATC C10AA [HMG CoA 
reductase inhibitors]), corticosteroids (C18, overrepresented in many ATC categories since they 
are indicated for a large number of medical conditions), vinca and taxanes alcaloids (C38 and 
C49; L01CD [taxanes] and L01CA [Vinca alkaloids and analogues], respectively) and protein 
kinase inhibitors (C20, L01XE). As expected, communities containing very few annotated 
targets or ATC classes do not demonstrate significant enrichment (Supplementary Tables 11 
and 12 for CTRPv2 and NCI60, respectively).  

 
Identification of novel drug-drug relationships and drug action mechanisms 

 
We conducted an explorative analysis to identify potential mechanisms for existing drugs 

and for poorly characterized drugs in the set of drugs constituting the DNF network. We 
highlight here a number of examples for newly identified drug mechanisms against a variety of 
compounds. We identified a community of HMG Co-A reductase inhibitors (statins) composed of 
fluvastatin, lovastatin, and simvastatin (C30; Fig. 4). These are a class of cholesterol-lowering 
drugs, and which have been found to reduce cardiovascular disease. Interestingly, parthenolide 
clusters with this community, and has been experimentally observed to inhibit the NF-Kb 
inflammatory pathway in atherosclerosis and in colon cancer 30,31, thereby suggesting similar 
behavior to statin compounds. We also classified correctly drugs with unannotated 
mechanisms/targets in CTRPv2 such as ifosfamide, cyclophosphamide and procarbazine (C17; 
Fig. 4) which are known alkylating agents (ATC code: L01A). Furthermore, this was also true for 
docetaxel and paclitaxel (C21; Fig. 4), two taxanes drugs with unannotated target in CTRPv2 
although known as sharing similar MoA (ATC code: L01CD). 

Our integrative drug taxonomy was also able to identify targets for drugs with poorly 
understood mechanisms and to infer new mechanism for other drugs. Community C15, for 
example, contains tigecycline and Col-3 (Fig. 4); both are derivatives of the antibiotic 
tetracycline 32. Tigecycline is an approved drug, however its target is not characterized in 
humans. Col-3 showed antitumor activities by inhibiting matrix metalloproteinase 32. 
Interestingly, tosedostat (CHR-2797), a metalloenzyme inhibitor with antiproliferative potential 
33, is also a member of this community. Another drug in this community, phloretin, is a natural 
compound with uncharacterized targets and has been recently shown to deregulate matrix 
metalloproteinases at both gene and protein levels 34. Our results suggest that matrix 
metalloproteinases would be the preferred target for drugs in this community. DNF also 
consolidated previous findings for drugs that may serve as tubulin polymerization disruptors, 
and which have not been previously classified as such. We identified a community of three 
drugs (C49; Fig. 4) in which LY2183240, and YK-4-279 have been recently identified to 
decrease alpha-tubulin levels 21. Tivantinib, a c-MET tyrosine kinase inhibitor, also blocked 
microtubule polymerization 35. Interestingly, this community is tightly connected to known 
microtubule perturbagens (C21; Fig. 4).  

The identification of community C33 including the BCL-2 inhibitors ABT-737 and 
navitoclax (Fig. 4) concurs with the study of Rees et al. 36 where a high expression of BCL-2 
was reported to confer sensitivity to these two drugs. This was not the case for another BCL-2 
inhibitor, obatoclax, for which they proposed that its metabolic modification in cells impacts its 
interaction with BCL-2 proteins, therefore reducing its potency. We showed indeed that 
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obatoclax did not cluster with the other two BCL-2 inhibitors (ABT-737 and navitoclax). Such an 
example demonstrates how the structural and sensitivity profiles of these two BCL-2 inhibitors 
are largely coherent, as opposed to obatoclax, which previously showed off-target effects 
compared to ABT-737 37. This provides a good evidence to consider sensitivity profiles when 
developing new potent and specific BCL-2 inhibitors. 

Our results also suggest the existence of “super communities”, that are a grouping of 
several communities contributing to a larger, systems-based MoA. An example is provided by 
the tightly connected communities C3, C21, C23, C43 (Fig. 4). One of these communities (C3: 
Alvocidib, PHA-793887 and staurosporine) includes well-characterized inhibitors of cyclin 
dependant kinases (CDKs) that are known to be major regulators of the cell cycle. BMS-345541 
for example, which also clusters with drugs in C3, is an ATP non-competitive allosteric inhibitor 
of CDK 38. Those compounds are positioned close in the community network to topoisomerase I 
and II inhibitors (C43: SN-38, topotecan, etoposide, teniposide), microtubule dynamics 
perturbators (C21: paclitaxel, docetaxel, vincristine, parbendazole) and polo-like kinase 
inhibitors (C23: GSK461364, GW843682X). Iorio et al. reported that the similarity between CDK 
inhibitors and the other DNA-damaging agents is mediated through a p21 induction, which 
explains the interconnection and rationale of similar transcriptional and sensitivity effects of 
these regulators of cell cycle progression 12. 

DNF based on NCI60 sensitivity information enabled identification of three tightly 
connected drug communities: C2, C5, C32 (Supplementary Fig. 5). These communities 
contain a number of compounds which showed antitumor activity by generating reactive oxygen 
species (ROS) (communities C2: elesclomol, fenretinide; C5: ethacrynic acid, curcumin; C32: 
bortezomib, menadione). Interestingly, ethacrynic acid, an FDA approved drug indicated for 
hypertension, clustered with curcumin, a component of turmeric. Ethacrynic acid inhibits 
glutathione S-transferase (GSTP1) and induced mitochondrial dependant apoptosis through 
generation of ROS and induction of caspases 39. Curcumin showed antitumor activity by 
production of ROS and promotion of apoptotic signaling. Thus, our results suggest that GSTP1 
could be a potential target of the widely-used natural compound curcumin. Interestingly, some of 
the identified communities using NCI60, such as the tight connection between BRAF/MEK 
inhibitor drugs (C42; Supplementary Fig. 5), had also been identified in our original analysis 
using CTRPv2 sensitivity profiles. This demonstrates a high degree of specificity of drug-target 
associations across cell lines and experimental platforms, which is crucial in biomarker 
identification and translational research. 
 
DISCUSSION 
 

Identification of drug mechanisms for uncharacterized compounds is instrumental for 
determination of on-targets responsible of pharmacological effects, and off-targets associated 
with unexpected physiological effects. Shortcomings of current approaches include a degree of 
reliance on pharmacological, biochemical, and functional annotations that pertain to existing, 
well-characterized drugs, and which may not be applicable towards prediction of a new small 
compounds 15,40. To address this issue, we developed DNF, a high-throughput, systematic and 
unbiased approach that relies on basic and complementary drug characteristics, and harnesses 
this integrative classification to provide a global picture of drug relationships.  
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In this analysis, we have conducted to our knowledge the first large-scale integration of 
high-throughput, drug-related data that encompasses drug structure, sensitivity and perturbation 
signatures towards elucidating drug-drug relationships. We have removed any reliance on 
existing annotations that pertain to existing drugs, such as drug-target classifications or 
knowledge of the anatomical and organ system targeted by the drug compounds. As a 
consequence, we developed a scalable approach that relies only on basic drug information, 
making DNF both flexible for comprehensive drug classification, but also adaptable for testing 
new experimental compounds with minimal information (Fig. 6).  

Our high-throughput drug similarity network (DNF) capitalized upon our integrative 
Similarity Network Fusion method 22 to construct a global drug taxonomy based on the fusion of 
drug structure, sensitivity, and perturbation data. The construction of drug-similarity networks 
and their subsequent fusion allows us to harness the complementary nature of several drug 
datasets to infer an integrative drug taxonomy. Testing how well different drug taxonomies can 
correctly predict drug targets (Fig. 3A-B) and anatomical (ATC) drug classifications (Fig. 3C-D) 
indicates that DNF constitutes a significant improvement towards drug classification, compared 
to single data type analyses using either drug sensitivity, structure, or perturbation information 
alone. The marked improvement of drug classification using the similarity network-based 
method is sustained even with the use of a different source of in vitro sensitivity data (NCI60; 
Supplementary Fig. 4) to generate the DNF similarity matrix. Indeed, testing DNF using the 
NCI60 sensitivity information reveals that our integrative taxonomy consistently supersedes 
single-layer drug taxonomies across the target and ATC benchmarks despite the reduced 
number of cell lines used for sensitivity screening (Supplementary Fig. 4).  While DNF was not 
intended as a supervised approach to predict drug targets and ATC classifications per se, the 
ability to efficiently predict different drug classes provide credence to using our novel similarity 
network-based method to discover drug relationships. DNF is the only method that is 
consistently the top performer, while each single layer taxonomy performs well in only a few 
cases (Fig. 3 and Supplementary Fig. 4). Overall, these observations indicate that our 
integrative approach succeeds in combining several drug data types into a single 
comprehensive network that efficiently leverages the spectrum of the underlying data.  

Our explorative analysis stresses the importance of drug sensitivity information as an 
important asset for prediction of drug-target associations (Fig. 3A,B and Supplementary Fig. 
4A,B). Such findings support the relevance of pharmacological assays to predict drug targets, 
and underscore the comprehensive nature of the CTRPv2 dataset (860 cell lines screened with 
16 drug concentrations, tested in duplicate) 21. Similarity, we have observed a priority for drug 
structure information towards prediction of ATC drug classification (Fig. 3C,D, Supplementary 
Fig. 4C,D). We have also conducted a quantitative comparison of the predictive performance of 
DNF against four published drug classification algorithms 5,9,10,41 that could be directly compared 
to the DNF approach (Supplementary Methods, Supplementary Fig. 8, Supplementary 
Tables 13-18). DNF outperforms the published methods in all cases (Supplementary Fig. 8). 

In addition to classification of drugs based on their targets and functional annotations, 
we also conducted an independent clustering of all of the drugs in the DNF network, and 
highlighted many cases of drug clusters (drug communities) with known MoA, thereby capturing 
context-specific features associated to drug sensitivity and transcriptomic profiles in cancer cells 
(Fig. 4, Supplementary Fig. 5). These cases serve both as ‘positive controls’ as well as 
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validation of our methods. We demonstrated that DNF correctly identified communities of BRAF 
inhibitors, and MAPK/MEK inhibitors, among others in the CTRPv2 taxonomy (Fig. 4). We 
additionally highlight several well-characterized drug communities using the DNF taxonomy 
based on the NCI60 dataset (Supplementary Fig. 5). Our quantitative assessment of the 
clusters identified from the DNF network revealed several communities that were significantly 
enriched for drug targets as well as ATC classes (Fig. 5, Supplementary Fig. 6), which 
underscores the biological relevance of the drug clusters that we had identified. Collectively, 
these findings support the use of DNF for the classification of drug relationships across several 
classes of drugs. Importantly, we compared the DNF drug communities to previously published 
data, and found an overlap between our results and clinical observations. For example, ibrutinib, 
which is a Bruton tyrosine kinase inhibitor (BTK) approved for the treatment of Mantle cell 
lymphoma and chronic lymphocytic leukemia, clustered with the known EGFR inhibitors (C2: 
erlotinib, gefitinib, afatinib and others). The effect of ibrutinib in EGFR Mutant Non-Small Cell 
Lung Cancer has been reported in a recent clinical trial (ClinicalTrials.gov Identifier: 
NCT02321540). This was also the case for MGCD265, a Met inhibitor, which clustered with 
most of the VEGFR (vascular endothelial growth factor receptor) inhibitors (C50: pazopanib, 
cediranib and others). In this community, pazopanib is the only FDA approved drug for the 
treatment of renal cell carcinoma. There exist a recent evidence that the clinical drug candidate 
MGCD265 has an application in renal malignancies (ClinicalTrials.gov Identifier: 
NCT00697632). 

The current availability of sensitivity data and its overlap with drug perturbation and drug 
structure information remains a limiting factor. In our study we used the LINCS L1000 42 dataset 
for drug perturbation because it contains much more drugs than the previous CMAP 11 
(L1000=20,326 vs CMAP=1,309). Similarly we used sensitivity profiles from the CTRPv2 21 and 
NCI60 datasets because they contain a large number of drugs compared to CCLE 43 or other 
smaller datasets (CTRPv2=481 and NCI60=49,938 vs CCLE=24). Our taxonomy is currently 
composed of nearly 240 drugs (using either CTRPv2 or NCI60 sensitivity data). The number of 
drugs with multiple data layer is likely to increase in the close future, as the LINCS L1000 is also 
expanding at fast pace and new sensitivity data are frequently released 44,45. Therefore, we 
developed DNF with scalability in mind as we expect the number of drugs in our network to 
increase continuously over time. Recognizing that the exploration of large-scale drug similarity 
network is challenging, we developed the DNF web-application to interactively display the 
CTRPv2 and NCI60 drug similarity networks (dnf.pmgenomics.ca). We leveraged the 
cytoscape.js library 46 to allow users to easily navigate drug communities and investigate the 
drugs within each community and their similarities.   

 
 
The recent release of large-scale pharmacogenomic datasets, such as those generated 

within the CTRPv2 and LINCS L1000 projects, provides a unique opportunity to further 
investigate the effects of approved and experimental drugs on cancer models and their potential 
mode of action. Accordingly, future analyses for in-depth analysis of the molecular profiles of 
cancer cell lines, including mutation, CNV, transcription, methylation and proteomic data, can 
reveal new biological processes associated with drug MoA. As a proof-of-concept, we 
investigated the molecular features associated with drug response in community C2 (n=9 drugs) 
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from the CTRPv2 taxonomy (Fig. 4). We tested to which extent, ERBB2/EGFR pathways are 
correlated with the corresponding drug sensitivity from CTRPv2. We extracted basal gene 
expression profiles of the CTRPv2 cell lines (the same cell lines were profiled by the CCLE 
study), and correlated the gene expression profiles of cancer cell lines with the corresponding 
AUC values extracted from PharmacoGx 23. Single sample gene set enrichment analysis 
(ssGSEA) 47 was performed to identify pathways enriched in genes associated to sensitivity to 
the drugs in community C2, and ranked them with respect to their median enrichment score. 
Our results indicate that the ERBB2/EGFR pathway (PID_ERBB_NETWORK_PATHWAY from 
MSigDB 48) is highly correlated with sensitivity to the drugs in community C2 (Supplementary 
Fig. 9). This was expected as most of them are known EGFR/ERBB2 inhibitors. 
Interestingly,Ibrutinib, a BTKi (Bruton kinase inhibitor) showed a similar profile as EGFR 
inhibitors 49. This example shows how DNF can be used to investigate the molecular basis of 
the MoA shared by multiple drugs within a community. Methods leveraging DNF in combination 
with the wealth of molecular profiles from cancer cell lines and patient tumors holds the potential 
to to identify robust biomarkers and improve drug matching for individual patients, which would 
constitute a major step towards precision medicine and drug repurposing in cancer. 

This study has several potential limitations. First, the number of drugs with all data layers 
available is limited by the small overlap between drug sensitivity and perturbation datasets. As 
these datasets grow, the DNF taxonomy will expand proportionally. Second, the L1000 is a 
relatively new dataset and there is no consensus yet on how to best normalize the data and 
compute the transcriptomic perturbation signature for each drug. In this study, we used the gene 
expression data as normalized by the Broad Institute (QNORM, level 3 data) and the signature 
model implemented in PharmacoGx 23; however we recognize that other pipelines could be 
used to mine the L1000 dataset and potentially improve DNF. Third, the low number of cell lines 
in specific tissue types in L1000 prevented us from creating tissue-specific integrative 
taxonomies to better explore the molecular context of drug MoA. This limitation could be lifted 
with the availability of perturbation profiles for more cell lines in the future. Fourth, given that 
SuperPred and DrugE-Rank websites only report the top predictions but not the full list of drugs 
with similar targets or ATC codes, we computed the distance between these partial rankings to 
compute similarities between drugs (see Methods). Similarly, a direct comparison between DNF 
and  the taxonomy inferred using Iorio et al. and Iskar et al. methods is not possible due their 
reliance on CMAP. The adaptation of these methods for the L1000 dataset was challenging due 
to the reduced set of 1000 genes. Consequently, the results of the comparison between DNF 
and published methods should be interpreted cautiously. Finally, we had to use different drug 
sensitivity measures for CTRPv2 and NCI60 as both projects released different types of 
pharmacological profiles: CTRPv2 reported percentage of cell viability while NCI60 reported 
percentage of growth inhibition controlled for population doubling time. Despite these 
heterogeneous drugs sensitivity data, we observed similar communities for the drugs in 
common between the two sensitivity datasets, supporting the robustness of DNF. 

 
In conclusion, we developed an integrative taxonomy inference approach, DNF, 

leveraging the largest quantitative compendiums of structural information, pharmacological 
phenotypes and transcriptional perturbation profiles to date. We used DNF to conduct a cross-
comparative assessment between our integrative taxonomy, and single-layer drug taxonomies, 
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as well as published methods used to predict drug targets or functional annotations. Our results 
support the superiority of DNF towards drug classification, and also highlights singular data 
types that are pivotal towards prediction of drug categories in terms of anatomical classification 
as well as drug-target relationships. Overall, the DNF taxonomy has produced the best 
performance, most consistent classification of drugs for multiple functional classes in both 
CTRPv2 and NCI60. The comprehensive picture of drug-drug relationships produced by DNF 
has also succeeded in predicting new drug MoA. The integrative DNF taxonomy has the 
potential to serve as a solid framework for future studies involving inference of MoA of new, 
uncharacterized compounds, which represents a major challenge in drug development for 
precision medicine. 
 
MATERIAL AND METHODS 
 
A schematic overview of the analysis design is presented in Supplementary Fig. 1.  
 
Processing of drug-related data and identification of drug similarity 
 
Drug structure annotations: Canonical SMILES strings for the small molecules were extracted 
from PubChem 50, a database of more than 60 millions unique structures. Tanimoto similarity 
measures 51 between drugs were calculated by first parsing annotated SMILES strings for 
existing drugs through the parse.smiles function of the rcdk package (version 3.3.2). Extended 
connectivity fingerprints (hash-based fingerprints, default length 1,024) across all drugs was 
subsequently calculated using the rcdk::get.fingerprints function 52. 
 
Drug perturbation signatures: We obtained transcriptional profiles of cancer lines treated with 
drugs from the L1000 dataset recently released by the Broad Institute 42, which contains over 
1.8 million gene expression profiles of 1000 ‘landmark’ genes across 20,413 drugs. We used 
our PharmacoGx package (version 1.3.4) 23 to compute signatures for the effect of drug 
concentration on the transcriptional state of a cell, using a linear regression model adjusted for 
treatment duration, cell line identity, and batch to identify the genes whose expression is 
significantly perturbed by drug treatment:  

� =  �0  +  ����  +  ��� +  ��� +  ��� 
where  
! = molecular feature expression (gene) 
!! = concentration of the compound applied 
!= cell line identity 
! = experiment duration 
! = experimental batch 

! = regression coe�cients.  
 
The strength of the feature response is quantified by ��. � and � are scaled variables (standard 
deviation equals to 1) to estimate standardized coe�cients from the linear model. The 
transcriptional changes induced by drugs on cancer cell lines are subsequently referred to 
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throughout the text as drug perturbation signatures. Similarity between estimated standardized 
coefficients of drug perturbation signatures was computed using the Pearson correlation 
coefficient, with the assumption that drugs similarly perturbing the same set of genes might 
have similar mechanisms of action. 
 
Drug sensitivity profiles: We obtained summarized dose-response curves from the published 
drug sensitivity data of the NCI60 19 and CTRPv2 21 datasets integrated in the PharmacoGx 
package. We relied on the calculated Z-score and area under the curve (AUC) metrics from 
drug-dose response curves of the NCI60 and CTRPv2, respectively. Drug similarity was defined 
as the Pearson correlation of drug sensitivity profiles. 
 
Development of a drug network fusion (DNF) taxonomy 
  
We used our Similarity Network Fusion algorithm 22 to identify drugs that have similar 
mechanisms of actions by integrating three data types representing drug structure, drug 
perturbation, and drug sensitivity profiles. Drug structure and drug perturbation taxonomies were 
based on drug-drug similarity matrices computed from the PubChem SMILES and the L1000 
dataset, respectively. To test the robustness of the fusion algorithm with respect to the scale of 
the drug sensitivity profiles, we also applied our methodology on both the CTRPv2 and NCI60 
datasets. The NCI60 dataset comprises a much smaller panel of cell lines (60 vs. 860 for NCI60 
and CTRPv2, respectively). The NCI60 panel compensates for its small cell line panel by the 
large number of screened drugs (>40,000 drugs tested on the full panel; Supplementary Fig. 
2). Accordingly, the drug sensitivity taxonomy was composed of the drug-drug similarity matrix 
of the sensitivity profiles extracted from either the NCI60 or CTRPv2 datasets. For each dataset, 
an affinity matrix was first calculated using the affinityMatrix function as described in the 
SNFtool package (version 2.2), using default parameters. We combined the three affinity 
matrices of the structure, perturbation, and sensitivity taxonomies into a Drug Network Fusion 
(DNF) matrix using the SNFtool::SNF function (Supplementary Fig. 1). Two separate DNF 
matrices were generated dependant on the sensitivity layer used (either CTRPv2 or NCI60). 
The developed DNF taxonomies, as well as the single data type taxonomies, were subsequently 
tested against benchmark datasets to validate their drug mode of action (MoA). 

  
Assessment of drug mode of action across drug taxonomies 
  
Drug-target associations. Known target associations for drugs pertaining to the NCI60 dataset 
were downloaded from DrugBank (version 5.0) 53. Drug-target associations for drugs of the 
CTRPv2 dataset were obtained from the CTRPv2 website 
(http://www.broadinstitute.org/ctrp.v2/?page=#ctd2Target). Drugs with annotated targets were 
filtered to retain only targets with at least two drugs. 
  
Anatomical therapeutic classification system (ATC). ATC annotations 54 for the drugs 
common to the NCI60 and CTRPv2 datasets were downloaded from ChEMBL (file version 16-5-
10-02) 55. These ATC codes were filtered to retain only those categories with at least one pair of 
drugs sharing a pharmacological indication. The drugs with known ATC annotations from the 
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NCI60 and CTRPv2 datasets were subsequently used as a validation benchmark against 
singular drug taxonomies and the DNF taxonomy. 
 
Evaluation of drug mechanism of action across taxonomies 
  
We assessed the predictive value of our developed taxonomies against drug-target and ATC 
benchmark datasets to determine the extent to which single data type taxonomies and the DNF 
taxonomy recapitulate known drug MoA (Supplementary Fig. 3). We adapted the method from 
Cheng et al 56 to compare benchmarked datasets against singular drug taxonomies (drug 
perturbation, drug structure, or drug sensitivity) as well as the integrated DNF taxonomy. This 
method is further detailed below for the benchmark datasets used in our study. First, we created 
adjacency matrices that indicate whether each pair of drugs share a target molecule or ATC 
annotation. The drug-target and ATC adjacency matrices were then converted into a vector of 
similarities between every possible pair of drugs where the value ‘1’ was assigned in the vector 
if the paired drugs were observed the same target/ATC set, and ‘0’ otherwise. Similarly, the 
affinity matrices of singular drug taxonomies as well as the DNF taxonomy matrix were 
converted into vectors of drug pairs, with the similarity value of the drug pairs retained from their 
original corresponding matrix. Binary vectors of the benchmarks were compared to the four 
continuous vectors of the drug taxonomies by computing the receiver-operating curves (ROC) 
and the area under the curve (AUROC) using the ROCR package (version 1.0.7) 57. 
Concordance indices were calculated using the  rcorr.cens function of the Hmisc package 
(version 1.18.0). The AUROC estimates the probability that, for two pairs of drugs, drugs that 
are part of the same drug set (same therapeutic targets or ATC functional annotations) have 
higher similarity than drugs that do not belong to the same drug set. AUROC calculations for 
each of the four taxonomies were statistically compared against each other using an adapted 
version of the survcomp::compare.cindex function 58. Precision-Recall (PR) curve is an 
alternative to ROC curves for measuring an algorithm’s performance, especially in classification 
problems with highly skewed class distributions 59.  We used PRROC package (version 1.1) to 
compute PR curves. This package does not implement functions for statistical comparison of 
PR curves. For these types of classification tasks, algorithms that optimize AUROC do not 
necessarily optimize the area under the PR curves (AUPRC) 59. Therefore, computing both 
curves brings more insight to measuring performance and comparing multiple algorithms for the 
same prediction task.  
 
Detection of drug communities and visualization 
  
Clusters of drug communities were determined from the DNF taxonomy using the affinity 
propagation algorithm 27,60 from the apcluster package (version 1.4.2). The apcluster algorithm 
generates non-redundant drug communities, with each community represented by an exemplar 
drug. An elevated q value parameter, which determines the quantiles of similarities to be used 
as input preference to generate small or large number of clusters, was set at q=0.9 within the 
apcluster function to produce a large number of communities. Networks of exemplar drugs were 
rendered in Cytoscape (version 3.3.0) 61. Drug structures were rendered using the chemViz 
plugin (version 1.0.3) for cytoscape 62. A minimal spanning tree of the exemplar drugs was 
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determined using Kruskal’s algorithm as part of the CySpanningTree plugin (version 1.1) 63 for 
cytoscape. 
  
Assessment of Drug Community Enrichment 
  
We tested for the enrichment of drug communities determined from the DNF taxonomy against 
all drugs attributed to a specific target or ATC class. We first generated lists of drug targets and 
ATC classes from our benchmarks, filtered to retain only drug targets or ATC classes with two 
or more drugs. Each of the 53 and 51 communities from the DNF taxonomy (using CTRPv2 and 
NCI60 drug sensitivity data, respectively) was subsequently compared against the lists using a 
Fisher test, followed by multiple testing (FDR) correction.  
 
DNF web-application 
 
We developed the DNF web-application (dnf.pmgenomics.ca) to facilitate the exploration of the 
drug communities and the full drug similarity networks built using the CTRPv2 and NCI60 drug 
sensitivity datasets. The application was implemented using JavaScript and AngularJS 64 for its 
frontend and Node.js 65 for its backend. Drug network information is stored on the server as 
JSON and rendered as graphs with the Cytoscape.js library 46. As drug clusters are fully 
connected, showing all edges in the web application will overwhelm the browser. Thus, the 
graphs shown in the web application are thresholded to display the top one thousand edges 
between drugs that have the greatest similarity. Users can click on drug communities to display 
the full set of drugs and their similarity edges. Clicking on an edge reports the similarity score 
and its relative contribution to the fused similarity score. Clicking on drugs provides basic 
descriptors of the compound and its pubchem link. 
 
Research reproducibility 
  
The code and data links required to reproduce this analysis is publicly available on 
github.com/bhklab/DNF. All software dependencies are available on the Comprehensive 
Repository R Archive Network (CRAN) 66 or Bioconductor (BioC) 67. A detailed tutorial 
describing how to run our analysis pipeline to generate the figures and tables are provided in 
Supplementary Information. The procedure to setup the software environment and run our 
analysis pipeline is also provided. This work complies with the guidelines proposed by Sandve 
et al. 68 in terms of code availability and replicability of results. 
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FIGURE LEGENDS 

  
Figure 1: Schematic representation of the SNF method and its use towards integration of 
different types of drug information. Datasets representing drug similarity, drug sensitivity, 
and drug perturbation profiles are first converted into drug-drug similarity matrices. Similarity 
matrices are fully integrated within the SNF method to generate a large-scale, multi-tier, Drug 
Fusion Network (DNF) taxonomy of drug-drug relationships. 
 
Figure 2: Complementarity of drug information across drug taxonomies. Spearman 
correlation between all pairs of single-layer similarity matrices (drug structure, drug perturbation, 
drug sensitivity) are depicted. Correlations between the integrative drug taxonomy (DNF) and 
each of the single-layer similarity matrices are also show. Data are shown for both (A) drug 
taxonomy using CTRPv2 and (B) drug taxonomy using the NCI60 sensitivity datasets.   
   
Figure 3: Validation of the DNF taxonomy using CTRPv2 sensitivity data and single 
dataset taxonomies against the ATC and Drug-target benchmarks. ROC and PR curves are 
shown for each of the taxonomies generated with the CTRPv2 sensitivity dataset, tested against 
ATC annotations and drug-target information from CHEMBL or internal benchmarks. Lines 
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representing random (“rand”) classifications are drawn in grey for both ROC and PR curves. (A) 
ROC curve against drug-targets (B) PR curve against drug-targets (C) ROC curve against ATC 
drug classifications  (D) PR curve against ATC drug classifications 
  
Figure 4: Network representation of 51 exemplar drugs that are representative of the drug 
communities identified by the DNF taxonomy using CTRPv2 sensitivity data. Each node 
represents the exemplar drugs, and node sizes reflect the size of the drug community 
represented by the exemplar node. Nodes are colored to reflect shared MoA as determined 
using known drug targets. Communities sharing similar MoA and proximity in the network are 
highlighted, with the community number indicated next to each community. Drug communities 
pertaining to the super-community are labelled in red. 
 
Figure 5: Enrichment of Drug Communities of the DNF taxonomy (using CTRPv2 
sensitivity data). A total of 53 communities were tested for enrichment against drug target 
annotations from the CTRPv2 data and ATC annotations from ChEMBL (see methods). A 
Fisher test was performed between all the drugs in each community versus all drugs attributed 
to a specific drug target or ATC class, and corrected for multiple testing (FDR correction). (A) 
Enrichment of communities for Drug target annotations, with -log10 FDR values indicated in the 
heat map, which has been reduced to show significantly enriched communities. Communities 
are labelled by community number as determined by the affinity propagation clustering 
algorithm.  (B) Enrichment of communities for ATC classes, with -log10 FDR values indicated in 
the heat map, which has been reduced to show significantly enriched communities. 
Communities are labelled by community number as determined by the APC algorithm. 
 
Figure 6: Schematic of the adaptability of DNF towards prediction of new experimental 
compounds. 
  
SUPPLEMENTARY FIGURE LEGENDS 
 
Supplementary Figure 1: Overview of the study design. Drug sensitivity profiles from the 
NCI60 and the CTRPv2 datasets, along with drug perturbation and drug structure data from the 
L1000 dataset, are first parsed into drug-drug similarity matrices that represent single-dataset 
drug taxonomies. Two DNF taxonomies are generated using the drug sensitivity taxonomy from 
either the NCI60 or CTRPv2 datasets. DNF taxonomies and single-dataset taxonomies are 
tested against benchmarked datasets containing ATC drug classification and drug-target 
information, to validate their efficacy in predicting drug MoA. Additional clustering is conducted 
on DNF taxonomies to identify drug communities sharing a MoA.  
 
Supplementary Figure 2: Overlap of drug annotations across the L1000 and the NCI60 
and CTRPv2 sensitivity datasets. Also indicated are the number of drugs from each DNF 
matrix, which overlap with the drug target and ATC benchmarks.  
  
Supplementary Figure 3: Schematic representation of the validation of the DNF and 
single data type analyses against drug benchmarks. Drug taxonomies are converted into a 
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continuous vector of drug-drug pairs. Benchmark datasets are converted into binary vectors, 
whereby a given drug-drug pair is assigned a value of ‘1’ if the drugs share a common drug 
target or ATC classification, and ‘0’ otherwise. Vectors are compared using AUROC and 
AUPRC.  
 
Supplementary Figure 4: Validation of single-dataset and DNF taxonomies against drug 
benchmark datasets, based on DNF generated using NCI60. ROC and PR curves are 
shown for each of the taxonomies, tested against ATC annotations and drug-target information 
from Chembl or internal benchmarks. A diagonal (grey) representing the null case 
(AUROC=0.5) is drawn for clarity, and a grey line is also drawn to map random ‘rand’ cases for 
the PR curves. (A) ROC curve for NCI60 against drug-targets (B) PR curve against drug-targets 
(C) ROC curve for NCI60 against ATC (D) PR curve against ATC drug classifications. 
  
Supplementary Figure 5: Community of 53 Exemplar drugs of the DNF taxonomy 
generated using NCI60. Communities sharing similar MoA and proximity in the network are 
highlighted, with the community number indicated. 
 
Supplementary Figure 6: Enrichment of Drug Communities of the DNF taxonomy 
generated using NCI60. A total of 51 communities were tested for enrichment against drug 
target annotations from DrugBank and ATC annotations from ChEMBL. (A) Enrichment of 
communities for Drug target annotations, with -log10 values indicated in the heatmap, which has 
been reduced to show significantly enriched communities. Communities are labelled by 
community number as determined by the APC algorithm. (B) Enrichment of communities for 
ATC classes, with -log10 values indicated in the heat map, which has been reduced to show 
significantly enriched communities. Communities are labelled by community number as 
determined by the APC algorithm. 
 
Supplementary Figure 7: Distribution of drug communities sizes of the DNF taxonomy. 
(A) A total of 53 communities from DNF (using CTRPv2 sensitivity data) were tested for 
enrichment against drug target annotations from the CTRPv2 data and ATC annotations from 
ChEMBL (see methods). (B) A total of 51 communities from DNF (using NCI60 sensitivity data) 
were tested for enrichment against drug target annotations from DrugBank and ATC 
annotations from ChEMBL (see methods). 
 
Supplementary Figure 8: Comparison of the DNF and single-layer drug taxonomies with 
comparable drug prediction methods (SuperPred, DrugE-Rank, Iorio, Iskar). ROC and PR 
curves are depicted to indicate the performance of the taxonomies and comparative methods 
against drug target and ATC benchmarks. This analysis is conducted for both DNF taxonomies 
(based on CTRPv2 or NCI60 data, shown in blue), and their associated similarity networks. 
ROC curves are on the left, and PR curves on the right. 
  
Supplementary Figure 9: Assessment of Drug-pathway associations for community C2 of 
DNF (based on CTRPv2). We selected C2 (9 drugs) and tested to which extent, ERBB2/EGFR 
pathways are correlated with the corresponding drug sensitivity from CTRPv2. The top 10 
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up/downregulated pathways were shown in a heatmap. 
 
SUPPLEMENTARY TABLE LEGENDS 
  
Supplementary Table 1. Similarity Matrices of the DNF and single-layer taxonomies 
(based on the CTRPv2 drug sensitivity dataset). (A) Similarity Matrix of the fused DNF 
taxonomy (B) Similarity Matrix of the Perturbation layer (C) Similarity Matrix of the Sensitivity 
layer (D) Similarity Matrix of the Structure layer 
 
Supplementary Table 2. Similarity Matrices of the DNF and single-layer taxonomies 
(based on the NCI60 drug sensitivity dataset). (A) Similarity Matrix of the fused DNF 
taxonomy (B) Similarity Matrix of the Perturbation layer (C) Similarity Matrix of the Sensitivity 
layer (D) Similarity Matrix of the Structure layer 
 
Supplementary Table 3. Matrix of Correlations between single-layer drug taxonomies, 
and correlations between DNF and single layers. Data are shown for both (A) DNF using 
CTRPv2 and (B) DNF using the NCI60 sensitivity datasets.  
 
Supplementary Table 4. Statistical comparison of the DNF taxonomy against single 
datasets taxonomies, using one-sided superiority tests. Comparisons were conducted for 
both DNFs generated using the CTRPv2 or the NCI60 datasets. Reported scores pertain to 
comparisons conducted using both drug benchmarks (Drug-target information as well as ATC). 
  
Supplementary Table 5. List of identified communities using the community detection 
algorithm against the DNF generated using CTRPv2. Exemplar drugs for each community 
are identified, along with the number of drugs in that community. The list of drugs pertaining to 
each community is indicated. Drug populations are coloured to indicate communities that have 
in green means that they have at least 2 drugs with a known mechanism of action (total 139 
drugs for CTRPv2, green), and those communities where drugs are unlabeled or unclassified 
(orange). 
  
Supplementary Table 6. Refined list of identified communities using the APC cluster 
algorithm against the DNF generated using CTRPv2, selected for communities that have 
at least two drugs with a known mechanism of action. Exemplar drugs for each community 
are identified, along with the number of drugs in that community. The list of drugs pertaining to 
each community is indicated. 
  
Supplementary Table 7. Summary of Functional Drug Classes Identified Using DNF 
 
Supplementary Table 8.  Summary of communities generated from CTRPv2/L1000 
integrative layers showing positive controls cases with at least 2 drugs sharing a 
mechanism of action from the same community. 
  
Supplementary Table 9. List of identified communities using the community detection 
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algorithm against the DNF generated using NCI60. Exemplar drugs for each community are 
identified, along with the number of drugs in that community. The list of drugs pertaining to each 
community is indicated. Drug populations are coloured to indicate communities that have in 
green means that they have at least 2 drugs with a known mechanism of action, and those 
communities where drugs are unlabeled or unclassified (orange). 
  
Supplementary Table 10. Refined list of identified communities using the community 
detection algorithm against the DNF generated using NCI60, selected for communities 
that have at least two drugs with a known mechanism of action. Exemplar drugs for each 
community are identified, along with the number of drugs in that community. The list of drugs 
pertaining to each community is indicated. 
 
Supplementary Table 11. List of enrichments of drug communities from DNF generated 
using CTRPv2 sensitivity against drug target (A) and ATC classes (B) 
 
Supplementary Table 12. List of enrichments of drug communities from DNF generated 
using NCI60 sensitivity against drug target (A) and ATC classes (B) 
 
Supplementary Table 13. Similarity matrix used in benchmarking of SuperPred (based on 
the CTRPv2 drug sensitivity dataset) 
 
Supplementary Table 14. Similarity matrix used in benchmarking of SuperPred (based on 
the NCI60 drug sensitivity dataset) 
 
Supplementary Table 15. Similarity matrix used in benchmarking of the Iskar algorithm 
 
Supplementary Table 16. Similarity matrix used in benchmarking of the Iorio algorithm 
 
Supplementary Table 17. Similarity matrix used in benchmarking of the Drug E-Rank 
algorithm (based on the CTRPv2 drug sensitivity dataset) 
 
Supplementary Table 18. Similarity matrix used in benchmarking of the Drug E-Rank 
algorithm (based on the NCI60 drug sensitivity dataset) 
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Figure 1: Schematic representation of the SNF method and its use towards integration of different types of drug 
information. Datasets representing drug similarity, drug sensitivity, and drug perturbation profiles are first converted into 

drug-drug similarity matrices. Similarity matrices are fully integrated within the SNF method to generate a large-scale, 
multi-tier, Drug Fusion Network (DNF) taxonomy of drug-drug relationships. 
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Figure 2: Complementarity of drug information across drug taxonomies. Spearman correlation between all pairs of single-
layer similarity matrices (drug structure, drug perturbation, drug sensitivity) are depicted. Correlations between the integrative 
drug taxonomy (DNF) and each of the single-layer similarity matrices are also show. Data are shown for both A) drug taxonomy 
using CTRPv2 and B) drug taxonomy using the NCI60 sensitivity datasets.   
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A

D

Figure 3: Validation of the DNF taxonomy using CTRPv2 sensitivity data and single dataset taxonomies against the ATC and 
Drug-target benchmarks. ROC and PR curves are shown for each of the taxonomies generated with the CTRPv2 sensitivity dataset, 
tested against ATC annotations and drug-target information from Chembl or internal benchmarks. Lines representing random (“rand”) 
classifications are drawn in grey for both ROC and PR curves. (A) ROC curve against drug-targets (B) PR curve against drug-targets 
(C) ROC curve against ATC drug classifications  (D) PR curve against ATC drug classifications
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A B

Figure 5: Enrichment of Drug Communities of the DNF taxonomy (using CTRPv2 sensitivity data). A total of 
53 communities were tested for enrichment against drug target annotations from the CTRPv2 data and ATC 

annotations from ChEMBL (see methods). A fisher test was performed between all the drugs in each community 
versus all drugs attributed to a specific drug target or ATC class, and corrected for multiple testing (FDR correction). 

(A) Enrichment of communities for Drug target annotations, with -log10 FDR values indicated in the heat map, 
which has been reduced to show significantly enriched communities. Communities are labelled by community 

number as determined by the APC algorithm.  (B) Enrichment of communities for ATC classes, with -log10 FDR 
values indicated in the heat map, which has been reduced to show  significantly enriched communities. 

Communities are labelled by community number as determined by the APC algorithm. 
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Figure 6: Schematic of the adaptability of DNF towards prediction of new experimental compounds.  
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SUPPLEMENTARY METHODS 
 
 
Comparison of DNF with other methods 
We have searched the literature for drug classification algorithms that are comparable with our 
integrative similarity-based network approach. Notably, many available methods incorporate 
ATC and drug target information as input variables for their predictions, which poses an 
obstacle for comparison, as DNF does not rely on these data types as input but uses them as 
external benchmarks. As such, we identified a limited number of state-of-the-art methods to 
perform a comparative study with DNF. These methods comprise two main groups. The first 
group attempt to decode drugs’ mechanism of action based on drug similarities from CMap 
perturbation data (Iorio et al. 2009; Iskar et al. 2010). The second group comprise mainly 
supervised machine learning methods applied for ATC or target prediction (Nickel et al. 2014; 
Yuan et al. 2016).  
 
Comparison to MoA decoding methods 
Relying only on transcriptomic perturbation data, Iorio et al. and Iskar et al. applied different 
approaches to first, preprocess CMap’s perturbation profiles (Thiers 2007; Lamb et al. 2006) 
and then, to compute the same drug-drug similarity score. In order to calculate similarity 
between drugs di and dj {j=1,..,n} (n is total number of drugs), first, a signature is defined for di, 
that is, two sets of (m=) 250 most significantly up and 250 downregulated genes are selected 
from the perturbation profile of di. Second, connectivity scores (Thiers 2007; Lamb et al. 2006), 
based on Gene Set Enrichment Analysis (GSEA), between di and all djs, are calculated and 
stored. The computed scores are not necessarily symmetric, i.e., scoredi,dj ≠ scoredj,di. The final 
score for each drug pair is calculated as the average of the two scores. Both Iorio et al. and 
Iskar et al. used the final scores to construct a drug similarity network. We used the same 
approach to calculate the similarity scores for the set of drugs under study for DNF. However, 
the aforementioned studies rely on the CMap data, while we used the L1000 profiles in our 
study. Therefore, due to the smaller number of genes (978) in the L1000 dataset, we had to 
select a smaller size (e.g., m=30) for the drug signatures. Additionally, we had to adapt pre-
processing approaches used by the aforementioned studies to be applicable to L1000. The 
adaptations are described as follows.    
 
Pre-processing according to Iorio et al.  
Following Iorio’s method, for each drug, we first aggregated all lists of differentially expressed 
genes computed from treating different cell lines by the drug. For this purpose, we used 
RankMerging function (GeneExpressionSignature package: 
http://www.bioconductor.org/packages/release/bioc/html/GeneExpressionSignature.html). The 
method uses computes Spearman’s foot-rule (distance measure between two ranked lists) 
between each pair of signatures, and using Borda merging method, repeatedly, it merges the 
most similar pair of ranked lists each time, till obtaining one single ranked list for the drug.   
After aggregating the signatures, we calculated the drug-pair distances (connectivity scores 
described above). Unfortunately, the corresponding prediction results were not significant. 
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Therefore, in the second attempt, we applied the pre-processed perturbation signatures by 
PharmacoGx (Smirnov et al. 2016) package. Then, we computed the scores, and calculated the 
prediction results (shown in Supplementary Figure 8 as IorioPGX). The prediction results are 
close to the perturbation layer of DNF, as expected.  
 
Pre-processing according to Iskar et al.  
Iskar et al. follow as very different approach from Iorio et al. for pre-processing drug signatures. 
In order to adapt the method to the L1000 dataset, we first, discarded vehicle controls and mean 
centered the treatment samples within each batch. Then, for each drug, we averaged all its 
treatment replicates for each cell line. Therefore, we ended up with one single list for each drug 
for each cell line. L1000 consists of 77 cell lines in contrast to only five cell lines in CMap. In the 
next step, we calculated connectivity scores between drugs within each cell line. For each drug 
pair, the scores over multiple cell lines were averaged to compute the final scores. Prediction 
results based on these scores have been demonstrated (Supplementary Figure 8).   
 
Comparison to supervised ATC/target prediction methods 
The ATC (target) prediction methods decode ATC codes (targets) for unknown drugs according 
to their similarities to a set of drugs with known ATC codes (targets). We selected SuperPred 
(Nickel et al. 2014) and DrugE-Rank (Yuan et al. 2016) methods for comparison with DNF, as 
these methods are freely available. Therefore, these methods do not aim at providing drug 
similarity scores and therefore they are not directly comparable to DNF. To address this issue, 
we post-processed their outputs generated from the corresponding web-based applications. 
 
SuperPred: ATC prediction Method 
SuperPred computes and integrates three structural, i.e., 2D, fragment and 3D, similarities 
between an input drug di and a dataset of drugs with known ATC codes.  
The following steps were performed to collect SuperPred’s output and compare to DNF:  

1. We retrieved SMILES for the set of drugs under study by DNF (di) and submitted them 
one-by-one to the SuperPred website and obtained the predictions. SuperPred retrieves 
the top five similar drugs (d’j) to the input drug. A prediction score is assigned to each 
retrieved drug (scoredi,d’j). Each d’j is a drug with a set of k known ATC codes (atck

d’j). In 
some cases, the top prediction (i.e., the most similar drug) retrieved by SuperPred is the 
same as the input drug. We discarded such predictions, and collected the rest of the 
predictions for each drug (see “superPredResultsFinal.xlsx”). We defined the set of ATC 
predictions for di based on ATCs of d’js, i.e., ATCdi = {atck

d’j}, and assigned a weight to 
each code according to the prediction score, i.e., watc,di

k = scoredi,d’j.  
2. We used Kendall's tau distance between partial rankings (Fagin et al. 2003) on 

SuperPred’s predictions to compute pairwise drug-drug similarities.  
3. Finally, we processed this matrix using “generateDrugPairs.R”, “generateRocPlot.R” and 

“generatePRPlot.R” functions (https://github.com/bhklab/DNF) along with predictions 
from the four layers of DNF. Please refer to Supplementary Figure 8 for results.  
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DrugE-Rank: Target prediction Method 
DrugE-Rank (Yuan et al. 2016), a state-of-the-art target prediction method that uses an 
ensemble of a few efficient computational methods, i.e., k-nearest neighbor (k-NN), Bipartite 
Local Model with support vector classification (BLM-svc) (Bleakley and Yamanishi 2009), 
Bipartite Local Model with support vector regression (BLM-svr) (Bleakley and Yamanishi 2009), 
Laplacian regularized least squares (LapRLS) (Xia et al. 2010), Network based Laplacian 
regularized least squares (NetLapRLS) (Xia et al. 2010), and Weighted Nearest Neighbor-based 
Gaussian Interaction Profile classifier (WNN-GIP) (van Laarhoven, Nabuurs, and Marchiori 
2011) (van Laarhoven and Marchiori 2013). The predictions for our drug set were kindly 
provided by Dr. Shanfeng Zhu. For each drug, di, a ranked list of 20 targets was provided. Then, 
for each pair of drugs we followed steps 2 and 3 from the SuperPred’s post-processing 
algorithm, described above, to compute the pairwise similarities and to compare with DNF’s 
results.   
 
 
Cautionary Note 
Although the adaptation of these methods was challenging due to the use of different 
perturbation data (L1000 instead of CMAP for Iorio and Iskar) and the limitations of the 
SuperPred website (predictions restricted to the top five hits), we provided the results of our 
comparison in Supplementary Figure 8. While DNF outperforms the published methods in all 
cases, we acknowledge that these results should be cautiously interpreted due to the 
differences in both data pre-processing and modification of the algorithms to make them 
comparable with our similarity-based networks.  
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SUPPLEMENTARY FIGURE LEGENDS 
 
Supplementary Figure 1: Overview of the study design. Drug sensitivity profiles from 
the NCI60 and the CTRPv2 datasets, along with drug perturbation and drug structure 
data from the L1000 dataset, are first parsed into drug-drug similarity matrices that 
represent single-dataset drug taxonomies. Two DNF taxonomies are generated using 
the drug sensitivity taxonomy from either the NCI60 or CTRPv2 datasets. DNF 
taxonomies and single-dataset taxonomies are tested against benchmarked datasets 
containing ATC drug classification and drug-target information, to validate their efficacy 
in predicting drug MoA. Additional clustering is conducted on DNF taxonomies to identify 
drug communities sharing a MoA.  
 
Supplementary Figure 2: Overlap of drug annotations across the L1000 and the 
NCI60 and CTRPv2 sensitivity datasets. Also indicated are the number of drugs from 
each DNF matrix, which overlap with the drug target and ATC benchmarks.  
  
Supplementary Figure 3: Schematic representation of the validation of the DNF 
and single data type analyses against drug benchmarks. Drug taxonomies are 
converted into a continuous vector of drug-drug pairs. Benchmark datasets are 
converted into binary vectors, whereby a given drug-drug pair is assigned a value of ‘1’ if 
the drugs share a common drug target or ATC classification, and ‘0’ otherwise. Vectors 
are compared using AUROC and AUPRC.  
 
Supplementary Figure 4: Validation of single-dataset and DNF taxonomies against 
drug benchmark datasets, based on DNF generated using NCI60. ROC and PR 
curves are shown for each of the taxonomies, tested against ATC annotations and drug-
target information from Chembl or internal benchmarks. A diagonal (grey) representing 
the null case (AUROC=0.5) is drawn for clarity, and a grey line is also drawn to map 
random ‘rand’ cases for the PR curves. (A) ROC curve for NCI60 against drug-targets 
(B) PR curve against drug-targets (C) ROC curve for NCI60 against ATC (D) PR curve 
against ATC drug classifications. 
  
Supplementary Figure 5: Community of 53 Exemplar drugs of the DNF taxonomy 
generated using NCI60. Communities sharing similar MoA and proximity in the network 
are highlighted, with the community number indicated. 
 
Supplementary Figure 6: Enrichment of Drug Communities of the DNF taxonomy 
generated using NCI60. A total of 51 communities were tested for enrichment against 
drug target annotations from DrugBank and ATC annotations from ChEMBL. (A) 
Enrichment of communities for Drug target annotations, with -log10 values indicated in 
the heatmap, which has been reduced to show significantly enriched communities. 
Communities are labelled by community number as determined by the APC algorithm. 
(B) Enrichment of communities for ATC classes, with -log10 values indicated in the heat 
map, which has been reduced to show significantly enriched communities. Communities 
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are labelled by community number as determined by the APC algorithm. 
 
Supplementary Figure 7: Distribution of drug communities sizes of the DNF 
taxonomy. (A) A total of 53 communities from DNF (using CTRPv2 sensitivity data) 
were tested for enrichment against drug target annotations from the CTRPv2 data and 
ATC annotations from ChEMBL (see methods). (B) A total of 51 communities from DNF 
(using NCI60 sensitivity data) were tested for enrichment against drug target annotations 
from DrugBank and ATC annotations from ChEMBL (see methods). 
 
Supplementary Figure 8: Comparison of the DNF and single-layer drug 
taxonomies with comparable drug prediction methods (SuperPred, DrugE-Rank, 
Iorio, Iskar). ROC and PR curves are depicted to indicate the performance of the 
taxonomies and comparative methods against drug target and ATC benchmarks. This 
analysis is conducted for both DNF taxonomies (based on CTRPv2 or NCI60 data, 
shown in blue), and their associated similarity networks. ROC curves are on the left, and 
PR curves on the right. 
  
Supplementary Figure 9: Assessment of Drug-pathway associations for 
community C2 of DNF (based on CTRPv2). We selected C2 (9 drugs) and tested to 
which extent, ERBB2/EGFR pathways are correlated with the corresponding drug 
sensitivity from CTRPv2. The top 10 up/downregulated pathways were shown in a 
heatmap. 
 
	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2017. ; https://doi.org/10.1101/046219doi: bioRxiv preprint 

https://doi.org/10.1101/046219
http://creativecommons.org/licenses/by-nc-nd/4.0/

