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Abstract 20 

A successful strategy for prediction of crop yield that accounts for the effects of genotype and 21 

environment will open up many opportunities for enhancing the productivity of agricultural 22 

systems. Crop growth models (CGMs) have a history of application for crop management 23 

decision support. Recently whole genome prediction (WGP) methodologies have been developed 24 

and applied in breeding to enable prediction of crop traits for new genotypes and thus increase the 25 

size of plant breeding programs without the need to expand expensive field testing. The presence 26 

of Genotype-by-Environment-by-Management (G×E×M) interactions for yield presents a 27 

significant challenge for the development of prediction technologies for both product 28 

development by breeding and product placement within agricultural production systems. The 29 

integration of a CGM into the algorithm for whole genome prediction WGP, referred to as CGM-30 

WGP, has opened up the potential for prediction of G×E×M interactions for breeding and product 31 

placement applications. Here a combination of simulation and empirical studies are used to 32 

explain how the CGM-WGP methodology works and to demonstrate successful reduction to 33 

practice for applications to maize breeding and product placement recommendation in the US 34 

corn belt. 35 

  36 
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1. Introduction 37 

Whole Genome Prediction (WGP) is a set of quantitative genetic methodologies that 38 

enables prediction of the breeding value of an individual, created from one or more reference 39 

populations, based on its genetic makeup and pedigree relations. In combination with high 40 

throughput genotyping and phenotyping WGP has brought unprecedented change to the scale of 41 

plant breeding (Heffner et al., 2009; Lorenz et al., 2011; Cooper et al., 2014). Unlike the near 42 

past, today for most large commercial breeding programs germplasm is evaluated using WGP and 43 

only a fraction of the new hybrids that can be created are evaluated in multi-environment trials 44 

(MET, Heffner et al., 2009; Cooper et al., 2014).  WGP enabled breeders to increase the effective 45 

size of their breeding programs without the need to increase the scale of field phenotyping and by 46 

doing so accelerated the rate of genetic gain. 47 

The WGP methodology seeks to simultaneously estimate the allelic values at all available 48 

polymorphic marker loci across the genome (Meuwissen et al., 2001). Bayesian approaches seek 49 

to estimate the posterior distribution of marker effects by means of calculation of a likelihood 50 

function and a prior distribution of such effects. This is a data driven process that leverages the 51 

availability of large datasets routinely generated in commercial breeding programs. Datasets often 52 

comprise multiple years and large samples of genotypes from reference populations with the 53 

expectation that these are a representative sample of the germplasm and the target population of 54 

environments (TPE, Cooper et al., 2014). The mechanics of the method separates individuals 55 

within populations under selection into the WGP estimation set, individuals in this set have both 56 

phenotypic and genotypic information, and the prediction set, individuals in this set only have 57 

genotypic information (see Heffner et al., 2009, Lorenz et al., 2011). Various statistical 58 

methodologies were developed to enable WGP, among which selection of a suitable method 59 

depends on genetic architecture of the trait, the ability to demonstrate and model non-linear 60 

interactions and the population structure (Lorenz et al., 2011). Recently, the use of biological 61 
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frameworks to model non-linear genetic effects was advocated to improve prediction accuracy 62 

(Marjoram et al., 2014, Technow et al., 2015).  A necessary condition to leverage such biological 63 

insight in WGP is that that knowledge be encapsulated in the form of quantitative functions that 64 

transparently map markers to biological function (Messina et al., 2011; Cooper et al., 2005) and 65 

be linked to prediction algorithms (Technow et al., 2015) to generate the necessary boundary 66 

conditions to accurately execute the biological algorithms (Cooper et al., 2016). 67 

Crop Growth Models (CGMs), structured on principles of resource capture (e.g., solar 68 

radiation, water, nitrogen), use efficiency and allocation to organs of economic value, provide the 69 

biological framework for phenotypic prediction of relevant quantitative traits for breeding 70 

(Cooper et al., 2009). A general mathematical framework to develop models for phenotypic 71 

prediction with genetic information based on the E(N:K) family of models (Cooper et al., 2005) 72 

has been developed (Messina et al., 2011). Examples of implementations include models of leaf 73 

elongation rate and flowering time in maize (Welcker et al., 2007; Dong et al., 2012), and oat and 74 

soybean growth and development (Yin et al., 2004; Messina et al., 2006). But the 75 

parameterization of CGMs at a scale that is required to support breeding programs using these 76 

approaches proved challenging because of the difficulty of phenotyping important physiological 77 

traits (Messina et al., 2011). This phenotyping bottleneck currently limits the applicability of 78 

CGM to augment plant breeding. Advances in phenomics will undoubtedly generate very large 79 

datasets (Furbank and Tester, 2011; Fahlgren et al., 2015) bringing opportunity to improve 80 

models, and challenges to the utilization of these sources of information. Efficient analytical 81 

methods that reduce the phenotyping requirements and directly integrate biological models, such 82 

as CGMs, into the prediction algorithms in a single step, are naturally well positioned to fully 83 

take advantage of improvements in phenomics. 84 

The CGM-WGP methodology uses a CGM as part of the calculation of the likelihood 85 

function step in an otherwise standard WGP algorithm (Technow et al., 2015). The relationship 86 
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between marker effects and yield is established through the estimation of marker effects and 87 

biological parameters within the CGM. Because the selected genetic models result in the 88 

modulation of the strength of the relationship between the environment and a physiological 89 

process, and/or different physiological processes, genotype-by-environment (G×E), epistasis in 90 

the form of  trait-by-trait genotype-by-genotype (G×G) and genotype-by-environment-by-91 

management (G×E×M) interactions are all emergent properties from the genetic variation effects 92 

in the functional equations that relate traits and the environment (Messina et al., 2011; Cooper et 93 

al., 2009). Technow et al (2015) demonstrated this concept using a simulation experiment, while 94 

Cooper et al. (2016) demonstrated the feasibility of implementing CGM-WGP within a functional 95 

breeding program. However, a demonstration that CGM-WGP prediction accuracy is higher than 96 

benchmark methodologies in at least one realistic breeding case study is lacking. It was 97 

hypothesized that the difference in predictive accuracy between CGM-WGP and benchmark 98 

WGP algorithms will increase with an increasing role of G×E interaction in determination of 99 

performance, and that parameterization of the CGM-WGP models will improve with the contrast 100 

between environmental conditions (Cooper et al., 2016). 101 

Because training of CGM-WGP involves the estimation of biological parameters that 102 

regulate physiological behavior, the CGM-WGP not only can output predictions for yield for the 103 

set of environments and hybrids used for training as for other prediction methods such as BayesA, 104 

but also enables the breeder to exercise the CGM to make predictions to evaluate hybrids that 105 

have never been empirically evaluated in the field at a large scale, through computer simulation. 106 

This simulation step enables extending predictions from a few G×M or G×E cases intrinsic to the 107 

training sets to virtually the target population of environments, here considered broadly to include 108 

agronomic practices.  109 

The objectives of this paper are to: 1) extend CGM-WGP methodology to train models 110 

using data from multiple environments, 2) evaluate, using both synthetic and experimental data 111 
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from a maize drought breeding program, whether CGM-WGP methodology can enable improved 112 

phenotypic prediction when G×E interactions are an important determinant of performance, 3) 113 

demonstrate virtual breeding by means of use of CGM-WGP and computer simulation, and 4) 114 

facilitate the dialogue between breeders, crop physiologists and modelers. 115 

 116 

2. Materials and Methods 117 

2.1 Hierarchical model 118 

The model fitted to the data (Fig. 1) uses the likelihood derived from the generalized 119 

E(N:K) model (Cooper et al., 2005; Messina et al. 2011) as,  120 

𝑦𝑖𝑗~ 𝑁 (𝐶𝐺𝑀(𝑇𝑡𝑖 , 𝐸𝑗), 𝜎𝑒𝑗
2 )                                                                                                             121 

where 𝑦𝑖𝑗 is the yield of individual 𝑖 in environment 𝑗, and 𝑇𝑡𝑖 is the unobserved value for 122 

physiological trait  𝑡 (e.g., AMAX; a measure of maize canopy size based on the area of the 123 

largest leaf) for individual i. The environmental inputs (e.g., soil type, temperature) of 124 

environment 𝑗 are represented by 𝐸𝑗, and 𝜎𝑒𝑗
2  denotes the residual variance for yield in that 125 

environment. Finally 𝑁 denotes the Gaussian density function and 𝐶𝐺𝑀 the crop growth model. 126 

Thus, 𝐶𝐺𝑀(𝑇𝑡𝑖, 𝐸𝑗) denotes the simulated yield of individual 𝑖 in environment 𝑗, as determined 127 

by the states of the physiological traits t for individual i, 𝑇𝑡𝑖.  128 

The prior for the unobserved 𝑇𝑡𝑖 was  129 

𝑇𝑡𝑖~ 𝑁 (𝛽𝑜𝑡
+  ∑ 𝑧𝑡𝑖𝑘  𝑢𝑡𝑘

𝑘

, 𝜎𝑇𝑡

2 ) 
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where 𝛽𝑜𝑡
 is a trait specific intercept, 𝑧𝑡𝑖𝑘 denotes the marker score of individual 𝑖 at marker 𝑘 for 130 

trait 𝑡 and 𝑢𝑡𝑘 the effect of marker 𝑘 for trait 𝑡. The trait specific prior variance was 𝜎𝑇𝑡

2 .  131 

The prior distributions for the marker effects correspond to those from the widely used 132 

whole genome prediction model ‘BayesA’ (Meuwissen et al., 2001). Briefly, the marker effects 133 

𝑢𝑡𝑘 were associated with a Normal prior distribution with mean 0 and marker specific 134 

variance𝜎𝑡𝑘
2 , which itself was associated with scaled inverse Chi-square prior distribution with 135 

4.001 degrees of freedom and trait specific scaling factor 𝑆𝑡
2. The prior distribution for the 136 

parameter 𝑆𝑡
2was a Gamma distribution with constant parameters (Yang and Tempelman, 2012). 137 

The prior for the trait specific intercept  𝛽𝑜𝑡
 was a Normal distribution with mean 𝜇0𝑡

 and 138 

variance 𝜎0𝑡

2 , both of which were constants. The prior of 𝜎𝑇𝑡

2  was again a scaled inverse Chi 139 

square distribution with 4.001 degrees of freedom and constant scaling factor 𝑆𝑇𝑡

2 . Finally, the 140 

prior of the environment specific residual variance 𝜎𝑒𝑗
2  was also a scaled inverse chi-square 141 

distribution with 4.001 degrees of freedom and constant scaling factor 𝑆𝑒𝑗
2 . Thus, the CGM-WGP 142 

model can be understood as a generalized linear model version of the whole genome prediction 143 

model ‘BayesA’ (Meuwissen et al., 2001), in which the crop growth model acts as the link 144 

function. 145 

The constants were derived from rough prior estimates of the mean (𝑚𝑡) and variance 146 

(𝑣𝑡) of physiological trait 𝑡 within the germplasm under consideration. From these, the scaling 147 

factor of the prior of the physiological traits was calculated as 𝑆𝑇𝑡

2 =  𝑣𝑡 ⋅ (4.001 − 2)/4.001, 148 

which results in a scaled inverse chi-square prior distribution with mean 𝑣𝑡. The prior parameters 149 

for the trait specific intercepts 𝛽𝑜𝑡
 were 𝜇0𝑡

= 𝑚𝑡 and 𝜎0𝑡

2 = 𝑣𝑡. The parameters of the Gamma 150 

prior distribution of 𝑆𝑡
2, the scaling factor of the marker specific variances, were calculated as 151 

follows. First the variance of the additive effect of a random marker locus was calculated 152 
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according to Habier et al. (2011) as 𝑣𝑢𝑡
=  𝑣𝑡/ ∑ 2𝑝𝑘(1 − 𝑝𝑘)𝑘 , where 𝑝𝑘 is the allele frequency 153 

of marker 𝑘. From this we calculated the prior expected value of 𝑆𝑡
2 as 𝐸[𝑆𝑡

2] = 𝑣𝑢𝑡
⋅ (4.001 −154 

2)/4.001, the values of 𝑠ℎ𝑎𝑝𝑒𝑡 and  𝑟𝑎𝑡𝑒𝑡 were then chosen in such a way that the mean of the 155 

Gamma prior distribution was 𝐸[𝑆𝑡
2] and its variance (

𝐸[𝑆𝑡
2 ]

3
)

2

.  156 

 157 

2.2 Metropolis-within-Gibbs sampling algorithm  158 

A ‘Metropolis-Hastings within Gibbs’ algorithm was implemented to sample from the 159 

posterior distribution of all parameters (Gelman et al., 2004; see Wallach et al., (2012) for an 160 

application to estimating crop growth model parameters). Briefly, the Gibbs sampler (Gelman et 161 

al., 2004) is a Markov chain algorithm for high-dimensional parameter spaces. Because the 162 

algorithm samples parameters sequentially from the conditional (on the data and all other 163 

parameters) posterior distribution of each, the algorithm is highly efficient. With the exception of 164 

𝑇𝑡𝑖, the conditional posterior distributions of all parameters in CGM-WGP are recognizable 165 

distributions that can be sampled from directly. A Metropolis-Hastings step, which is an accept-166 

reject algorithm that can sample from any distribution, was therefore included in the final 167 

algorithm to sample 𝑇𝑡𝑖. The Gibbs sampler use in this study is identical to the Gibbs algorithm 168 

generally used for BayesA models (Meuwissen et al., 2001; Yang and Tempelman, 2012), except 169 

for the sampling of 𝑇𝑡𝑖 with the Metropolis-Hastings algorithm.  170 

Conditional on the marker effects 𝑢𝑡𝑘, the physiological traits 𝑇𝑡𝑖 of one individual are 171 

independent of those of the others and can hence be sampled sequentially. The different traits for 172 

each individual, however, are not and have to be sampled jointly. This was done as described by 173 

Wallach et al. (2012), with the exception that a change of variable was implemented to sample the 174 

parameters in the space of the natural logarithm. This is a common technique when the parameter 175 
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values in the original space have to be positive (Gelman et al., 2004). The Metropolis-Hastings 176 

step was run for two subsequent iterations to improve convergence. 177 

Gibbs sampling chains were run for 200 thousand iterations. The first half of each chain 178 

was discarded as ‘burn-in’ and samples from every 100
th
 iteration thereafter were stored, thus 179 

resulting in 1000 stored samples.  Convergence was monitored by inspecting graphical 180 

diagnostics such as implemented in the R package ‘coda’ (Plummer et al., 2006). Increasing the 181 

chain length did not seem to improve prediction accuracy. The algorithm was implemented as a C 182 

routine and embedded in the R statistical software environment (R Core Team, 2014). 183 

 184 

2.3 Prediction of yield from CGM-WGP results 185 

The predicted yield of an untested individual 𝑖′in environment 𝑗′was obtained from the 186 

posterior samples of the marker effects 𝑢𝑡𝑘 and the intercepts 𝛽𝑜𝑡
. From each posterior sample the 187 

values of the physiological traits were calculated as 𝑇̃𝑡𝑖 =  𝛽𝑜𝑡
+  ∑ 𝑧𝑡𝑖𝑘  𝑢𝑡𝑘𝑘 . Those values were 188 

then entered into the CGM together with the inputs of the environment, resulting in one simulated 189 

yield value per posterior sample. Those samples represent the posterior predictive distribution of 190 

yield for individual 𝑖′ in environment 𝑗′. The mean of this distribution was used as the predicted 191 

value. The algorithm BayesA (Meuwissen et al., 2001) was utilized as a reference method that 192 

predicts yield using marker information only. i.e., 𝑦̅𝑖⋅~ 𝑁(𝛽𝑜 +  ∑ 𝑧𝑖𝑘  𝑢𝑘𝑘 , 𝜎𝑒
2), with 𝑦̅𝑖⋅ denoting 193 

the yield of individual 𝑖 averaged over all environments considered for estimation. The prior of 194 

the marker effects 𝑢𝑘 was 𝑢𝑘~ 𝑁(0, 𝜎𝑘
2) and standard, uninformative prior distributions were 195 

used for 𝜎𝑘
2 and 𝜎𝑒

2. The BayesA Gibbs-sampler was run for 50000 iterations, of which the first 196 

25000 were discarded and samples from only every 25
th
 subsequent iteration stored. In this study, 197 

BayesA served as a purely statistical reference method relative to which we measure the benefit 198 

of modeling G×E interactions with CGM-WGP. 199 
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 200 

2.4 Crop growth model  201 

The CGM connected to the WGP algorithm is a mechanistic model based on the concept 202 

of radiation and water capture and use efficiencies, and mass allocation to reproductive growth 203 

(Muchow et al., 1990; Muchow and Sinclair, 1991). Crop and canopy development are simulated 204 

as a function of thermal time (TT, °C) with base temperature for preflowering equal to 8°C and 205 

postflowering equal to 0°C (Muchow et al., 1990). Growth (W) is calculated as the product of 206 

light interception (LI) and radiation use efficiency (RUE), W=LI × RUE. The value for RUE was 207 

set to 1.85 g MJ
-1

 after Hammer et al. (2009), unless explicitly changed for specific studies 208 

described below.  Light interception is estimated from the leaf area per plant (LP), plant density 209 

(PD) and canopy attributes described by the coefficient of extinction, which has set to 0.4, LI=1-210 

exp(-0.4 × LP × PD). Leaf area per plant is modeled solely as a function of the size of the largest 211 

leaf (AMAX, Birch et al., 1998); that is, other parameters are kept constant as in Muchow et al. 212 

(1990). Transpiration (TR) is calculated as a function of W, vapor pressure deficit (VPD), 213 

transpiration efficiency  coefficient (TE=9 kPa, Tanner and Sinclair, 1983), and the expression of 214 

the limited transpiration trait (Sinclair et al., 2005; Messina et al., 2015) on an hourly (h) time 215 

step,  216 

otherwise    

 if    
)(

TE

VPDW
TR

BKPVPD
TE

SFBKPVPDW

TE

BKPW
TR

hh
h

hhh
h












 217 

where BKP is the breakpoint and SF is the sensitivity of TR to VPD. The parameter SF was set at 218 

0.3 in order to incorporate relevant functional biological behavior (Gholipoor et al., 2013; 219 

Choudhary et al., 2014; Shekoofa et al., 2015). When hourly VPD exceeds BKP, hourly growth 220 

Wh is updated to conform to hourly TR and a constant TE,  221 
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h

h
h

VPD

TETR
W


  222 

Water deficit effect on growth is modeled through the coefficient water supply-to-223 

demand (SD) ratio. Water demand is calculated as TR in the absence of soil water deficit. Water 224 

supply is estimated as the sum across all soil layers of soil water content minus the soil water 225 

content at the lower limit times the kl as in Robertson et al. (1993), where the kl coefficient was 226 

set at 0.08 (Dardanelli et al., 1997; Hammer et al., 2009). Soil water content is estimated using a 227 

multilayer model. Grain yield is simulated as the linear increase of harvest index (HI) during seed 228 

fill. Reduction in postflowering growth due to stress at flowering time is simulated by modeling 229 

the attainable HI from silk numbers exerted at the onset of the increase in HI, as defined in 230 

Muchow and Sinclair (1990), and the maximum silk numbers (SNM), a value that can vary 231 

among genotypes. Silk number (SN) is estimated from the ear mass (EM) as, SN = SNM × (1 – 232 

exp(-0.14 × (EM – MEB)), where MEB is a parameter characteristic of genotype (Cooper et al., 233 

2014), and EM is modeled using an exponential function of TT and a stress factor directly 234 

proportional to SD. The parameter MEB corresponds to the threshold of ear biomass below which 235 

silk elongation is not fast enough to exert silks beyond the ear husk. Chenu et al. (2009) used a 236 

similar approximation that included a threshold similar to MEB to model the connection between 237 

QTL controlling silk elongation, anthesis-silking interval, which is a crop attribute closely related 238 

to yield under water limited conditions (Bolaños and Edmeades, 1993; Cooper et al., 2014), and 239 

yield. For further discussion of CGMs Soltani and Sinclair (2012) provide an extensive treatment 240 

of simple mechanistic crop models. 241 

 242 

2.5 Multi-environment trial simulation 243 

A multi-environment trial simulation experiment based on three environments was 244 

created to assess the CGM-WGP methodology. To characterize the three environments and 245 
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quantify water availability during the crop cycle, water SD ratios were calculated on a daily time 246 

step following the procedures described by Cooper et al. (2016). Consequently it was determined 247 

that the simulated multi-environment trial comprised of three environments with different degrees 248 

of water deficit occurring in Johnston, Iowa, US (41.684 °N, -93.508°W)  in 1988, 2012 and 249 

2010, herein referred to as water limited 1 (WL1), water limited 2 (WL2) and NWL (not water 250 

limited), respectively. The soil depth, soil water holding capacity, and kl were 2.2 m, 0.13 251 

cm
3
.cm

-3
, and 0.08, respectively. Planting dates were 4/29/1988, 4/28/2010, and 5/4/2012. Plant 252 

population was set at 6.5 pl m
-2

. Daily meteorological records were from the National Oceanic 253 

and Atmospheric Administration (NOAA; Bell et al., 2013). Genotypic variation for a set of 254 

physiological traits was considered for a Doubled Haploid (DH) population of lines. The DH 255 

lines were evaluated as F1 hybrids in combination with an inbred from a complementary heterotic 256 

group. Parameters describing these traits for an individual DH within a population were allowed 257 

to vary within the following intervals: [700 < AMAX< 1100 cm
2
] (Elings, 2000), [1.6 < RUE<2.1 258 

g MJ
-1

] (Sinclair and Muchow, 1999), [0.5<MEB<1.0 g] (Cooper et al., 2014), and 259 

[1.5<BKP<2.5 kPa] (Messina et al., 2015).  260 

The DH genotypes of the DH lines were generated in silico in two step process, similar to 261 

the one used by Technow et al. (2014a) for simulating a DH maize breeding population. In step 262 

one, an ancestral population of 50 inbred lines was stochastically simulated. The genome 263 

consisted of 10 chromosomes with lengths between 0.75 and 1.25 Morgan (M). Two hundred 264 

evenly spaced biallelic marker loci were placed on each chromosome. The total number of 265 

markers was thus 2000. An additional 40 loci were randomly distributed across all chromosomes 266 

that served the purpose of simulating quantitative trait loci (QTL). Historical linkage 267 

disequilibrium (LD) between markers as well as their allele frequencies was simulated with the 268 

method described by Montana (2005). The simulated expected LD (measured as squared 269 

correlation) between markers followed an exponential decay, such that it halved approximately 270 
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every 0.1 Morgan. For two marker loci 𝑡 Morgan apart, the expected LD followed 0.5 ⋅271 

2(−𝑡 0.1⁄ ) +  0.1 ⋅ 2(−𝑡 0.5⁄ ) . Exponential decay curves mirror the LD decay curves observed in 272 

maize (Technow et al., 2014b). Minor allele frequencies were drawn at random from the (0, 0.5) 273 

interval. This population was then random mated for three generations to generate a pedigree and 274 

sub-population structure. The population size was thereby kept constant at 50. After the last 275 

generation 1000 doubled haploid lines were generated through meiosis followed by a 276 

chromosome doubling step. 277 

The values for the physiological traits were simulated according to Technow et al. 278 

(2015). A unique set of ten of the 40 loci set aside as QTL were assigned to each of the four 279 

physiological traits: AMAX, RUE, MEB, and BKP. The additive substitution effect of each QTL 280 

was drawn from a Standard Normal distribution and raw genetic scores calculated for each trait 281 

by summing the effect of the QTL according to the genotypes of the DH lines. These scores were 282 

then rescaled linearly to the ranges described above.  283 

The true grain yield value of a DH line 𝑖 in environment 𝑗 was then simulated by 284 

executing the CGM with the physiological trait values of the DH and the appropriate 285 

environmental inputs. For those DH that became part of the estimation set we also simulated 286 

observed phenotypic yield values by adding a Normal noise variable to the true values. The 287 

variance of this variable was chosen in such a way that the within environment heritability was 288 

equal to 0.66. 289 

2.6  Whole genome prediction application 290 

Estimation sets for training the CGM-WGP model were constructed from one, two or all 291 

three environments. For the single location estimation sets (WL1, WL2 or NWL) the phenotypic 292 

yield data of a random sample of 500 of the DH lines in that environment were used. For two and 293 
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three environment estimation sets, yield data from 250 DH lines in the two environments case and 294 

166 DH lines in the three environments case were used. The total number of data points was thus 295 

equal in all cases. Values for 𝑚̂𝑡 and 𝑣𝑡, which are required for calculation of constants and 296 

starting values, were computed from estimates obtained from a random sample of 25 DH lines, 297 

which were assumed to be phenotyped for the traits but were not used as part of the estimation 298 

set. The CGM-WGP algorithm was then run as described and the marker effects used to predict 299 

the yield performance of all DH lines within the validation set in all three environments, also as 300 

described. Prediction accuracy was then calculated as the Pearson correlation between predicted 301 

and true yield in each environment. Because the true values of the physiological traits were 302 

known, it was possible to assess their prediction accuracy by calculating the correlation between 303 

their predicted and true values. BayesA methodology was utilized as a reference method and it is 304 

described above. The whole process, including the data simulation, was repeated 75 times for 305 

each environment combination. The resulting distribution of the accuracy statistics was 306 

summarized by the mean and standard deviation. 307 

 308 

2.7  Empirical breeding experiment 309 

For the empirical evaluation the CGM-WGP and BayesA methods prediction accuracies 310 

were compared using four DH populations that were tested in an experiment that comprised of a 311 

non-water-limited (NWL) environment and a water-limited (WL) environment. Both field 312 

environments were created at the DuPont Pioneer Viluco research station, which is located in 313 

Chile (-33.797 °S, -70.807 °W), in the 2012/13 season. The contrasting water environments were 314 

created by controlled application of quantity and timing of water during the crop cycle. As for the 315 

simulation experiment, water SD ratios were estimated on a daily time step during the crop cycle 316 
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for the NWL and WL environments to quantify the impact of the different irrigation regimes that 317 

were used to create the contrasting water environments. 318 

The four DH populations, referred to as DHPop1, DHPop2, DHPop3, DHPop4, were 319 

created from biparental crosses between six inbred lines, referred to as I1, I2, … , I6. The two 320 

parents of DHPop1, I1 and I2, were different from the four inbred lines, I3, I4, I5 and I6, used as 321 

parents to create the other three DH populations. One of the four remaining inbred lines, I3, was 322 

used as a common parent for all three remaining DH populations; DHPop2 parents I3/I4, 323 

DHPop3 parents I3/I5 and DHPop4 parents I3/I6. Thus, there is a closer pedigree relationship, 324 

based on the half-sib structure, between DHPop2, DHPop3 and DHPop4 than there is between 325 

any of these three populations and DHPop1. Each of the four populations was represented in the 326 

experiment by 76 to 105 DH lines. The DH lines were each genotyped with approximately 1600 327 

polymorphic Single Nucleotide Polymorphism (SNP) markers. 328 

For the experimental evaluation of grain yield, testcross hybrids were created for all of 329 

the DH lines using a common inbred tester line that was selected from a complementary heterotic 330 

group. Thus, while for discussion purposes we refer to DH lines they were evaluated for grain 331 

yield as hybrids in the NWL and WL environments. Grain yield was measured for all DH lines 332 

from two-row plots. The two-row plots were 4.5m long with 0.75m spacing between rows. The 333 

number of plants within the rows was managed to represent a plant population of 7.9 pl. m
-2

. To 334 

manage irrigation quantity and timing drip tape was installed at a depth of approximately 0.1m 335 

and approximately 0.1m to the side of each plot row at the time of planting of the experiment. At 336 

maturity the total grain yield of a plot was measured by harvesting all ears from within the plot 337 

using a two-plot combine harvester. The total weight and moisture content of the grain from a 338 

plot were measured at the time of harvest and the harvested plot weight was converted to grain 339 

yield on an area basis at 15% moisture.  340 
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The experimental design in each environment was a row-column design with two 341 

replicates. The grain yield data were analyzed using the ASREML mixed model software 342 

(Gilmour et al. 2009). For the mixed model analysis the two environments, NWL and WL, were 343 

treated as fixed effects and the DH lines were treated as a random sample of lines from within 344 

their respective population. To investigate the magnitude of G×E interaction for grain yield 345 

between the NWL and WL environments for each of the four DH populations a combined 346 

analysis of variance was conducted following the recommendations of van Eeuwijk et al. (2001). 347 

When significant G×E interactions were detected the genetic correlation was estimated for grain 348 

yield between the two environments (Falconer and Mackay 1996). For reference, the genetic 349 

correlation can range from 1.0 to -1.0. A genetic correlation of 1.0 indicates there were no G×E 350 

interactions. Conversely, a genetic correlation of -1.0 indicates strong G×E interactions with 351 

complete rank reversal of the DH lines between the two environments. For the selected mixed 352 

model analysis of variance Best Linear Unbiased Predictors (BLUPs) were computed for grain 353 

yield of each of the DH lines in the NWL and WL environments. These grain yield BLUPs were 354 

then used for the CGM-WGP and BayesA prediction analyses. 355 

A leave-one-family-out cross-validation was conducted to assess prediction accuracy for 356 

grain yield. Here the CGM-WGP model was selected using an estimation data set based on the 357 

yield data from both the NWL and WL environments for three of the four DH populations and 358 

then used to predict the yield values of the fourth DH population for both the NWL and WL 359 

environments. This process was repeated until each population was left out once. Since the 360 

estimation set comprised yield data from both the yield in the NWL and WL environments this is 361 

a multi-environment estimation set. Prediction accuracy for the lines of the DH population left 362 

out of the estimation set was calculated as the correlation between predicted and observed yield 363 

BLUP values separately for both the NWL and WL environments.  364 
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The physiological traits for the empirical study were the same as those used for the 365 

simulation study; AMAX, RUE, MEB and BKP. Prior estimates of physiological trait means and 366 

variances (m̂t and v̂t) covered the typically observed biological ranges. The values of the means 367 

were m̂AMAX = 850, m̂RUE = 1.85, m̂BKP = 2.0, and m̂MEB = 0.75 and those of the variances 368 

v̂AMAX = 76.52, v̂RUE = 0.132, v̂BKP = 0.252, and v̂MEB = 0.132. The values of v̂ej
 were 369 

v̂eFS
= 144.02 and  v̂eWW

= 70.32. Both of which were obtained from an ASREML analysis of 370 

the original data.  371 

The classical BayesA WGP model (Meuwissen et al. 2001) was used as a reference 372 

method relative to which we measure the benefit of modeling G×E interactions with CGM-WGP. 373 

The BayesA model was applied directly to the BLUP yield average over the two environments. 374 

 375 

2.8 Large scale evaluation of hybrids never tested in the field 376 

The CGM-WGP methodology can be used to make predictions within the set of 377 

experiments used for model training and evaluation, as demonstrated by Cooper et al. (2016). 378 

This application is comparable with BayesA and other statistical based methodologies (Heffner et 379 

al. 2009, Lorenz et al., 2011). Because CGM-WGP estimates the value of the alleles for each 380 

polymorphic marker locus for each physiological parameter included for CGM-WGP model 381 

training, it is possible to generate predictions for any combination of management and 382 

environment for any individual that has been genotyped and belongs to the genetic inference 383 

space. A simulation experiment using genetic parameters estimated for individuals from a 384 

breeding population (see above) and environments included in the TPE (Messina et al., 2015) was 385 

conducted to demonstrate the feasibility of augmenting field evaluation with in-silico evaluation 386 

of untested genotypes at large scale. Parameters to run the mechanistic CGM model were 387 
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estimated for individuals from a breeding population using the method and breeding experiments 388 

described above. Environment and management inputs to run the CGM in 2263 30 x 30 km grids 389 

within the maize growing region for 1988 and 2014 are described in Messina et al. (2015). 390 

Briefly, weather data were from NOAA. Solar radiation was estimated from temperature records 391 

(Bristow and Campbell, 1984) with parameters provided by Mud Springs Geographers, Inc, and 392 

hourly vapor pressure deficit (VPD) was estimated from daily temperature assuming an harmonic 393 

change in daily cycle (Monteith and Unsworth, 1990). Soil depth was from the STATSGO 394 

database (United States Department of Agriculture, 2015) and used to estimate total soil water 395 

holding capacity by multiplying it by a constant (0.13 cm
-3

 cm
-3

) volumetric fraction of available 396 

soil water. Crop management data that includes plant population, planting date and maturity 397 

group were from DuPont Pioneer data bases. 398 

 399 

3. Results and Discussion 400 

3.1 Physiological determinants of G×E interactions for yield 401 

The simulation study included three environments contrasting for water availability, as 402 

characterized by the water supply to demand ratio index (Fig. 2). Water deficit was largest at 403 

flowering time in WL1 and at grain filling in WL2. Simulations for the year 2010 (NWL) 404 

indicated absence of water stress with SD equal to 1 throughout the growing season (SD for NWL 405 

not shown on Fig. 2). This combination of environments set the conditions to observe differential 406 

effects of physiological traits on yield (Fig. 3) and consequently create a case study to test the 407 

CGM-WGP and BayesA algorithms for ability to construct predictive genetic models (Tables 1, 408 

2).  409 
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Figure 3 shows the conditional influence of the four physiological traits on yield in the 410 

three environments when holding the other traits constant at their mean and yield is standardized 411 

relative to the distribution when all traits are varying. Because of the occurrence of stress around 412 

flowering time (Fig. 2), MEB has the largest impact on yield in environment WL1 (Fig. 3b). 413 

Yield and drought tolerance in maize decreased in WL1 with increasing MEB, as demonstrated in 414 

previous studies (Messina et al., 2011, Cooper et al. 2014).  With increasing AMAX (Fig. 3a), 415 

RUE (Fig. 3c) and BKP (Fig. 3d) traits yield increased in the NWL environment and decreased in 416 

the drought stress environments WL1 and WL2. These results are consistent with those observed 417 

in other studies (Sinclair and Muchow, 2001; Messina et al., 2011; Messina et al., 2015). The 418 

traits AMAX, RUE and BKP regulate crop canopy level transpiration thus the water use 419 

dynamics during the growing season. Water use decreases with decreasing values of any of these 420 

traits, which is a mechanism to conserve water during the vegetative period. When water deficit 421 

occurs at flowering time, water conservation may have a large impact on yield (Cooper et al. 422 

2014a). Because of the high sensitivity of silking to water deficit (Hall et al., 1982; Bolaños and 423 

Edmeades, 1993), the greater intensity of water deficit at flowering time in WL1 (Fig. 2) yield in 424 

WL1 decreased with increasing AMAX, RUE and BKP traits more than in WL2 (Fig. 3). At a 425 

constant value of AMAX, RUE, BKP or MEB, simulated yield using the CGM can increase, 426 

decrease or show no change depending on the environment. This G×E interaction for yield, 427 

resulting from the interplay between physiological process and the environment, was previously 428 

referred as functional emergent behavior (Hammer et al., 2006).  This attribute of the CGM to 429 

generate variable outputs conditional to a vector of constants that characterize physiological traits 430 

is what make these algorithms potentially useful functions to construct simple additive predictive 431 

genetic models for traits incorporated into the CGM that can produce complex outputs that 432 

reproduce G×E interactions and fitness landscapes for yield (Messina et al., 2011; Hammer et al., 433 

2006; Hammer et al., 2010). 434 
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 435 

3.2 CGM-WGP incorporates biological insight within genomic prediction algorithms and 436 

increase prediction accuracy 437 

The simulation results reported in this study introduce enhanced realism relative to 438 

Technow et al. (2015) with yield responses to physiological trait variation more subtle and linear 439 

than in the previous study (Fig. 3). The average prediction accuracy of CGM-WGP when trained 440 

in one, two or three environments was 0.55 (Table 1), 0.75 and 0.75 (Table 2), respectively. In 441 

contrast, the average prediction accuracy for BayesA was 0.24 for one (Table 1), 0.23 for two and 442 

0.32 for three (Table 2) training environments, respectively. Despite the absence of major non-443 

linear yield response to variation in physiological traits, as in Technow et al. (2015), the results 444 

from this study support the conclusion that CGM-WGP increased prediction accuracy over the 445 

BayesA method by incorporating biological insight into the prediction algorithm.  446 

Although the CGM-WGP average accuracy was greater than for BayesA, there were 447 

cases where BayesA accuracy could be equal or greater than CGM-WGP’s (Table 1), for 448 

example, when the prediction and the estimation environments were alike due to the common 449 

effects of drought (WL1, WL2).  Cooper et al. (2016) reported similar results for an application 450 

of CGM-WGP to two drought environments that were part of a MET from within a breeding 451 

program. In contrast, there were no cases where the accuracy of BayesA was greater than that for 452 

CGM-WGP when the estimation environment differed from the prediction environment (e.g., 453 

WL1 vs. NWL). In the presence of the emergent G×E interactions at the yield level due to the 454 

contrasting influences of the physiological traits in the different environments (Fig. 3) BayesA 455 

accuracy could be negative (Table 1). For example, when BayesA was trained in WL1 and 456 

predictions were made in NWL, the mean prediction accuracy was -0.62. As should be expected 457 

similar results were obtained for the reverse scenario when BayesA was trained in NWL and 458 
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predictions were made in WL1 (r= -0.60, Table 1). Negative prediction accuracies were not 459 

observed for CGM-WGP (𝑟 ≥ 0.22, Table 1), indicating the algorithm was able to define genetic 460 

models for physiological adaptive traits that account for the presence of G×E interactions and the 461 

effect of the variable environments on the prediction of yield performance. 462 

Prediction accuracy for both CGM-WGP and BayesA increased with increasing number 463 

of estimation environments (Table 1, Table 2). The pattern observed for estimation and prediction 464 

using single environment data remains evident when more than one environment is included in 465 

the estimation set (Table 2). Negative prediction accuracy was still estimated for BayesA when 466 

estimation and prediction environments were dissimilar but not for CGM-WGP (Table 2). 467 

 468 

3.3 Prediction accuracy depends on environment type that reveals genetic variation in adaptive 469 

physiological traits  470 

Prediction accuracy for physiological traits depends on the environment type of the 471 

estimation set (Table 3). While highest accuracies for BKP were estimated when estimation sets 472 

were drought environments WL1 and WL2, highest accuracy for AMAX and RUE were 473 

estimated when the estimation set was NWL environment (Table 3). Yield increased markedly 474 

with increasing AMAX and RUE within the NWL environment (Fig. 3), which is associated with 475 

the highest accuracy attained for these two traits in this environment type. Because the magnitude 476 

of the yield response to change in MEB depends on intensity of water deficit at flowering time 477 

(Fig. 3, Fig. 2), the highest accuracy for the estimation of MEB was observed when data from 478 

WL1, which experienced the greatest level of water deficit at flowering, was used as the 479 

estimation set (Fig. 2; Table 3). With the absence of (NWL) or moderate (WL2) water deficit at 480 

flowering time, low prediction accuracy was estimated for MEB when these environments were 481 

used as estimation sets, -0.03 and 0.17, respectively. These differential accuracies for estimating 482 
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physiological traits translate into variable accuracies for yield prediction. While accuracy of yield 483 

prediction for environment WL2 using a model trained using data for WL1 is 0.51, the accuracy 484 

for the reciprocal is 0.34 (Table 2). Similarly, the accuracy of prediction in WL1 using a model 485 

trained using data from WL2 and NWL is 0.72, which is lower than for other combinations (0.79 486 

and 0.76).  Overall accuracy for yield and physiological trait prediction increased with increasing 487 

number of environments included in the estimation set (Tables 1, 2, 3, 4) as more environment 488 

types are included that expose variation in adaptive physiological traits enabling the algorithm to 489 

find adequate genetic models. This new evidence suggests that further improvements in 490 

predictability may be possible by leveraging managed stress environments and optimizing the 491 

combinations of types of environments required to expose genetic variation for adaptive traits. 492 

 493 

3.4 CGM-WGP improved prediction accuracy relative to BayesA for systems where G×E is an 494 

important determinant of yield is demonstrated in breeding trials 495 

As in the simulation study above, for the empirical study prior to analysis of the grain 496 

yield data and application of the CGM-WGP and BayesA methods the impact of the different 497 

irrigation management strategies was investigated to characterize the two environments. 498 

Following the same procedures described above for the simulation study, the daily time step 499 

water SD profiles were determined for the Viluco well-watered and water-limited irrigation 500 

treatments (Fig. 4). For the well-watered treatment the SD profile remained at, or close to, 1.0 for 501 

the duration of the crop cycle. Thus, the well-watered treatment was managed to realize a non-502 

water-limited environment (NWL). For the water-limited treatment irrigation was reduced, 503 

commencing in the vegetative stage around V7, and the SD profile decreased to a value below 504 

0.2, coinciding with the timing of flowering for the DH populations tested. After flowering of the 505 

DH families was completed irrigation was resumed and the SD profile increased and was 506 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 13, 2017. ; https://doi.org/10.1101/100057doi: bioRxiv preprint 

https://doi.org/10.1101/100057


 

 

maintained between 0.5 and 1.0 for the remainder of the crop cycle. Thus, the water-limited 507 

treatment was managed to realize a water-limited environment (WL), where the peak of the water 508 

limitation was imposed during flowering time of the DH lines to impact yield development 509 

through imposition of a flowering stress drought. Therefore, the testing of the four DH 510 

populations in the combination of the NWL and WL environments provided a suitable empirical 511 

MET for evaluating the CGM-WGP methodology, where the traits of interest were relevant for 512 

predicting grain yield of the maize DH lines in drought and non-drought environments, as was 513 

demonstrated in the simulation study. 514 

Analysis of variance indicated that there were significant G×E interactions for grain yield 515 

between the NWL and WL environments for all four DH populations. Therefore, further analyses 516 

of variance for each DH population focused on the genetic correlation for yield between the two 517 

environments and the magnitude of genetic variance for yield within the NWL and the WL 518 

environments (Table 5). There was significant genetic variation for grain yield in the NWL and 519 

WL environments for all four DH populations. The magnitude of the variance components for 520 

yield in the WL environment was greater for DHPop3 and DHPop4 compared to DHPop1 and 521 

DHPop2 (Table 5). For the NWL environment, the magnitude of genetic variance for yield was 522 

greater for DHPop4 than for the other three DH populations. The genetic correlation for grain 523 

yield between the NWL and WL environments differed among the four DH populations (Table 524 

5). To visualize the different magnitudes of genetic variance for grain yield and the different 525 

genetic correlations between the NWL and WL environments scatter diagrams were constructed 526 

for each DH population for the grain yield BLUPs (Fig. 5).  For DHPop1 (Table 5, Fig. 5a) there 527 

was no correlation between NWL and WL. For DHPop2 there was an indication of a negative 528 

genetic correlation (Table 5, Fig. 5b). For both DHPop3 (Table 5, Fig. 5c) and DHPop4 (Table 5, 529 

Fig. 5d) there was a positive correlation. The different grain yield results for the four DH 530 

populations provides evidence that the physiological and therefore the genetic basis of the grain 531 

yield variation expressed in the NWL and WL environments differed among the four DH 532 
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populations. Therefore, the results obtained from the empirical MET encompass a number of the 533 

scenarios examined in the simulation study and represent important technical issues that need to 534 

be addressed in an applied maize breeding program. 535 

On average CGM-WGP (r = 0.34) resulted in higher prediction accuracy than BayesA (r 536 

= 0.23) over all predication scenarios considered for the four DH populations (Table 6). Both 537 

CGM-WGP and BayesA had higher prediction accuracy for the WL environment (r = 0.45 and 538 

0.33, respectively) than for the NWL environment (r = 0.23 and 0.14, respectively). In the WL 539 

environment the prediction accuracy was positive for all DH populations for both CGM-WGP 540 

and BayesA (Table 6). Further for all four DH populations the prediction accuracy for the CGM-541 

WGP was higher than for BayesA for the WL environment. For the NWL environment CGM-542 

WGP achieved positive prediction accuracy for all four DH populations. However, for BayesA 543 

the ability to achieve a positive prediction accuracy for the NWL environment depended on the 544 

DH population. For two of the DH populations (DHPop1 and DHPop3) positive prediction 545 

accuracy was achieved, while for the other two DH populations (DHPop2 and DHPop4) it was 546 

not possible to predict grain yield in the NWL environment. Collectively the prediction accuracy 547 

results indicate that compared to the BayesA methodology, which was applied to the average 548 

grain yield performance across the WL and NWL environments, there were realized advantages 549 

in prediction accuracy for yield in both the WL and the NWL environments from the modeling of 550 

the G×E interactions between the WL and NWL environments by the CGM-WGP methodology. 551 

 552 

3.5 Evaluation of germplasm in virtual environments augments empirical testing through 553 

simulation of untested hybrids in large scale evaluation trials 554 

In this paper a set of yield predictions were made to compare CGM-WGP methodology 555 

with BayesA using a breeding population (Table 6). Because yield predictions were made 556 
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utilizing the CGM-WGP methodology, parameters to run the mechanistic CGM could be 557 

estimated for these lines from genotypic information and allele values. Figure 6a shows simulated 558 

yields for two DH lines in 2263 grids in 2014 and 1988. Yield for DH line 1 showed higher yields 559 

than DH line 2 virtually across the U.S. corn belt in 2014 but not in 1988. The yield differential 560 

varied with geography indicating G×E interactions. Indeed, the relationship between DH line 1(x) 561 

and 2 (y) across all grids and the two years characterized using a linear regression model is 562 

𝑦 = 51.8(∓0.6) +  0.94(∓0.00051)𝑥. From these parameters it is feasible to estimate that DH 563 

line 1 perform better than DH line 2 in environments where yield is greater than 877 g m
-2

 but not 564 

below this threshold.  Further evaluations were conducted for two years and 34 DH lines (Fig. 6). 565 

This level of testing is not feasible using empirical approaches even at advanced stages of product 566 

evaluation, but views of plausible performance that can inform testing could become available for 567 

untested DH lines. These results demonstrate reduction to practice of the methodology at the 568 

scale of the early hybrid advancement stages of a breeding program. The method demonstrated in 569 

this paper enable simulation studies that inform decision about the creation of products and their 570 

plausible placement in different geographies and cropping systems.  571 

 572 

4. Implication for crop model development and application 573 

The integration of the hierarchical model with the Metropolis-Hastings within Gibbs 574 

algorithm enabled using multiple sources of data, observed and virtual, to evaluate CGM-WGP 575 

prediction skill. This method is a significant advancement relative to and advocated by prior 576 

studies (Technow et al., 2015; Cooper et al., 2016). This enhanced capability enabled studies that 577 

demonstrated that increasing the number of environments per se does not necessarily increase 578 

predictive accuracy of CGM-WGP but the combination of environment types that enable 579 

expression of relevant genetic variation for adaptive physiological traits is a productive approach 580 

to increase predictive accuracy.  581 
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To realize potentially higher predictive skills, CGMs must incorporate quantitative 582 

biological relations that can capture the expression of traits when these are exposed as a result of 583 

new experimental designs and precision phenotyping. Many of these relations are unknown and 584 

likely surface to the known with the creation of new germplasm and genetic diversity. While the 585 

construction of the CGM used in this study was guided by prior research on relevant traits 586 

influencing yield in WL and NWL environments (Hammer et al., 2009;  Messina et al, 2009; 587 

Messina et al., 2011; Choudhary et al., 2014; Cooper et al., 2014 ; Messina et al., 2015; Reyes et 588 

al., 2015; Cooper et al., 2016) it was possible to identify variation in predictive accuracy among 589 

breeding populations and examples where CGM-WGP was not better than the reference BayesA 590 

method. More cases such as this should be expected and suggest the need to consider plausible 591 

avenues of research and development to maximize the opportunities to realize improved 592 

accuracy. Out of many plausible solutions the development of a “second generation crop growth 593 

model” (SCGM) and the link between Phenomics and CGM are considered briefly. 594 

A SCGM for use within CGM-WGP is designed and created within a dynamic 595 

framework that enables rapid changes in the CGM to align it to evolving WGP algorithms, 596 

germplasm, breeders’ questions and objectives, to leverage phenomics capabilities, and to 597 

effectively deal with scientist bias. Brown et al. (2014) demonstrates a promising framework to 598 

enable the development of models of various complexities and that could be evolved quickly by 599 

practitioners. A missing component to Brown’s framework is a life cycle management system 600 

that provides guidance to the needs of creating new models as well as to retire models. The 601 

implementation of authoritative repositories of quality experimental data is necessary to a SCGM 602 

life management system and eliminates the need for centralized controlled systems that may 603 

delay the implementation of SCGM.  Holsworth et al. (2014) discuss promising opportunities 604 

such as “The Stack” that can enable model evaluation but also simulation at global scale, 605 
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extending the application demonstrated in this research for the U.S. corrn belt to other crops and 606 

geographies. 607 

A SCGM will be applied to experiments with increasing size, data type diversity 608 

generated by phenotyping platforms, and complexity. Although the metropolis-within Gibbs 609 

sampling algorithm introduced here can improve the efficiency and decrease computing demands, 610 

as demonstrated in this paper, it is inevitable that faster models will be required to work with 611 

larger and more complex breeding experiments, involving hundreds of environments and 612 

thousands of genotypes from diverse germplasm sources, where convergence due to a more 613 

complex system may require increasing the number of iterations to reach convergence. Runtime 614 

will become even more relevant as stochasticity is incorporated into SCGM to deal formally with 615 

measurement error, environmental uncertainty, and internal stochasticity characteristic of 616 

complex systems (Wallach et al., 2012; Technow et al., 2015). Such models in combination with 617 

faster algorithms will enable answering fundamental questions about the role of internal system 618 

variability on the determination of predictability. Both the need to explore larger CGM parameter 619 

spaces when applying the model to new breeding populations, and the availability of trait 620 

information that will force identification of solutions that satisfy multiple constraints suggests that 621 

a fundamental area of research can focus on how predictability and prediction skill changes with 622 

CGM-WGP complexity. As model complexity increases, so will the unknowns and the 623 

complexity of the performance landscape that may reduce the ability to find global optima. 624 

Answers to these questions will enable designing improved strategies to effectively deal with 625 

limited predictability to accelerate genetic gain. 626 

Phenomics and SCGM will be integrated to form a virtuous cycle of mutual development 627 

while delivering improved genetic and physiological mechanistic models, and improved 628 

predictions (Cooper et al., 2002; Houle et al., 2010; Messina et al., 2011). High throughput 629 

phenotyping platforms, here considered broadly to include managed stress environments, will 630 
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provide data to both train CGM-WGP and to enhance biological mechanistic models (Houle et 631 

al., 2010; Cooper et al., 2014; Pauli et al., 2016). CGM can inform phenotyping based on known 632 

physiological understanding but also serve as frameworks that help identify knowledge gaps 633 

(Hammer et al., 2002). SCGM-WGP becomes the integration framework that enables the 634 

incorporation of data for multiple traits, which are outputs from high throughput phenotyping 635 

platforms, genomic information, agronomy and environment. A model to enable such integration 636 

could be of the form, 637 

𝑦𝑖𝑗𝑝~ 𝑁 (𝐶𝐺𝑀(𝑇𝑡𝑖, 𝐸𝑗)
𝑝

, 𝜎𝑒𝑗𝑝
2 )     638 

where yijp is a set of measurable phenotypes (p) influenced by functional trait t and measurable 639 

using platforms (eg. leaf area, leaf angle that influence functional traits, such as RUE, which are 640 

captured in the relationships of the CGM) with error variance 𝜎𝑒
2for phenotype p in environment 641 

j. The methods described in this paper could be applied to train this model. This approach is a 642 

significant change relative to the two stage approaches advocated to date (Xin et al, 2004; 643 

Hammer et al., 2006; Chenu et al., 2009; Messina et al., 2011; Pauli et al., 2016) because it 644 

provides an integrated and flexible framework to tune the utilization of phenomics to the breeding 645 

or more general, to the plant science objective. Predictions from this model are testable 646 

hypothesis with physiological and genetic components. It is less clear in the literature and a clear 647 

area of future research how to extend the framework to handle knowledge gaps through 648 

integration of polygenic terms that could be handled through statistical models within the 649 

framework. 650 

 651 

5. Concluding remarks  652 
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This research used a combination of simulation and empirical studies to explain how the 653 

CGM-WGP methodology introduced by Technow et al. (2015) works to achieve enhanced levels 654 

of prediction accuracy and to demonstrate reduction to practice for some applications to maize 655 

breeding and product placement for target environments in the US corn-belt. This new 656 

development in modeling, achieved through the integration of genetic and physiological modeling 657 

capabilities, provides a research platform for enhancing predictions of crop yield that can account 658 

for important components of G×E×M interactions that influence crop productivity. The 659 

development of the hierarchical model enabled studies to demonstrate the critical use of diverse 660 

environments as estimation sets for CGM-WGP as these reveal genetic variation for adaptive 661 

physiological traits. Three important outcomes of the CGM-WGP methodology that merit further 662 

consideration and investigation are: (1) The algorithm used within the CGM-WGP method to 663 

connect genetic information to the traits that vary among genotypes and respond to environmental 664 

conditions to influence yield is conducted as an integrated single step process. This single step 665 

approach contrasts with previous two-step methods that first seek to identify genes or regions of 666 

the genome (QTL) that map to traits proposed to influence yield, which are then in turn integrated 667 

within the CGM as predictors in a second step. (2) Some of the requirements of high-throughput 668 

phenotyping are relaxed and radically changed in comparison to the alternative two-step 669 

approaches. In the two-step approaches advocated to date all individuals have to be phenotyped 670 

for all traits in all environments to establish the relationship between genes or QTL and the traits 671 

prior to integration into the CGM. For CGM-WGP this dense level of phenotyping may not 672 

always be required, the phenotyping load can be reduced, and efforts seeking to generate large 673 

volumes of data may be turned into efforts seeking to unravel the physiological basis of 674 

adaptation and how to incorporate the resulting knowledge into mechanistic models. For many 675 

applications emphasis can be placed on phenotyping efforts to establish the functional 676 

relationships that are established within the CGM and to develop informative prior distributions 677 

to be used with the CGM to enable the CGM-WGP. (3) New criteria are emerging as 678 
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foundational principles for developing a second generation of CGMs that explicitly incorporate 679 

the concept of genetic variation for traits at different scales in biological hierarchies (e.g., cellular 680 

to tissue to organ to crop canopy), and their functional relationships across these hierarchical 681 

scales in biology.   682 
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Tables 846 

 847 

Table 1. Mean prediction accuracies (± standard deviation) for yield estimated by the correlation 848 

coefficient r for CGM-WGP prediction methodology and the reference method BayesA. 849 

Estimation 

environment 

Prediction environment 

  CGM-

WGP 

  BayesA  

 WL1 WL2 NWL WL1 WL2 NWL 

WL1(1988) 0.85 ±0.03 0.51±0.13 0.60±0.13 0.84 ±0.03 0.38±0.17 -0.62±0.14 

WL2(2012) 0.34±0.43 0.79±0.06 0.23±0.42 0.44±0.14 0.78±0.06 0.06±0.28 

NWL(2010) 0.57±0.11 0.22±0.16 0.88±0.02 -0.60±0.11 0.01±0.26 0.88±0.02 
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Table 2. Mean prediction accuracies (± standard deviation) for yield estimated by the correlation 851 

coefficient r for CGM-WGP prediction methodology and the reference methodBayesA and nine 852 

cases defined by a unique combination of two or three environments utilized to train the 853 

algorithms and one environment of utilized for evaluation of accuracy. Environments include two 854 

water limited (WL) and one not water limited (NWL) conditions. 855 

Estimation 

environment 

Prediction environment 

 WL1(1988) WL2(2012) NWL(2010) WL1(1988) WL2(2012) NWL(2010) 

 --------- CGM-WGP --------- --------- BayesA -------- 

WL1 + WL2  0.79±0.04 0.75±0.05 0.67±0.08 0.77±0.04 0.51±0.13 -0.50±0.15 

WL2 + NWL  0.72±0.09 0.75±0.06 0.81±0.04 -0.39±0.16 0.26±0.25 0.75±0.07 

WL1 + WL2 + 

NWL  

0.76±0.05 0.71±0.06 0.77±0.04 0.43±0.13 0.53±0.11 -0.01±0.2 
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Table 3. Mean prediction accuracies (± standard deviation)  estimated by the correlation 857 

coefficient r for physiological process parameters: size of the largest leaf within the leaf area 858 

profile (AMAX ), mass of ear at silking (MEB), radiation use efficiency (RUE) and limited 859 

transpiration trait breakpoint (BKP).  860 

Estimation 

environment 

Physiological process parameter 

 AMAX MEB RUE BKP 

 ----cm
-2

---- ----g---- ----g MJ
-1

---- -----kPa---- 

WL1 (1988) 0.31±0.16 0.52±0.15 0.33±0.16 0.65±0.14 

WL2 (2012) 0.26±0.2 0.17±0.2 0.33±0.29 0.68±0.23 

NWL (2010) 0.51±0.13 -0.03±0.19 0.66±0.13 0.17±0.21 
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Table 4. Mean prediction accuracies (± standard deviation)  estimated by the correlation 862 

coefficient r for physiological process parameters: size of the largest leaf within the leaf area 863 

profile (AMAX ), mass of ear at silking (MEB), radiation use efficiency (RUE) and limited 864 

transpiration trait breakpoint (BKP).  865 

Estimation 

environment 

Physiological process parameter 

 AMAX MEB RUE BKP 

 ----cm
-2

---- ----g---- ----g MJ
-1

---- -----kPa---- 

WL1 + NWL 

(1988 & 2010) 

0.43±0.14 0.53±0.12 0.65±0.09 0.58±0.12 

WL1 + WL2 

(1988 & 2012) 

0.42±0.10 0.46±0.14 0.51±0.11 0.78±0.07 

WL2 + NWL 

(2012 & 2010) 

0.47±0.11 0.28±0.18 0.66±0.10 0.77±0.07 

WL1 + WL2 + 

NWL (1988 & 

2010 & 2012) 

0.44±0.12 0.51±0.12 0.60±0.08 0.75±0.07 
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Table 5. Estimates of the genetic correlation between the non-water-limited (NWL) and water-867 

limited (WL) environments (rG(NWL,WL) ± Standard Error), genetic variance component within the 868 

non-water-limited environment (VGNWL ± Standard Error) and genetic variance component within 869 

the water limited environment (VGWL ± Standard Error) for grain yield (t ha
-1

) of four DH 870 

populations tested under WL and NWL environments at the DuPont Pioneer Viluco research 871 

station in 2012. 872 

DH Population rG(NWL,WL) VGNWL VGWL 

DHPop1 -0.08 ± 0.19 0.515 ± 0.143 0.505 ± 0.130 

DHPop2 -0.20 ± 0.17 0.686 ± 0.157 0.375 ± 0.103 

DHPop3 0.36 ± 0.13 0.689 ± 0.161 1.433 ± 0.264 

DHPop4 0.49 ± 0.11 0.944 ± 0.179 0.920 ± 0.168 
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Table 6. Average prediction accuracy for the CGM-WGP and BayesA methodologies obtained 874 

from applying the leave-one-family-out cross-validation approach to prediction of grain yield 875 

within the non-water-limited (NWL) and water-limited (WL) environments for four DH families. 876 

DH family CGM-WGP  BayesA  

 WL NWL WL NWL 

DHPop1 0.28 0.16 0.16 0.30 

DHPop2 0.44 0.38 0.29 -0.06 

DHPop3 0.64 0.21 0.50 0.29 

DHPop4 0.45 0.18 0.36 0.02 
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Figures captions 878 

 879 

Figure 1. Hierarchical crop growth model (CGM) whole genome prediction (WGP) algorithm.  880 

Figure 2. Water supply to demand ratios estimated on a daily time step for Johnston, IA 881 

calculated for 1988 (water limited, WL1) and 2012 (water limited 2, WL2) using a crop growth 882 

model as a function of day of year. Simulated shedding dates for 1988 and 2012 indicated as 883 

vertical bars. Model parameters were set to means of values utilized in sensitivity analyses, size 884 

of the largest leaf in the leaf area profile (AMAX)=950, ear size at silking (MEB)=0.8, radiation 885 

use efficiency (RUE)=1.8, and limited transpiration breakpoint (BKP)=2.25 886 

Figure 3. Response of standardized yield to variation in crop growth model parameters: (a) size of 887 

the largest leaf in the leaf area profile (AMAX, cm
2
), (b) ear size at silking (MEB, g), (c) 888 

radiation use efficiency (RUE, g MJ
-1

), and (d) limited transpiration breakpoint (BKP, kPa) for 889 

water limited environments (WL1) 1988 and (WL2) 2010, and not water limited environment 890 

(NWL) 2012 at Johnston, IA USA (See Figure 2 for dynamics in supply/demand ratio). Yields 891 

were standardized relative to the overall mean (1054 g m
-2

) and standard deviation (407 g m
-2

).  892 

Figure 4. Water supply to demand ratios for DuPont Pioneer Viluco research station in 2012 893 

calculated for water limited (WL) and not water limited (NWL) conditions using a crop growth 894 

model as a function of day of year. Simulated shedding date for NWL and WL treatments 895 

indicated as closed and open squares. Model parameters were set to means of values utilized in 896 

sensitivity analyses, size of the largest leaf in the leaf area profile (AMAX)=950, ear size at 897 

silking (MEB)=0.8, radiation use efficiency (RUE)=1.8, and limited transpiration breakpoint 898 

(BKP)=2.25 899 
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Figure5. Grain yield observed under water-limited  at flowering (WL) and non-water-limited 900 

(NWL) due to well watered (WW) environmental conditions for four DH families evaluated at 901 

the DuPont Pioneer Viluco research station in 2012.  902 

Figure 6. Simulated yields for the major maize growing regions in the U.S. corn belt for 2014 903 

(a,b) and 1988 (a,c) and individuals of a breeding population with CGM parameters estimated 904 

from maker data using the CGM-WGP methodology.  905 
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Figure 1 906 
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Figure 2 908 
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Figure 3 910 
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Figure 4 912 
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Figure 5 914 
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Figure 6 916 
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