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Abstract 

 

In temperate countries, influenza and other viral respiratory diseases often have distinct seasonal peaks occurring 

during colder, wintertime months. However, little is known about the dynamics of influenza and viral respiratory 

disease dynamics in the tropics, despite high morbidity and a clear epidemiological link between tropical and 

temperate countries.  In temperate countries, the dynamics of influenza and other respiratory diseases are often 

analyzed using syndromic surveillance data describing influenza-like illness (ILI) as ILI is highly correlated with 

virological surveillance for influenza.  To obtain a detailed picture of respiratory disease incidence patterns in a 

large tropical city, we established an mHealth study in community outpatient clinics in Ho Chi Minh City, Vietnam 

(11N latitude).  From August 2009 through December 2015, clinics reported daily case numbers of ILI using 

standard mobile-phone SMS messaging. A subset of these clinics performed molecular diagnostics for influenza 

A and B viruses.  Unlike the annual patterns seen in temperate countries, ILI activity in Ho Chi Minh City exhibited 

strong non-annual periodicity and was not correlated with PCR-confirmed influenza.  The dominant periodicity in 

the data was approximately 200 days.  This was confirmed by a time series decomposition, a step-wise regression 

analysis on annual and non-annual covariates, and a forecasting exercise showing that forecasting was 30% to 40% 

more accurate when a 200-day non-annual cycle was included in the forecast.  This suggests, for the first-time, 

that a non-annual cycle may be an essential driver of ILI dynamics in the tropics.  This raises new questions about 

the seasonality and drivers of respiratory disease transmission in tropical countries.   
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1 Introduction 

 

In temperate countries, influenza virus is one of the most studied disease systems, exhibiting a predictable 

wintertime transmission season and a robust relationship between syndromic and molecular surveillance.  Little is 

known about the epidemiology of influenza virus in the sub-tropics and tropics despite a renewed research interest 

in tropical influenza over the past decade resulting from increased availability of influenza surveillance and 

sequence data1–5.  To date, research on tropical influenza has concentrated on whether influenza epidemics exhibit 

annual seasonality6–14 and whether influenza viruses show patterns of year-round persistence15–19.  A third question 

that has received less attention is whether syndromic influenza-like illness (ILI) surveillance has the same peaks 

and troughs as molecular surveillance for influenza virus in these regions.  In temperate countries, public health 

agencies are able to rely on ILI reporting to signal the onset of the influenza season20–22, but it is not known if ILI 

and influenza correlate in tropical countries23,24. 

 The majority of epidemiological studies looking at influenza and/or respiratory disease in the tropics have 

two major drawbacks.  The first one is ignoring absolute case counts and reporting only the percentage of samples 

(nose/throat swabs) that test positive for influenza12,14,24–27.  Ignoring case counts makes it impossible to determine 

if samples are being taken during a potential influenza season or outside of it.  The second one is underpowering 

the analysis by using a short time series or monthly data or both23,24,26–32. Monthly data are normally too coarse to 

infer the presence of an annual transmission season or other periodic trends (if these exist) unless the time series 

is quite long. In fact, this is one of the reasons for disagreement in the current literature as some studies on 

respiratory disease in the tropics claim support for an annual transmission season7,12,14,26-28,33-35 while others show 

mixed or no evidence8,13,31,36–40.  Among these, some of the more weakly supported results are being used in public 

health policy to advocate for particular vaccination timings based on incorrectly identified seasonal signals12,35. 

Understanding the dynamics of tropical influenza – especially the presence or absence of seasonality – 

may allow the forecasting methods successfully deployed in temperate countries41,42 to be used for tropical 

influenza.  Current forecasting methods rely on mechanistic Susceptible-Infected-Recovered (SIR) models and 

known/inferred climate associations to accurately predict increases in influenza virus infections.  In the tropics, it 

is not known whether influenza dynamics obey classic SIR models, whether they are characterized by low-level 

persistence, or a combination of the two.  It is also not known which climate-influenza associations are expected 

to be present in tropical countries despite some recent advances on this topic11,43.  If the intrinsic epidemiological 

dynamics and the presence/absence of climate associations can be understood, forecasting of influenza epidemics 

in the tropics may be possible.  Thus far, the only attempt at influenza forecasting for the tropics or subtropics 
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reported that the majority of forecast attempts (different leads, different methods) had accuracies below 50% when 

predicting the timing of an influenza peak44. 

In addition, an accurate description of the basic epidemiology of tropical influenza is critical for inferring 

the likely routes of viral seeding from the tropics to temperate zones and vice versa4,45.  Although there is abundant 

phylogeographic evidence linking tropical and temperate influenza sequences1, very few analyses have 

investigated the epidemiological characteristics of tropical influenza and how these affect epidemics in temperate 

zones. Two exceptions can be seen in Brazil and China, both of which span multiple climatic zones. In Brazil, a 

pneumonia and influenza mortality time series dating back to 1979 shows an annual influenza epidemic 

progressing from tropical to temperate parts of Brazil17.  A second example can be seen in a recent study published 

using sentinel surveillance data from in China, showing the transition from large wintertime influenza peaks in the 

north to smaller less predictable peaks in the subtropics46.  Beyond these two examples, epidemiological links 

between the tropics and other regions are hard to show due to the paucity of long-term consistent surveillance data 

in tropical regions. 

To investigate the fine-scale epidemiology of respiratory disease dynamics in the tropics and evaluate the 

potential for forecasting, in August 2009 we set up a real-time community-based participatory epidemiology 

network in Ho Chi Minh City, Vietnam.  Our initial hypothesis was that influenza-like illness trends in Ho Chi 

Minh City would not be annual.  Enrolled outpatient clinics across the city reported daily case numbers of 

influenza-like illness by standard mobile-phone SMS messages. A subset of the clinics provided molecular 

confirmations of influenza virus in order to assess the relationship between ILI and influenza.  Our goals were to 

make daily reporting of influenza-like illness as simple as possible in order to encourage frequent reporting and 

wide participation, and to create a real-time ILI surveillance system that could be used by health professionals in 

Ho Chi Minh City. Our study is most similar to the clinic-centered mHealth systems set up in Senegal32 and 

Madagascar47, and the benefits of this type of real-time, big-data epidemiology can be seen in the dengue hotline 

system recently described by Rehman et al48.  The purpose of our study was to build a long-term consistent time 

series of both ILI reports and influenza molecular confirmations. We analyzed the data with traditional time series 

decomposition to detect periodic signals, with stepwise regression analyses to determine the importance of climate 

and other covariates, and with regression-based forecasting to determine the predictability of ILI trends in Ho Chi 

Minh City. 
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2 Results 

 

A total of 63 clinics were enrolled during the study, about half of which reported regularly, and 37,676 daily 

reports were received from August 10, 2009 to December 31, 2015, corresponding to 1,759,473 outpatients and 

186,346 outpatients meeting the clinical definition of influenza-like illness.  The median clinic saw an average of 

30 patients per day (IQR: 16–50 across clinics).  Approximately 10.6% of all patients were classified as ILI, and 

this percentage exhibited a decreasing trend during the first six years of the study (Table 1).  To create a single ILI 

time series for Ho Chi Minh City, we detrended and standardized each clinic’s ILI percentages to a z-score scale 

and then aggregated these into a single z-score time series. Several internal validations were done to ensure that 

the data followed certain expected behaviors for multi-site syndromic reporting and that arbitrary or random 

reports were not being sent during the course of the study (see Materials and Methods).  In particular, note that 

individual clinic time series correlated with each other, and replacing a single clinic with a white noise signal of 

equal variance reduced the correlation between that clinic and the aggregate ILI trend (Figure S2).  Influenza-like 

illness trends in Ho Chi Minh City (Figure 1) suggest that there are typically multiple ILI peaks per year, as has 

been observed in other tropical and sub-tropical regions11,17,44.  Visually, no seasonal or annual cycle appears in 

these data. 

In a subset of the clinics, molecular confirmations on naso-pharyngeal samples (n = 2,217) were taken 

from May 2012 to December 2015. Compared to other tropical settings, these clinics had a rate of influenza 

positivity (21.5% positivity for influenza A and 9.7% positivity for influenza B) in the high range of previously 

published studies14,23,28,36,37,49.  We compared the confirmed influenza cases to the ILI data and found that there 

was no correlation between the two time series (Figure 2; Pearson correlation coefficient: −0.02, p-value: 0.86) 

and that this did not differ for influenza A and B individually (both p-values > 0.15).  The time series showed 

periods of high ILI activity with a low level of influenza confirmation, likely representing epidemic waves of other 

respiratory viruses, as well as periods that were high influenza and low ILI, suggesting that an influenza epidemic 

may not contribute as much to the overall ILI trend as it does in temperate regions. 

We identified a dominant periodicity in the data using an auto-correlation function and standard time series 

decomposition (see Materials and Methods).  The auto-correlation function (ACF) identified 206 days (ACF = 

0.262; p-value < 10-15) whereas the discrete Fourier transform identified 199 days as the time series’ dominant 

periodic signal (ACF = 0.244 for a lag of 199 days; p-value < 10-15); see Figure 3.  This non-annual signal is almost 

twice as strong as the annual cycle, with the 365-day lag exhibiting an auto-correlation value of 0.153 (p-value = 

0.014); note that the large number of data points results in statistical significance for nearly all ACF values.  A 
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dominant non-annual signal is an unusual feature in disease incidence data. We verified that this result was not an 

artifact of our data renormalization and detrending methods by applying these same methods to temperate zone 

ILI data and showing that ILI time series in Europe and North America show their strongest periodic signals at 

365 days, with no evidence of periodic signals shorter than one year (Figure S3).    

To determine the relative influence of annual and non-annual signals on the ILI trend, we performed a 

stepwise regression of the ILI trend onto both annual climatic variables and the system’s intrinsic non-annual cycle.  

Lagged variables, interactions, and non-linear transformations of the climate variables were included; the non-

annual cycle was constructed as a step-function with periodicity 206 days (see Materials and Methods).  The 

stepwise regression indicated that the terms with explanatory power were the daily temperature, relative humidity 

(RH and	√RH), the interaction term between RH and temperature, lagged climate terms (see eq. 2 in Materials and 

Methods), and the non-annual cycle.  Clearly, the association between the non-annual effect and the ILI trend is 

statistically significant (Table 2), and the non-annual effect is identified using Akaike Information Criterion as a 

component of the best fit model.  Nevertheless, it is important to remember that the number of data points (>37,000) 

results in statistical significance for a large number of annual and non-annual covariates.  Thus, additional 

robustness analyses were performed. 

As a third validation of the existence of a non-annual cycle as a true feature of respiratory disease 

transmission in Ho Chi Minh City, we tested the sensitivity of the ILI forecast accuracy to the length of the non-

annual cycle and to the amplitude of the trends of climate variables.  The rationale is that if an intrinsic non-annual 

cycle truly influences respiratory disease dynamics, then (1) forecasting of respiratory disease should be possible 

using the non-annual cycle, and (2) the forecasts should be less accurate if the non-annual cycle is not used or if 

an artificial non-annual cycle of a different periodicity is used.  Regressing the 2010-2012 portion of the time 

series onto the AIC-selected covariates (including the non-annual cycle of length c = 206), we were able to predict 

the 2013-2015 ILI time series with a median absolute error of 0.129 on a z-score scale (Figure S6A).  A sensitivity 

analysis indicated that forecast accuracy is very sensitive to the intrinsic cycle length, and it is reduced substantially 

if the length c of the non-annual cycle is changed by a small amount (Figure 4); the median prediction error is 

approximately 40% to 50% higher when forecasting is performed with a cycle length c < 195 or c > 215.  The 

increase in prediction error is small or non-existent when the climate variables are smoothed to reduce their 

correspondence with the true climate time series (Figure 4).  Thus, the non-annual cycle is the key characteristic 

of this dynamical system that enables accurate forecasting. 

  Several robustness tests were performed.  Figure S6 shows that forecasting using a 202-day intrinsic non-

annual cycle in combination with bootstrapped climate data gives the most accurate forecasts, and that a 211-day 
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cycle was optimal when forecasting ILI trends using real weather data.  These results are robust to whether mean 

or median prediction error is used as an evaluation criterion (Figure S7).  Using a simpler regression model with 

no lags and no non-linear climate terms, a 201-day cycle gave the lowest prediction errors (Figures S8 and S9).  

All analyses provided support for the existence of a non-annual cycle with periodicity of approximately 200 days. 

Our decomposition, stepwise regression, and prediction analyses provide strong evidence that an intrinsic 

non-annual cycle of around 200 days exists for respiratory disease transmission in Ho Chi Minh City.  This cycle 

is either unique to the dynamics of respiratory infections in tropical climates, or it is a natural part of respiratory 

disease epidemiology in all regions but not detectable in temperate countries as a result of being overwhelmed by 

the strong winter seasonality of respiratory disease transmission. An ILI indicator, showing whether ILI 

percentages are above or below the mean trend, is updated daily and publically available (www.ili.vn) providing 

a real-time surveillance system for patients and clinical providers. 

 

 

3 Discussion  

 

Our study demonstrates the value of community epidemiology studies for describing fine-scale dynamics of 

influenza-like illness in tropical settings where respiratory disease dynamics are non-annual and difficult to predict.  

We were able to show that a network of community clinics can generate a high-quality syndromic time series that 

can be used to understand local transmission patterns of respiratory disease, and that such a network can generate 

a significantly larger data set (~6,000 data points per year) than traditional surveillance systems that report weekly 

or monthly measures of incidence. This volume of data increases statistical power to detect ILI associations, and 

in our study, the presence of non-annual forcing in the system.  The present study does not achieve the data volume 

seen in ‘big data’ study designs21,50-52 which can have tens of millions of observations per year, but the specificity 

of our data signal is higher than in the aforementioned studies as each data point in our study corresponds to a 

patient, seen by a physician, determined to have met or not met the clinical criteria for influenza-like illness. 

The major quality control challenge we encountered was accounting for long-term trends in ILI (we had a 

downward trend in our data).  In a multi-site time series, detrending must be done carefully, and changes in a site’s 

reporting patterns must be investigated individually.  From discussions with the reporting physicians in our study, 

the putative causes of the decreasing trend in ILI were likely to have been (i) a more than doubling of patient visit 

costs that would have reduced the likelihood of reporting a minor respiratory illness, (ii) increased clinical 

specialization at some sites, or (iii) more conservative interpretation of ILI guidelines after molecular diagnostics 
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were introduced in May 2012.  In addition, during 2011 and 2012 a few large clinics were enrolled in the study, 

and some of these had higher patient volumes but lower ILI percentages.  All of these features of community-

based syndromic reporting systems need to be considered for both study design and surveillance purposes.  

Detrending with a 12-month moving average appears to be the simplest way to detrend and preserve any potential 

annual structure in the data.   

 The lack of correlation between influenza trends and ILI trends suggests that the transmission dynamics 

of respiratory disease differ between tropical and temperate zones, consistent with the past decade’s literature on 

this topic10,11,13,17,43,46.  Given the observed pattern of multiple ILI peaks in our data, some of which are influenza 

epidemics and some of which are not, the natural hypothesis explaining this pattern is that multiple respiratory 

pathogens co-circulate and cause asynchronous epidemics. It is unknown if in such a system multiple respiratory 

pathogens should circulate independently or not. The putative mechanism that would create dependence or 

interference among waves of different co-circulating respiratory viruses would be post-infection raised antibody 

or cytokine concentrations53–55 generated by one viral epidemic preventing an epidemic of a different virus from 

taking off immediately thereafter. Epidemiological interference among respiratory viruses has been observed in 

long-term time series in temperate56,57 and tropical58 regions, but the strength and duration of this effect is not well 

understood. In our community study, additional molecular confirmations for a range of respiratory pathogens are 

now underway to further describe this phenomenon. 

 The second major question that arises from the basic correlational analysis between ILI and influenza is 

why high influenza periods should be observed when ILI is low. To the best of our knowledge, this pattern has not 

been observed in other surveillance systems, as a wave of influenza infections is normally sufficient to generate a 

substantial uptick in the ILI signal. The likely explanation for a high-influenza low-ILI period is a larger than 

expected prevalence of other respiratory viruses among the reported ILI cases; this is possible as the community 

clinics in our study are almost exclusively outpatient and likely to see many mild cases of respiratory disease.  If 

influenza infection represents only a small fraction of respiratory disease among these outpatients, a wave of 

influenza alone would not generate an ILI peak.  In general, community-based studies of respiratory disease should 

aim to characterize the contribution of all respiratory viruses to the ILI trend to determine if it is a particular 

pathogen’s dominance or synchrony among certain pathogens that generates an ILI peak. 

 The major finding in our study is that the dominant periodicity observed in our ILI time series is non-

annual.  This is the first report of a non-annual disease cycle in temperate or tropical respiratory disease data. The 

existence of an intrinsic non-annual cycle in the dynamics is supported by traditional time series decomposition, 

by a regression of the time series onto both annual and non-annual covariates, and by an analysis of the system’s 
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predictability showing that accurate forecasts of ILI trends are highly dependent on the system’s non-annual cycle 

of ~200 days.  The presence of non-annual periodicity is consistent with a mechanism of short-term non-specific 

immunity conferred by one respiratory virus that affords near-term protection (3-6 months) against infection with 

other respiratory viruses.  Data on the rate of antibody decay after acute influenza infection are consistent with this 

hypothesis54,55, but unfortunately no such data exist for other respiratory viruses. If the short-term immunity 

hypothesis can be shown to be true, then immunological interference among viruses may be the fundamental driver 

of the immuno-epidemiology of respiratory disease transmission in the tropics. In temperate countries, where 

strong wintertime seasonality synchronizes respiratory disease transmission, the interference hypothesis may not 

be testable due to the short transmission season. In the tropics, where there is no winter to structure the dynamics 

of respiratory virus transmission, individual viral epidemics may create post-epidemic niches – unfavorable to 

other respiratory pathogens – by generating temporary waves of nonspecific immunity. 

Although a complete forecasting evaluation will require a separate analysis, we can already detect one 

clear limitation of ILI forecasting methods: that they must be based on future weather predictions which, in our 

analysis, were bootstrapped from past weather data.  Nevertheless, this proved to be a small obstacle in our analysis 

as, for Ho Chi Minh City, the bootstrapped climate variables yielded accurate predictions of averages for 

temperature and relative humidity (Figure S5).  In other words, it is more likely that higher levels of ILI during a 

particular period are affected by the average climate behavior during that period, and not by any particular days 

that have extremes in temperature or relative humidity. This contrasts with the climate mechanisms proposed in 

temperate zones where it is postulated that the onset of abnormally low absolute humidity is closely associated 

with the onset of the influenza season41.  The larger question on climate effects and influenza — why AH, RH, 

and temperature appear to have different transmission effects in temperate and tropical regions11,43,59 — remains 

to be answered.  Much work remains to be done before respiratory disease outbreaks in the tropics can be forecast 

accurately; our hope is that the non-annual signal identified in this study will help in this endeavor. 

A second limitation in the current study design is the lack of age information.  We experimented with 

several different reporting methods (email, log books) for this study, but only the log-book method was able to 

capture age information consistently.  Unfortunately, this method was adopted by a minority of the clinics in our 

study, and it was not compatible with real-time reporting.  The age distribution of ILI cases represents a critical 

data gap in our study and in other mHealth studies that aim at real-time reporting, as the age distribution could tell 

us whether the major disease burden skews towards childhood respiratory diseases or general respiratory diseases 

like influenza.  As tropical countries have younger age distributions than temperate countries, this difference may 
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have a profound epidemiological effect on differences in ILI dynamics between temperate and tropical zones, as 

well as the proportion of ILI cases that are caused by influenza versus other respiratory viruses. 

The public health value of our mHealth reporting system is that ILI results can be fed back in real time to 

participating physicians and the community of health professionals in Ho Chi Minh City.  Real-time ILI trends 

from our study are publicly available and updated daily.  The two key questions raised by our study are (i) to what 

extent the transmission of non-influenza respiratory viruses in the tropics is a potential driver of complex multi-

pathogen transmission system, and (ii) whether it is useful to attempt the timing of influenza vaccination in an 

epidemiological scenario where influenza epidemics occur irregularly.  We aim to investigate the first of these 

questions by introducing more respiratory virus diagnostics into our study.  The second question can be evaluated 

with a mathematical model of influenza epidemiology, but will necessitate a longer influenza time series and a 

better understanding of the key drivers of influenza virus dynamics in tropical settings. 

 

 

4 Materials and Methods 

 

Influenza-like illness data.  In August 2009, a participatory epidemiology study was established in Ho Chi Minh 

City, Vietnam, in collaboration with the Hospital for Tropical Diseases in Ho Chi Minh City (HCMC) and with 

permission from the Ho Chi Minh City Department of Health.  Participating outpatient clinics report the daily 

number of total patients seen, the daily number of patients meeting the European CDC definition of influenza-like 

illness60, and the number of hours each clinic was open.  To encourage enrollment and reduce dropout, clinics are 

advised to send daily reports by standard mobile phone short messaging system (SMS) text messages; reporting 

with log books and email is also available. SMS messages are automatically passed to a text-parsing and data-

cleaning system that was set up and is still actively managed by the Oxford University Clinical Research Unit 

(OUCRU) in HCMC. Every day, ILI reports are manually approved by a qualified project team member at 

OUCRU; on approval they are automatically entered into a mySQL database that holds all data points for the study. 

A small number of clinics (about 8%) did not use SMS reporting (by their request) and instead emailed ILI numbers 

to the project team or wrote them down in a daily logbook provided by OUCRU.  As part of the data processing 

pipeline, reports by email or logbook were regularly merged into the main mySQL database. 

Community engagement meetings were run for the first several years of the study to distribute and explain 

the study protocol, and a basic leaflet outlining the goals of the study and the reporting methodology was 

distributed to interested physicians.  All documents were translated into Vietnamese, and annual reports and ILI 
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trends were fed back to the clinics on a regular basis.  A total of 63 clinics were enrolled in the initial study period 

(August 2009 – December 2015).  Clinics that reported frequent zeros (>50%), or withdrew too early (contributed 

<200 reports) were not considered for the analysis.  In May 2012 a new study component was launched for 24 

clinics that agreed to periodic collection of naso-pharyngeal (NP) swabs so that a subset of ILI patients could be 

molecularly confirmed as positive or negative for influenza virus.  A swabbing schedule was made at random 

every year, so that each clinic would be visited an approximately equal number of times; one or two clinics were 

selected for swabbing each week. The numbers of NP swabs collected each week depended on the numbers of ILI 

cases presenting at the clinics as well as patient consent. The research protocol was approved by the Oxford 

Tropical Research Ethics Committee at the University of Oxford and by the Scientific and Ethical Committee of 

the Hospital for Tropical Diseases in Ho Chi Minh City. 

 

Molecular Confirmation.  Respiratory specimens (nasal/throat swabs) were collected from ILI patients at 

outpatient clinics, transported the same day on ice to OUCRU, and stored in -80C freezers for a maximum of 3 

months before RNA extraction and Influenza A and B PCR testing. All specimens were tested by real-time PCR 

using primers, probes, and reagents recommended by the World Health Organization (WHO) and the Centers for 

Disease Control and Prevention (CDC).  Sequences of probes and primers used can be referred to in Table S1. 

Viral RNA was extracted from 140uL of a patient’s specimen to attain a final elution volume of 50uL. 

The extraction was carried out using a MagNA Pure 96 automated system (Roche Applied Science) with the 

MagNA Pure 96 DNA and viral NA Small Volume Kit (Roche; Cat ID. 06543588001), and the MagNa Pure 96 

System Fluid (Roche; Cat ID. 05467578001). 

Template RNA from the viral extract was used for cDNA synthesis using the LightCycler 480 RNA Master 

Hydrolysis Probes (Roche; Cat ID. 04991885001). The cDNA products were then amplified in a real-time RT-

PCR procedure carri ed out by a LightCycler instrument (Roche Applied Science). Each reaction had a total 

volume of 20uL containing 5uL of the viral RNA extract, 1X of RNA Master Hydrolysis Probes, 3.25mM of 

Mn(OAc)2, 1X of enhancer solution, 0.2uM of Influenza A/B probes, 0.8uM of Influenza A/B forward primers, 

0.8uM of Influenza A/B reverse primers, and water. Equine Arteritis Virus (EAV) was used as an internal control, 

and included in each reaction with 0.04uM of EAV probes, 0.2uM of EAV forward primers, and 0.2uM of EAV 

reverse primers. Thermal cycling conditions were set up as follow: reverse transcription at 58C for 20 min, enzyme 

inactivation at 95C for 5 minutes, and 45 cycles of 95C for 15 seconds, 55C for 30 seconds, and 72C for 20 seconds. 

Fluorescent signals were measured by LightCyler software, at wavelengths between 465 nm and 510 nm for 

Influenza A and B.   
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Climate Data.  Data on daily mean temperature (T) and relative humidity (RH) were collected from Weather 

Underground for Ho Chi Minh City, Vietnam (http://www.wunderground.com) from the beginning of 2000 till 

the end of 2015.  Absolute humidity (AH) was calculated using relative humidity and temperature: 

 

ܪܣ ൌ
6.112 ൈ exp ቀ

17.67 ൈ ܶ
243.5 ൅ ܶቁ ൈ 2.1674 ൈ ܪܴ

273.15 ൅ ܶ
 (1) 

 

The series of daily climate data were smoothed with a 15-day moving average before being used in our analyses. 

 

Time series detrending and standardization.  A total of 28 regularly reporting clinics (those who reported at 

least 200 reports from 2010-2015 and reported positive ILI numbers at least half of the time) were included in the 

time series analysis.  A 29th clinic that met these inclusion criteria was removed for quality control reasons.  The 

ILI data of 2009 were not used in the analysis due to the small number of reporting clinics during the first five 

months of the study.  Each clinic’s time series was converted to a z-score scale by computing the z-score of each 

ILI percentage inside a 12-month moving window (centered at the calculated data point), thus removing long-term 

trends in the data; we verified that window sizes of 6, 9, 15, and 18 months did not have any qualitative effects on 

the overall ILI trends.  The daily z-scores were averaged across clinics and smoothed using a 15-day window to 

construct the ILI z-score time series that we used in our subsequent analysis (see Figure S1 for effects of different 

smoothing windows).  

The time series was validated by verifying that is was not white noise (p-value < 10-15, Box-Ljung test) 

and by showing that the majority of individual clinics had a higher correlation to the aggregate time series than 

would be expected if reporting were random (Figure S2).  

 

Statistical analysis and forecasting.  Periodicity and frequency decomposition in the smoothed ILI trend were 

assessed with a standard auto-correlation function (ACF) and a Discrete Fourier Transform (DFT).  The ILI z-

score time series was regressed (linear link function) onto linear and non-linear variants of the climate variables 

(T, RH, AH, √T, √RH, √AH, T2, RH2, and AH2)  to determine which non-linear effects were present, as there is 

some evidence of non-linear effects of climate on ILI61.  In addition, a time-dependent fixed effect αj mimicking 

the dominant periodicity identified by the ACF (here, 206 days) was included on the right-hand side of the 

regression equation.  Twenty-one αj were allowed for in the model, meaning that periodicity in the system is 
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modeled with a piecewise constant function taking 21 different values during a full period of 206 days.  This is 

equivalent to having 21 fixed-effect terms in a regression, each multiplied by an indicator variable describing 

whether that data point belongs to that period, ensuring that only one fixed-effect term is added at a time.  The 

piecewise constant function has an advantage over the sinusoidal approach traditionally used in epidemiological 

analyses because the stepwise nature of the αj allows the periodicity in the system to take any shape determined 

by the data and does not require that the forcing function to be sinusoidal or continuous. 

 The non-annual cycle, T, √RH, and RH were the explanatory terms according to the Akaike Information 

Criterion (AIC) using the stepwise regression approach in R (step() function).  The ILI z-scores were then regressed 

onto the non-annual cycle, T, √RH, and RH, and lagged versions of these climate variables, extending back five 

weeks in the past.  The same stepwise regression approach (step() function in R) using the AIC was used to remove 

regression terms that did not add explanatory power.  The selected regression equation is 

 

௜ݖ ൌ ଵܶߚ ൅ ܪଶܴߚ ൅ ଷሺܶߚ ൈ ሻܪܴ ൅ ܪܴ√ସߚ ൅ ହߚ ௟ܶ௔௚ଷ ൅ ଺ߚ ௟ܶ௔௚ସ ൅ ଻ߚ ௟ܶ௔௚ହ ൅ ௟௔௚ହܪ଼ܴߚ

൅ ௟௔௚ହܪଽටܴߚ ൅ ௝ሿ	୮ୣ୰୧୭ୢ	୲୭	ୠୣ୪୭୬୥ୱ	௜	௝෍૚ሾୢୟ୷ߙ

ଶଵ

௝ୀଵ

 
(2)

 

To determine if the regression approach offers any predictability in the system, we inferred the regression 

coefficients and the time-dependent fixed effects using the first three years of data from January 1st 2010 to 

December 31st 2012, and we compared the predicted and real ILI trends for 2013–2015. The median prediction 

error was defined simply as the median of all of the absolute differences between the predicted z-score time series 

and the real z-score time series.  We varied the size of the training set to determine how many years of data would 

be needed to achieve robustness in predictability (Figure S4). 

 

Bootstrapping climate data.  To test the robustness of this prediction to changes in the annual climate cycle and 

the system’s intrinsic (dominant) cycle identified by the ACF (206 days), we removed the annual trend in the 

climate cycle with a smoothing-by-bootstrapping approach and we artificially varied the length c of the intrinsic 

non-annual cycle.  To create a bootstrap-smoothed climate time series, we defined the climate variables for each 

time point at tbss in 2010-2015 as a random sample taken during 2000-2015 and within d calendar days of tbss (see 

Figure S5). As d increases, the annual structure of the climate cycle gradually vanishes.  Two hundred bootstrapped 

time series were created (for each climate variable), for each cycle length c, and for each climate subsampling 

window d.  For each (c, d) pair, regression (onto each of the 200 bootstrapped time series separately) and prediction 
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(using each bootstrapped series of 2013-2015 separately) were re-performed, and the median prediction error was 

plotted to determine if changing assumptions about the length of the intrinsic cycle or the strength/amplitude of 

the climate data had a detrimental effect on predictability in our system.  Mean prediction errors are shown in 

Figure S7.   

 

All sampling, bootstrapping and statistical analyses were done in R (version 3.2.1, Vienna, Austria). 
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TABLES 
 
Table 1: Summary of ILI reports for 2009-2015 
 

Year 
Clinics reporting at least Total 

Patients 
Reported
ILI Cases 

ILI Percentage 

1 day 50 days 150 days Median IQR 

2009* 19 10 0 35,115 10,163 24.40 19.36 , 35.89 
2010 27 15 7 103,396 24,922 15.42 3.82 , 26.89 
2011 28 24 20 275,033 35,176 14.73 4.13 , 25.86 
2012 35 28 25 375,077 42,373 13.30 6.25 , 26.49 
2013 30 28 23 385,300 30,183 9.99 2.47 , 20.61 
2014 32 27 20 300,223 19,461 10.64 2.67 , 16.14 
2015 35 26 21 252,932 21,318 11.69 6.86 , 17.58 

* Data collection in 2009 started on August 10th. 
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Table 2:  Estimates of coefficients from regressing the smoothed daily ILI z-scores (2010-2012) onto two climate 
variables, an interaction term, and the temporal indicator variables that were used to construct a periodic 206-day 
forcing function in the time series. Temperature was measured in Celsius. 
 

Coefficient Estimate  Std. Error  t statistic  P‐value 

Intercept 63.5198  6.1223  10.3751  4.31E‐24 

Temperature ‐1.0446  0.0719  ‐14.5345  8.43E‐44 

3‐week Lagged Temperature 0.0004  0.0128  0.0338  9.73E‐01 

4‐week Lagged Temperature ‐0.0232  0.0180  ‐1.2894  1.98E‐01 

5‐week Lagged Temperature 0.0843  0.0120  7.0508  3.19E‐12 

Rel. Humid. ‐0.0584  0.0375  ‐1.5569  1.20E‐01 

Sq. Root Rel. Humid. ‐5.3047  0.7488  ‐7.0839  2.54E‐12 

5‐week Lagged Rel. Humid. (RH.lag5) 0.1656  0.0412  4.0184  6.27E‐05 

Sq. Root RH.lag5 ‐2.8670  0.7278  ‐3.9393  8.70E‐05 

Rel. Humid. × Temperature 0.0128  0.0009  13.5127  1.60E‐38 

Temporal Interval        

2 0.0098  0.0275  0.3576  7.21E‐01 

3 ‐0.0963  0.0274  ‐3.5128  4.62E‐04 

4 ‐0.1900  0.0275  ‐6.9097  8.34E‐12 

5 ‐0.2111  0.0275  ‐7.6857  3.44E‐14 

6 ‐0.2178  0.0282  ‐7.7159  2.75E‐14 

7 ‐0.1105  0.0274  ‐4.0262  6.07E‐05 

8 ‐0.1036  0.0279  ‐3.7205  2.09E‐04 

9 ‐0.1442  0.0275  ‐5.2471  1.86E‐07 

10 ‐0.0867  0.0278  ‐3.1233  1.84E‐03 

11 ‐0.1811  0.0293  ‐6.1726  9.53E‐10 

12 ‐0.1949  0.0280  ‐6.9524  6.25E‐12 

13 ‐0.2311  0.0279  ‐8.2917  3.33E‐16 

14 ‐0.0828  0.0274  ‐3.0191  2.60E‐03 

15 0.0290  0.0275  1.0569  2.91E‐01 

16 ‐0.0563  0.0267  ‐2.1069  3.54E‐02 

17 0.0047  0.0262  0.1790  8.58E‐01 

18 0.0347  0.0265  1.3107  1.90E‐01 

19 0.0072  0.0263  0.2750  7.83E‐01 

20 ‐0.0101  0.0260  ‐0.3873  6.99E‐01 

21 0.0548  0.0268  2.0440  4.12E‐02 
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FIGURES   
 

 

Figure 1. Trends in ILI z-scores by year. The black lines show 15-day moving-average smoothed z-scores (after 
detrending).  The gray solid lines show the monthly mean z-score values.  The horizontal dashed lines represent 
the median ILI z-score for that year. 
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Figure 2.  Time series of ILI z-score and influenza PCR-positivity, in 3-week windows, for the period of time 
when PCR confirmations were being done in the clinics in the study.  Gray region around flu-positive percentage 
is the 95% confidence region computed using the exact binomial method. The Pearson’s correlation between the 
time series is shown in Table S2. 
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Figure 3.  (A) Autocorrelation function (ACF) for the z-score time series.  Horizontal dashed lines demark the 
statistically significant regions (p < 0.05).  Black dots represent the ACF values of lags of 365 and 730 days.  The 
first peak in the ACF is at the lag of 206 days.  (B) Discrete Fourier transform (DFT) of the z-score time series.  
The period length of each DFT can be calculated by dividing 2,191 (the number of days in the time series) by the 
corresponding number of cycles (the frequency of the DFT).  Frequencies whose power is lower than 6.93 (i.e. 
periodic functions whose correlation with the z-score time series is lower than their correlation with a constant 
signal) are shown in gray.  The DFT reaches its highest power at 11 cycles, corresponding to a cycle length of 199 

days. 
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Figure 4.  Forecasting ILI z-scores with bootstrapped weather data.   (A)  Annual average temperature trend (green) 
and relative humidity trend (blue) based on 2000-2015 weather data for Ho Chi Minh City.  Bootstrapping is done 
in a 21-day window around each time point, which has the effect of smoothing the data with a 21-day window.  
The shaded gray area shows the inferred periodic signal from equation (2) using the 2010 to 2012 z-scores and 
assuming a 206-day cycle.  (B)  Predicted daily ILI z-scores from the regression model (red) and their 75% 
prediction range (yellow) are plotted alongside with the daily ILI z-scores (black).  Model parameters were 
estimated by regressing ILI z-scores of 2010-2012 on the real weather data of 2010-2012.  Predictions were 
calculated based on bootstrapped weather data (see Materials and Methods).  The median prediction error from 
January 1 2013 to December 31 2015 is 0.125 (z-score scale, IQR: 0.064, 0.203).  (C)  Median prediction errors 
when varying both the width of the bootstrapping window d for the weather data and the duration of the intrinsic 
cycle c in the system (see Methods).  The minimum prediction error is achieved with a weather bootstrapping 
window of 199 days and an intrinsic cycle of 202 days.  
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