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Dear Editor: 

Gene networks provide a system-level overview of genetic organizations and enable the 

dissection of functional modules underlying complex traits. With diverse genomics data, a 

genome-scale network, which facilitates the prediction of novel candidate genes for a trait, can 

be constructed. Network-based predictions have been useful in the model plant Arabidopsis 

thaliana (Lee et al., 2010). However, such a predictive gene network is not yet available for 

bread wheat, Triticum aestivum, an important staple food crop accounting for approximately 

20% of the world’s daily food consumption. Bread wheat also serves as a model for studying 

polyploidy in plants.  

Some of the reasons that functional genomics studies on bread wheat have lagged behind those 

on other crops include the large genome of bread wheat (~17 Gb) and its polyploidy nature, 

which complicates genetic analysis. However, recent advances in wheat research have 

considerably improved genome assembly and gene models (International Wheat Genome 

Sequencing, 2014). Furthermore, the discovery and application of genome editing (Upadhyay 

et al., 2013) and TILLING technologies (Uauy et al., 2009) have enabled targeted knockout in 

wheat protoplasts and whole plants. These developments have set the stage for the application 

of reverse genetics approaches for the functional characterization of wheat genes. 

Here we present WheatNet, the first genome-scale functional gene network for T. aestivum and 

a companion web server (www.inetbio.org/wheatnet), which provides network information and 

generates network-based functional hypotheses. WheatNet was constructed by integrating 20 

distinct genomics datasets (Supplemental Table 1), including 156,000 wheat-specific co-

expression links mined from 1,929 DNA microarray datasets (Supplemental Table 2). A 
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unique feature of WheatNet is that each network node represents either a single gene or a group 

of genes. An allopolyploid wheat genome contains three homeologous chromosome sets―A, 

B, and D―that originate from three closely related species Triticum urartu, Aegilops speltoides, 

and Aegilops tauschii, respectively (International Wheat Genome Sequencing, 2014). 

Therefore, the wheat genome contains many homologous genes between the three ancestral 

chromosome sets. Because homeologs are likely to have redundant functions, collapsing 

homeologs into a single network node would facilitate the network analysis by reducing 

network complexity. Unfortunately, comprehensive definitions of wheat homeologous 

relationships are not yet available. Therefore, we computationally partitioned “gene groups” 

mimicking homeologous genes by clustering 99,386 wheat genes, resulting in 20,248 gene 

groups comprising 63,401 genes, and 35,985 individual genes. WheatNet was thus constructed 

using 56,233 nodes; the final network has 20,230 nodes and 567,000 edges, integrating 20 

sources of functional evidence linking pairs of genes (Supplemental Methods). The edge 

information of the integrated WheatNet and all 20 component networks are available for 

download.  

To assess WheatNet, we used biological process annotations by agriGO (Du et al., 2010), which 

are moderately distinct from the dataset used for network training (~38% gene pairs by shared 

agriGO annotations overlap the training data) and one of the few other large-scale wheat 

annotation sets available for testing. To help reduce bias, we excluded agriGO terms that 

annotate more than 300 wheat genes. Next, the accuracy of functional gene pairs by WheatNet 

or by random chance was measured using the proportion of gene pairs that share agriGO 

annotations for different coverage of the coding genome. We observed strong performance by 

WheatNet, in which a network covering approximately 20% of all genes map functional gene 
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pairs with about 40% accuracy (Supplemental Figure 1). The quality of WheatNet was further 

evaluated by the degree of connectivity among genes involved in a particular biological process. 

Considering that genes for the same complex traits are more likely to be functionally coupled, 

high connectivity among known genes for a trait would support the quality of functional 

networks. We tested network connectivity for a group of genes based on two measures: (i) the 

number of edges among gene members (i.e., within-group edge count) and (ii) the number of 

network neighbors that overlap among group members (i.e., network neighbor overlap). We 

used genes for two complex traits derived from proteomics studies: 45 genes with differential 

protein expression after Blumeria graminis f. sp. tritici infection (Mandal et al., 2014) and 17 

genes with differential protein expression under drought conditions (Cheng et al., 2015). The 

significance of network connectivity was also measured based on a null distribution from 1000 

random gene sets of the same size. We found that the connectivity among each trait’s genes 

was significantly higher than by random chance (Figure 1A-B). We consistently observed 

network communities of genes for both traits (Figure 1C-D). We conclude that WheatNet 

successfully predicts additional genes that are involved in a given trait. 

The WheatNet web server provides two options for prioritizing genes for wheat traits: (i) direct 

neighbors in the gene network and (ii) context-associated hubs (CAHs). In the first approach, 

a user submits genes known for a trait that can guide network searches for new candidate genes. 

New genes are then ranked by the strength of evidence connecting them to the “guide genes,” 

measured for each candidate gene as the sum of network edge scores from that gene to the 

guide genes. The result page provides the ranked list of candidates and a visualization of the 

local guide gene network using the Cytoscape web tool (Lopes et al., 2010) (Figure 1E). To 

provide functional clues for candidate genes, WheatNet provides available wheat and 
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Arabidopsis gene annotations from the Gene Ontology biological process (GOBP) 

(Supplemental Methods).  

In the second approach, users exploit gene expression data related to a trait of interest. Gene 

expression profiles are one of the most common types of genomic data, and differential 

expression analysis provides many genes that are potentially associated with given traits such 

as abiotic and biotic stresses. However, many genes that are associated with stress conditions 

are not differentially expressed. Hypothesizing that a gene associated with many differentially 

expressed genes (DEGs) in stress (i.e., CAHs) is likely to be responsible for responses to the 

given stress condition, we prioritized genes by connections to the context-associated DEGs. To 

conduct CAH prioritization, we first defined a subnetwork that comprises a hub gene and all 

of its network neighbors in WheatNet. For the gene prioritization, we considered only 

subnetworks with hub genes that have at least 50 network neighbors. Assuming that DEGs are 

representative genes for a relevant biological context, we prioritized hub genes based on the 

enrichment of their network neighbors for the DEGs, measured using Fisher’s exact test. The 

hub genes with significant enrichment (P < 0.01) of network neighbors for the DEGs are 

considered as CAHs and are presented as candidate genes for the context-associated trait. 

Similar to the network direct neighborhood search, all candidate genes are appended by GOBP 

annotations for wheat genes and for Arabidopsis orthologs. In addition, users can access a 

network view of a CAH and its connected DEGs by clicking each candidate gene (Figure 1F). 

The WheatNet predictions by each of the network-based gene prioritization methods were 

validated as follows: For the network direct neighborhood method, we evaluated the new 

candidate genes for drought stress response that were predicted by submitting 17 genes with 

differential protein expression under drought conditions (Cheng et al., 2015) as guide genes. 
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We hypothesized that novel candidate genes for drought response are also likely to be expressed 

differentially under drought conditions. Thus, we investigated the enrichment of candidate 

drought response genes from DEGs under drought conditions. We generated a set of 2,346 

DEGs under drought condition based on genes that showed more than 4-fold changes in 

expression levels at P < 0.01 (SRP045409 of NCBI Sequence Read Archive) (Liu et al., 2015). 

We found 15 drought-condition DEGs among the top 50 candidate genes by the network direct 

neighborhood method, which indicates more than 7-fold enrichment over predictions by 

random chance (15/50 = 0.3 by WheatNet vs. 2346/56233 = 0.042 by random chance). For the 

CAH method, we evaluated the candidate genes for Fusarium graminearum infection response 

that were predicted by submitting 837 DEGs after infection with F. graminearum (GSE54551 

of NCBI Gene Expression Omnibus database) (Wojcik et al., 2015) as user input data. We 

found that the top 100 candidates by CAHs were significantly enriched for GOBP annotations 

relevant to fungus infection based on Arabidopsis orthologs: ‘response to chitin’ (GO:0010200, 

P = 9.72 × 10-31), ‘regulation of plant-type hypersensitive response’ (GO:0010363, P = 8.20 × 

10-21), ‘defense response to fungus’ (GO:0050832, P = 1.73 × 10-20), ‘response to fungus’ 

(GO:0009620, P = 1.03 × 10-8), and ‘detection of biotic stimulus’ (GO:0009595, P = 3.43 × 

10-5).  

These results indicate that WheatNet can effectively prioritize novel candidate genes for 

complex traits, including those governing abiotic and biotic stress responses, by using multiple 

network-based methods, which can be easily performed by simple submission of input data in 

the companion web server. WheatNet should be a useful resource of systems biology and 

predictive genetics for the wheat research community. 
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Figure legend 

Figure 1. Overview of WheatNet 

Degree of connectivity (A) among 45 genes for response to Blumeria graminis f. sp. Tritici 

infection and (B) among 17 genes for response to drought stress were measured by determining 

the number of edges among group members (i.e., within-group edge count) or the number of 

network neighbors that overlapped among group members (i.e., network neighbor overlap) by 

using WheatNet (red stars) or 1000 random gene sets having the same size (black circles). 

Largest components of networks of (C) the genes for response to B. graminis f. sp. Tritici 

infection and (D) those for response to drought stress by WheatNet. (E) Results of gene 

prioritization by direct neighborhood method. The top 100 candidate genes and associated 

Gene Ontology terms are listed in a table. In addition, the network of guide genes and candidate 

genes is shown. (F) The results of gene prioritization by the context-associated hub method. 

The top 100 predictions and associated Gene Ontology terms are listed in a table. By clicking 

each candidate gene, users can view a network composed of the hub gene and connected 

differentially expressed genes. 
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Figure 1. Overview of WheatNet
Degree of connectivity (A) among 45 genes for response to Blumeria graminis f. sp. Tritici infection and (B) among 17 genes for response 
to drought stress were measured by determining the number of edges among group members (i.e., within-group edge count) or the 
number of network neighbors that overlapped among group members (i.e., network neighbor overlap) by using WheatNet (red stars) or 
1000 random gene sets having the same size (black circles). Largest components of networks of (C) the genes for response to 
B. graminis f. sp. Tritici infection and (D) those for response to drought stress by WheatNet. (E) Results of gene prioritization by direct 
neighborhood method. The top 100 candidate genes and associated Gene Ontology terms are listed in a table. In addition, the network 
of guide genes and candidate genes is shown. (F) The results of gene prioritization by the context-associated hub method. The top 100 
predictions and associated Gene Ontology terms are listed in a table. By clicking each candidate gene, users can view a network 
composed of the hub gene and connected differentially expressed genes.
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Supplemental Methods 

Genes and gene groups for nodes of WheatNet 

Genes for WheatNet are based on gene models by the International Wheat Genome Sequencing 

Consortium MIPS annotation version 2.2. In the allopolyploid genome of Triticum aestivum, 

three homeologous chromosome sets―A, B, and D―originate from closely related species 

Triticum urartu, a grass relative Aegilops speltoides, and Aegilops tauschii, respectively 

(International Wheat Genome Sequencing, 2014). Consequently, the wheat genome harbors 

many homologous genes between the three ancestral chromosome sets. Since the homeologs 

are likely to carry redundant functions, clustering a group of homeologs into a single network 

node would facilitate network analysis by reducing network complexity. Unfortunately, no 

comprehensive database of wheat homeologous relationships is yet available. Therefore, we 

computationally established “gene groups” as mimicking the homeologous groups. We 

hypothesized that, since homeologs arise from interspecies hybridization of chromosomes, they 

should resemble orthologous relationships between species. Therefore, we used orthoMCL (Li 

et al., 2003) to search for groups of homologs among the three chromosome sets. We do not 

expect these gene groups to completely capture the homeologous relationships, but they should 

serve to approximate the ancestral homology. Of the 99,386 wheat genes, 63,401 were clustered 

into 20,248 gene groups. WheatNet was thus constructed on a total of 56,233 nodes, 

representing the 20,248 gene groups plus 35,985 individual genes. (Unless otherwise specified, 

we use the word “gene” to refer to a network node that might be either a single gene or a gene 

group.) 

 

Benchmarking inferred functional linkages between wheat genes 

Various types of genomics data were analyzed to infer functional associations between wheat 

genes by using supervised machine learning, which requires gold-standard reference data for 

training the model. The positive gold-standard set of functional links between wheat genes was 

derived from Gramene Gene Ontology biological process (GOBP) terms (release 49) (Tello-

Ruiz et al., 2016) by all-versus-all pairing of member genes for each GO term. Because the 

number of gene pairs for each term exponentially increases with the number of member genes, 
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the resultant set of gold-standard functional gene pairs could be severely biased toward GO 

terms with many member genes. To avoid this functional bias, GO terms with more than 200 

member genes were excluded. We also generated the negative gold-standard data set by pairing 

genes annotated by different GO terms. The resultant positive and negative gold-standard data 

sets comprise 434,368 and 73,273,643 gene pairs, respectively, among 12,142 wheat genes. 

Functional linkages between wheat genes inferred from various genomics data were evaluated 

by using a log likelihood scoring scheme (LLS) (Lee et al., 2004). The LLS is calculated as 

follows: 

ܵܮܮ ൌ ݈݊ ቆ
ܲሺܦ|ܮሻ/ܲሺ൓ܦ|ܮሻ
ܲሺܮሻ/ܲሺ൓ܮሻ

ቇ 

where P(L|D) and P(¬L|D) are the probability of the positive and negative gold-standard 

linkages for a given biological data, respectively. In a sense, LLS measures the enrichment of 

the positive gold-standard links among ones inferred from the given biological data compared 

to those obtained by random chance. If LLS is above zero, the given pair of genes is likely to 

operate for the same biological process. 

 

Integrating the functional linkages from different data sources 

To construct the gene network, we integrated functional gene-gene links inferred from 20 

different genomics datasets (Supplementary Table 1). Since these genomics datasets are not 

entirely independent from each other, we integrated multiple scores from different datasets 

using a previously described weighted sum (WS) method (Lehner and Lee, 2008). We found 

that integrating scores in a weighted fashion generally yields better results than those by naïve 

Bayes integration, in which all scores are summed up with full weights. WS is calculated as 

follows: 

ܹܵ ൌ ଴ܮ ൅	෍
௜ܮ

ܦ ൈ ݅

௡

௜ୀଵ

	 , 	ܮ	݈݈ܽ	ݎ݋݂ ൒ ܶ 

where L0 is the best LLS of all available scores for a given functional link. Rank indices from 
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i to n are assigned to the rest of the LLSs. Next, the scores are summed up after dividing them 

by the assigned index number and multiplied by a weight factor D if the given LLS is higher 

than a score threshold T. In this method, weighted sum yields the best LLS with the full weight, 

and all others with partial weights show decrement along rank order. 

 

Inferring functional links from co-expression analysis 

Genes for related biological processes are likely to have similar expression dynamics across 

many biological contexts. This co-expression pattern can be exploited to infer functional 

relationships between genes. We analyzed gene expression data collected using the Affymetrix 

array platform (GPL3802) and deposited in the Gene Expression Omnibus (GEO) database 

(Barrett et al., 2013), because it supports the largest number of samples. We converted the 

downloaded raw data into a matrix of genes (rows) and samples (columns) for each GEO series 

(GSE), and then normalized the data using MAS5 software. We then calculated the Pearson 

correlation coefficient (PCC) across these preprocessed expression vectors for each pair of 

genes in order to measure their co-expression. When analyzing co-expression among genes 

falling in homeologous gene groups, we retained the highest PCC scores among individual 

gene pairs. The co-expression links were ranked according to PCC score, and LLS scores were 

calculated for consecutive bins of 1000 gene pairs. The resulting relationship between PCC 

and LLS was fit with a regression model, and LLSs assigned to individual gene pairs based on 

the derived model. GEO series with fewer than 12 samples were excluded from the co-

expression analysis owing to the high probability of promiscuous functional links supported 

by insignificant correlation across low numbers of samples. We inferred functional gene 

networks from nine GEO series (Supplemental Table 2), which were integrated into a 

component network for WheatNet, TA-CX (see Supplemental Table 1). We also analyzed 

several expression datasets based on high-throughput sequencing, but none showed strong 

correlation between PCC and LLS, and we did not incorporate these data into the network, 

although the rapid growth in RNA-sequencing data in the database suggests this will likely 

become a valuable source of functional evidence in the future. 
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Inferring network links from gene neighborhood method by using metagenome assemblies  

Functional associations between wheat genes can be inferred by measuring the proximities of 

their orthologous genes in bacterial genomes, a method that takes advantage of the trend for 

genes found to be neighbors across many bacterial genomes to reside in the same operon, and 

thus to generally operate in the same biological process (Overbeek et al., 1999; Shin et al., 

2014). Previously, we analyzed gene neighborhoods across completely sequenced bacterial 

genomes. We adapted the method for metagenomics data spanning hundreds of thousands of 

bacterial genomes. Metagenome assemblies of 16 body sites of humans were downloaded from 

the Human Microbiome Project (HMP) (Human Microbiome Project, 2012), and global ocean 

microbiome assemblies were obtained from TARA Oceans study (Sunagawa et al., 2015). 

Wheat protein sequences were aligned to the metagenome assemblies by using the BLASTX 

alignment mode in DIAMOND (Buchfink et al., 2015) with the ‘sensitive’ option. The score 

of each gene pair (S) was calculated as follows: 

ܵ ൌ ݃݋݈ ൬
݁ܿ݊ܽݐݏ݅݀	݊ܽ݅݀݁݉ ൅ 1

݁݉݋݊݁݃	݊݅	ݏ݁ܿ݊݁ݎݑܿܿ݋‐݋ܿ	݂݋	ݎܾ݁݉ݑ݊
൰ 

We expected that gene neighborhood evidence across the human symbiotic bacteria and marine 

bacteria would be complementary, given the many differences in the two environments and 

taxa, and derived two independent networks, one based on the HMP data and the other based 

on the TARA Oceans study data. We combined the networks into a single gene neighborhood 

network (TA-GN in Supplemental Table 1) for integration with other datatypes. 

 

Orthologous functional links transferred from other organisms 

Interologs are evolutionarily conserved interactions between proteins whose homologous 

proteins in other organisms also interact with each other (Walhout et al., 2000). Similarly, 

associalogs (Kim et al., 2013) are conserved functional associations between genes whose 

orthologs in other organisms are also functionally coupled. WheatNet component networks 

based on associalogs were transferred from our previously published networks for seven 

organisms: YeastNet for Saccharomyces cerevisiae (Kim et al., 2014), AraNet for Arabidopsis 
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thaliana (Lee et al., 2015c), RiceNet for Oryza sativa (Lee et al., 2015b), FlyNet for Drosophila 

melanogaster (Shin et al., 2015), WormNet for Caenorhabditis elegans (Cho et al., 2014), 

DanioNet for Danio rerio (Shim et al., 2016), MouseNet for Mus musculus (Kim et al., 2016), 

and HumanNet for Homo sapiens (Lee et al., 2011). In addition, associalogs from an 

unpublished functional network for Zea mays were integrated into WheatNet. To transfer 

associalogs from the above organisms, orthologous wheat proteins were identified using the 

Inparanoid algorithm, which includes in-paralogs as co-orthologs (O'Brien et al., 2005). We 

found that associalogs based on wheat in-paralogs of Z. mays genes increased the probability 

of introducing false functional links, probably because of the complexity of the Z. mays genome 

(Lee et al., 2015a). Therefore, we transferred associalogs from Z. mays networks by orthology 

relationships based on the bi-directional best BLASTP hits only, not the in-paralog expansion 

offered by Inparanoid. 

 

Functional annotations of wheat genes for the web service 

For functional annotation of wheat genes in the web server, we used GOBP terms as assigned 

by Gramene (release 49) (Tello-Ruiz et al., 2016). Arabidopsis GOBP terms were also used to 

annotate functions of wheat genes based on orthology, as identified using bi-directional best 

BLASTP hits. We excluded GO annotations whose support derived only from non-traceable 

author statements with no supporting data. 
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Supplemental Table 1. List of 20 component networks integrated to construct WheatNet 

Component 
network 

Description # links

TA-CX Network links inferred from co-expression patterns of T. aestivum genes 156,000

TA-GN Gene Neighborhood, proximity between two genes in bacterial genomes 49,458

AT-CX Co-expression links transferred from A. thaliana network (AraNet) 232,000

AT-HT 
High-throughput protein interactions transferred from A. thaliana network 
(AraNet) 

1,973 

AT-LC 
Literature curated protein interactions transferred from A. thaliana network 
(AraNet) 

3,000 

CE-CX Co-expression links transferred from C. elegans network (WormNet) 88,000

DM-CX Co-expression links transferred from D. melanogaster network (FlyNet) 62,000

DM-HT 
High-throughput protein interactions transferred from D. melanogaster 
network (FlyNet) 

5,000 

DM-LC 
Literature curated protein interactions transferred from D. melanogaster 
network (FlyNet) 

2,000 

DR-CX Co-expression links transferred from D. rerio network (DanioNet) 70,000

HS-CX Co-expression links transferred from H. sapiens network (HumanNet) 24,000

HS-HT High-throughput links transferred from H. sapiens network (HumanNet) 31,000

HS-LC 
Literature curated protein interactions from H. sapiens network 
(HumanNet) 

26,000

MM-CX Co-expression links transferred from M. musculus network (MouseNet) 68,000

OS-CX Co-expression links transferred from O. sativa network (RiceNet) 29,000

SC-CC Co-citation links transferred from S. cerevisiae network (YeastNet) 113,000

SC-CX Co-expression links transferred from S. cerevisiae network (YeastNet) 102,000

SC-GT 
Genetic interactions of yeast genes transferred from S. cerevisiae network 
(YeastNet) 

19,000

SC-HT 
High-throughput protein interactions from S. cerevisiae network 
(YeastNet) 

104,000

ZM-CX Co-expression links transferred from Z. mays network (MaizeNet) 36,513
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Supplemental Table 2. List of nine GEO series (GSE) used to infer co-expression links 
between wheat genes 

GEO Series Description # links
GSE6027 Meiosis and microsporogenesis microarray expression analysis 71,000

GSE6227 
Expression profiling after Puccinia triticina inoculation to resistant and 
susceptible lines 

86,000

GSE9915 Expression profiling after Puccinia triticina inoculation 61,000

GSE11774 Microarray expression analysis of cold treated wheat cultivars 97,000

GSE23889 Expression analysis of cold treatment 105,000

GSE31753 Expression profiling after Puccinia striiformis f. sp. Tritici infection 52,000

GSE31756 Expression profiling after Puccinia striiformis f. sp. Tritici infection 84,000

GSE54260 Expression profiling of powdery mildew infection 46,000

GSE69437 Expression profiling of Fusarium graminearum infection 37,000
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Supplemental Figure 1. Functional links of WheatNet are highly accurate. 

To assess networks with validation data that are independent from those for network training, 

we used GOBP annotations by agriGO. Top-ranked links of WheatNet connect gene pairs of 

which >95% of them have at least one shared agriGO annotation between them, whereas only 

few of random gene pairs have shared annotations. The accuracy decreases as the network size 

increases. 
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