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1 Abstract

This study focuses on a conceptual issue with Bayesian inference of diver-
gence times using Markov chain Monte Carlo. The influence of fossil data
on the probabilistic distribution of trees is the crux of the matter considered
here. More specifically, among all the phylogenies that a tree model (e.g.,
the birth-death process) generates, only a fraction of them “agree” with the
fossil data at hands. Bayesian inference of divergence times using Markov
Chain Monte Carlo requires taking this fraction into account. Yet, doing
so is challenging and most Bayesian samplers have simply overlooked this
hurdle so far, thereby providing approximate estimates of divergence times
and tree process parameters. A generic solution to this issue is presented
here. This solution relies on an original technique, the so-called exchange
algorithm, dedicated to drawing samples from “doubly intractable” distribu-
tions. A small example illustrates the problem of interest and the impact of
the approximation aforementioned on tree parameter estimates. The analysis
of land plant sequences and multiple fossils further illustrates the importance
of proper mathematical handling of calibration data in order to derive accu-
rate estimates of node age.

2 Introduction

Inferring times of divergence between species from the analysis of genetic and
fossil data has led to spectacular advances in our understanding of evolution.
One of the most striking illustration is given by the work of Sarich and Wilson
(1967) that led to a reappraisal of the timing of divergence between African
apes and humans. Yet, “molecular estimates” are generally older than that
suggested by the fossil record (Benton and Ayalal [2003)). This discrepancy
is generally attributed to deficiencies in the models used to infer divergence
times from molecular data (Yang, 2006)).

Overly simplistic models of substitution rate variation during the course
of evolution are a cause of concern amongst others. In fact, [Bromham et al.
(2000) shows a clear example whereby enforcing a strict molecular clock leads
to inaccurate estimates of divergence times between rodents and primates.
Sanderson| (1997) was the first to propose a suitable statistical framework
and a relevant inference technique (Sanderson, |2002) to accommodate for the
variation of substitution rates across lineages. Thorne et al. (1998) devised
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a similar yet more explicit statistical model of “relaxed clock” and based the
inference on the posterior distribution of model parameters.

This last study was among the first to apply Markov Chain Monte Carlo
(MCMC) techniques to Bayesian inference of hierarchical model parameters
in phylogenetics. The Bayesian approach enjoyed a considerable popular-
ity in the decades that followed (see ldos Reis et al. 2016 for a recent re-
view). Part of this success comes from the ease with which new models
can be integrated without affecting the inference techniques (see for instance
the “plugin” architecture implemented in BEAST?2 (Bouckaert et al., 2014)).
However, the Bayesian approach using MCMC “only” provides a sound math-
ematical framework and associated inference tools. Our ability to improve
the quality of time estimates still relies very much on the validity of the
underlying probabilistic models.

Despite the substantial number of publications describing new models
and software implementing these in the last decade or so (dos Reis et al.|
2016; Kumar and Hedges, 2016]), some issues common to most of them did
not attract notice for years. For instance, while the substitution rates were
assumed to randomly fluctuate along the phylogeny, this stochasticity was
ignored when calculating the probability of the observed genetic sequences.
This approximation was only acknowledged and addressed recently (Guin-
don| 2013; |Horvilleur and Lartillot, |2014; Privault and Guindon, 2015)).

Another potential pitfall of molecular time inference originates in the
mathematics underlying the tree model, i.e., the distribution of topology
and node ages, given fossil data. Here again, this is a long-standing issue
that affects crucial aspects of Bayesian inference using MCMC, but was only
brought forward very recently. |Rannalal (2016) indeed exposed a hurdle in
the calculation of the probability density of the topology and node ages
when the ages of the most recent common ancestors (MRCAs) of multiple
clades have their own (marginal) distributions. Although it is commonplace
to define each marginal distribution separately, Rannala’s results indicate
that it is generally not possible to specify a tree model that “agrees” with
these distributions. A corollary is that the models implemented in popular
statistical software are in fact distinct from those intended.

In this study, I first give an overview of this recent issue and related ones.
One way to circumvent these is to consider that Bayesian inference of node
ages using MCMC belongs to the class of “doubly intractable” problems
(Murray et al., 2012)). Elegant computational solutions exist to tackle this
class of problems. I present one of them in the context of molecular dating.
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An illustration of the proposed technique on the timing of speciation events
in land plants is then provided.

3 Notation

A labeled history or ranked tree is defined as a labeled tree with tempo-
rally ordered internal nodes (Edwards, 1970). Let n be the number of
taxa and t; > to > ...t,_1 > 0 denote the ages of internal nodes from
the oldest to the youngest. Consider a branching (or tree) process back-
ward in time such that at a given point in time, each pair of lineages has
the same probability to coalesce. There are n(n — 1)/2 ways to select
the youngest pair of coalescing lineages at time t,_1, (n — 1)(n — 2)/2 for
the pair that formed at time ¢,_o and so on. In total, there are thus
n!(n—1)!/2"~! equiprobable labeled histories with the same node ages. Under
this coalescent process, the conditional probability of a ranked tree topology
with labels on tips, noted as 7, given internal node ages ti,...,t,_1 is thus
Pr(7|t1, ..., tn_1) = 271 /(n!(n — 1)!) which is also the probability of the
ranked tree topology, i.e., Pr(7) = 277! /(n!(n — 1)!), and the distribution on
ranked tree topologies with n tips is thus uniform. The same reasoning ap-
plies to the reconstruction of genealogies of samples from populations evolv-
ing under a branching process whereby all lineages have the same probability
of branching. In particular, the birth-death and Wright-Fisher models both
have uniform distribution on labeled histories of random samples (Stadler,
2008)).

The parameter 6 denotes one or more numerical parameters involved in
the definition of the tree process (e.g., 8 := {\, u}, where \ and p are the
birth and death rates in the birth-death model with full sampling). Let d,
denote a set of n homologous sequences collected for the inference of 7 and t.
The set of taxa in the sample is noted as s. ¢(s) corresponds to the ensemble
of calibration constraints that apply to s. We have ¢(s) = {c1(s1), ..., ce(sk)}
in case there are k time constraints on the subsets of taxa si,...,s;. Each
constraint ¢;(s;) applies to the age of a single internal node in 7. However,
a given node can have multiple constraints attached to it. The information
conveyed by ¢;(s;) typically includes the upper and lower bounds for the ages
of the ancestors of the groups of taxa defined by s;. Other parameters may
also be associated to ¢;(s;) in case one uses a marginal priors on these ages
that are distinct from that defined by the joint prior of all node ages.
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4 Current approaches

The “product of marginals” and “fossilized birth-death” approaches are the
two main techniques to build a probabilistic distribution from a tree process
combined to fossil data. I give below a brief overview of these two techniques
and introduce the issue of interest in that particular context.

4.1 Product of marginals

For a given ranked tree topology 7 and calibration data c(s), one can separate
elements in the vector ¢ for which calibration constraints apply (correspond-
ing to the calibrated nodes) from other ages. Following Yang and Rannala
(2006), let t. denote the set of ages of calibrated nodes and t; the ages of the
other internal nodes. We then have:

p(7,t,0,c(s)) = p(7,te,ts0,c(s))
o< pte, te]7, 8, c(s)) Pr(7]6, c(s))p(0]c(s)). (1)

In what follows, I will first focus on issues surrounding the calculation of
Pr(7|0,c(s)) and then that affecting p(t., t<|T,0, c(s)).

The distribution of ranked tree topologies is uniform for a broad class of
models when ignoring calibration information, i.e., Pr(7]f) o< 1 (see Notation
section). Accounting for calibration data makes this distribution non-uniform
in general. Indeed, calibration information often induces constrains on the
ordering of the ages of certain clades, thereby affecting the distribution of
ranked tree topologies. Consider the following example where s := {a, b, ¢}
and calibration data as follows: ¢;({a,b}) := [0, 10] and cy({a, c}) := [12,20].
We then have Pr(7 = ((a,¢),b)|c(s)) = 0 while Pr(7 = ((a,b),c)|c(s)) > 0.
The calibration data available here constrain the MRCA of a and b and that
of a, b and ¢ to correspond to distinct internal nodes in the tree.

Heled and Drummond (2012)) give examples detailing the calculation of
Pr(7]0,c(s)) on 3-taxon trees (see Appendix 1 in their article). However,
part of their reasoning stems from a peculiar use of conditional probability
densities through the so-called “multiplicative prior”. The ages of calibrated
nodes are here involved in both the joint distribution of all node ages and the
marginal, user-defined, prior on the ages for the MRCA of specific clades. The
“multiplicative prior” approach therefore does not give valid probabilities of
ranked tree topologies given fossil data. Even though it may be possible to
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fix this issue, other difficulties hamper the inference anyway. As explained
below, the term corresponding to the joint conditional probability of node
ages in Equation [1] also has its issues.

Yang and Rannalal (2006) break down the conditional distribution of cali-
brated and non-calibrated node ages given a ranked tree topology as follows:

Pr (t57 tcw)
p(tc,tc|T,¢9,C(8)) - WP(TAL<tC|Q7T7 C(S)>7 (2>
where py(+|0) is the joint density of the ages of nodes without calibration
information associated to them under the birth-death process, although this
equation is valid for any tree-generating process (hence the notation p.(+)).
Pear(te]d, 7, ¢(s)) is the joint density of the calibrated nodes. It is common
practice to equate that density to a product of marginal densities, one for
each calibrated node. It is this approach that popular software for molec-
ular dating, including BEAST (Drummond et al., |2012), BEAST2 (Bouckaert
et al., |2014) or PhyloBayes (Lartillot et al., 2009) implement. The software
mcmetree (Yang, 2007) uses the above formula to estimate the tree model
parameters while the tree topology is kept fixed throughout the analysis,

unlike the other software aforementioned.

Two issues arise here. First, calibration information is defined on sets of
taxa, not nodes in the tree. In cases multiple sets of taxa correspond to a
single node, it is unclear what the marginal density for this node should be.
Considering the previous example, let ¢;({a,b}) define calibration informa-
tion on taxa a and b such as “the MRCA of a and b lived at a time that is
an exponential with parameter A\;” and cs({a,b, c}) is short for “the MRCA
of a, b and c lived at a time that is an exponential with parameter As”. Then
if 7 corresponds to ((a,c),b), it is unclear how to decide which of the two
truncated exponential distributions (that with parameter A\, or that with As)
should be used for the calibrated node in this tree (i.e., the root node) since
this node corresponds to the MRCA of both {a, b} and {a,b, c}. This issue
affects methods that include the tree topology in the set of model parame-
ters which joint posterior distribution is estimated using MCMC techniques
(i.e., BEAST, BEAST2 and Phylobayes). If the tree topology is fixed (as in
mcmctree), then one simply needs to make sure that each set of taxa as
defined in the calibration data points to a single internal node in the tree.

Second, and perhaps more importantly, the joint density pea(t.|6, 7, c(s))
is generally distinct from a product of marginal densities because of the un-
derlying tree structure. In order to illustrate that point, I will use the example
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mentioned in the previous paragraph and consider that 7 corresponds this
time to ((a, b),c). We then have:

Pear(t1, o]0, 7, ¢(s)) = A exp(—Ait2) Ag exp(—Aat1)/Zx, 2, -

The value of the normalization term Zj, », is given by:

oy
Dy ng 1= /0 /0 A1 exp(—Az) A exp(—Aoy)dady = A /(A + Ag).

Taking into account the expression of Zj, 5, in the joint density of the two
node ages, it is clear that none of the two marginal distributions is an expo-
nential (assuming 7 = ((a, b), ¢)).

Another way to tackle the same problem is to consider how to simulate
valid node ages from the multiplicative prior. One way to do so would be to
generate pairs of random draws, noted as (ry,r2), whereby 7 is taken from
an exponential distribution with parameter \; and ry is a realization of an
exponential with parameter ;. Valid trajectories then correspond to all the
trials in which ro > r{. Since invalid trajectories are discarded in a non-
uniform fashion, the two marginal distributions are no longer exponentials
with parameter \; and A;. Also, the probability of all valid trajectories is
Z, ., thereby illustrating the role of “filter” of this normalization factor.

Theorem 3.3 in Rannalal (2016|) states that it is impossible to define joint
densities on the ages of calibrated nodes that are given by the product of user-
defined marginal densities on calibrated nodes. In other words, molecular
dating through the specification of marginal distributions on calibrated node
ages is generally deceiving. Indeed, the marginal densities for these nodes
derived from their joint density are distinct for the marginals defined in the
first place. Note however that the differences between “user-specified” and
“realized” marginal densities do not arise when calibration data involve only
one group of taxa. Also, user-specified and realized marginal densities are the
same whenever the intersection of all calibration time intervals is empty (i.e.,
none of the pairs of time intervals defined by the calibration data overlap).

As was already noted by others (Warnock et all) |2011), analyses where
only calibration data is accounted for (i.e., sequence data is ignored) should
help detect cases where user-defined marginal distributions are noticeably
distinct from their realized marginal distributions. Also, /dos Reis (2016)
recently gave examples where the birth-death model with calibration as im-
plemented in mcmctree leads to peculiar shapes of marginal distributions of

7
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node ages that may be at odds with users’ expectations of what “reasonable”
distributions should look like. In any case, using “topology-free” marginal
distributions on calibration nodes beside a joint prior distribution on all in-
ternal nodes clearly leads to difficulties that most users of popular softwares
implementing these techniques should probably be more aware of.

4.2 Fossilized birth-death process

The fossilized birth-death process was introduced recently in an attempt to
provide a unified tree-based framework that explicitly incorporates fossiliza-
tion events in the process leading to the observed (fossil) data (Stadler} 2010;
Didier et al| 2012; |[Heath et al., 2014). Beside birth and death events, a lin-
eage is here subject to fossilization events. To be more precise, a fossilization
event corresponds here to the creation of a fossil along with its discovery.

The relationship between realizations of the FBD model and the observed
data needs careful examination. When considered as a generative model,
the FDB model defines a forward in time process. As a consequence, FBD
realizations, or trajectories, with valid fossilization events (i.e., events which
positions in the tree do not conflict with the observed fossil data) represent
only a fraction of all the possible trajectories (i.e., including invalid ones).
In other words, fossil data act as a filter on the trajectories generated by the
underlying stochastic process. Importantly, as will be shown in the Results
section, the probability mass of valid trajectories must not be ignored in the
inference.

Consider for instance the same three species a, b and ¢ and fossil data
c(s) indicating that a descendant of the MRCA of a, b and ¢ was subject to
fossilization in the time interval [u,v]. I assume here that the fossilization
event took place along a sampled lineage. The fossilized birth-death process
permits the calculation of pyyy, (7, t1, t2, y|0), where y is the time of fossiliza-
tion. The density of interest with respect to the inference of node ages is
then:

1
(T, 11, t2, 9|0, c(s)) == ZpFBD(Ta t1,t2,9]0)

where

0o 7 VAL
Z=3 / / / Pron (10,1, j, 2/0)dad jdi,
¥ u 0 u
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can be considered as a truncation factor, i.e., a “filter”, that arises because
of constraints due to the fossil data available. This term corresponds to the
probability that the forward process generates a tree that agrees with the
fossil data observed. As indicated in the last equation above, this probability
is a function of the parameter 6.

In lieu and place of p(7,t1,t2,9|0,c(s)) as defined above, Heath et al.
(2014) use pypp (7, t1,t2, y|0) where the value y is chosen uniformly in ¢(s) a
priori and kept fixed throughout the analysis. Because this density ignores
the normalization term Zy, the operators that update the values of the birth,
death and fossilization rate parameters rely on approximate values of the
Metropolis ratios. Moreover, ignoring the uncertainty inherent to fossil data
by fixing the value of y at the start of the analysis potentially leads to over-
estimating the precision of node age estimates.

The fossilized birth-death process defines an improved statistical frame-
work compared to previous approaches since it explicitly models the process
responsible for fossilization. Nonetheless, in a manner similar to that de-
scribed for the “product of marginals” approach, inference under this model,
as described in the literature, relies on an approximate mathematical treat-
ment of the fossil information. Solutions to this problem are presented in the
following.

5 Results

The present study circumvents the issues related to the normalization factors
aforementioned. The proposed technique relies on a straightforward gener-
ative model with two steps. The first generates a ranked tree topology and
node ages according to a tree process (typically, the coalescent or the birth-
death model). The second step consists in applying a filter to the generated
tree whereby trees that do not satisfy the calibration constraints defined by
the fossil data are discarded. The joint density of interest is therefore:

pr(t|0) Pro(7)/Zg if 1(¢, 7, c(s))

0 if 1(¢,7,c(s)) )

1
0,

p(t, 716, ¢(s)) = {

or simply p(t, 7|0, c(s)) = pe(t|0) Pre(7)1(t, 7, ¢(s))/Zy, where 1(t, T, ¢c(s)) =
1 whenever all calibration constraints are “satisfied” and 0 otherwise. A
given calibration constraint (corresponding to calibration datum ¢;(s;) for
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instance) is said to be satisfied when the internal node corresponding to the
MRCA of the set of taxa making up s; has an age that falls within the time
interval defined by ¢;(s;). In cases where multiple calibration constraints
are associated to a single node, a conservative criterion applies. The upper
bound for the age of that node is indeed set to the minimum of the upper
bounds of all calibration intervals associated to this node. In a symmetric
fashion, the lower bound is set to the maximum of the lower bounds of all
corresponding calibration intervals.
Zy is the normalization factor for the density of interest. We have:

Zo=3" [ prlul) P01, () (4)
P

where the sum is over all ranked trees 1, the integral is over all values of inter-
nal node ages u with no reference to calibration constraints and 1(c(s), 1, u)
is the indicator function as defined above.

Ignoring normalization factors altogether is commonplace when using
the Metropolis-Hastings algorithm as their values often cancel out in the
Metropolis ratio. This cancellation applies here indeed when updating the
value of one (or multiple) internal node age(s) while keeping the ordering
of node ages unchanged. However, ignoring these terms when updating 0 is
incorrect. In other words, Zy # Zy in case 6 # €. In such circumstance,
accurate evaluation the Metropolis ratio p(7,t|0', c(s))/p(7, t|0, c(s)) requires
accommodating for the ratio of Zy and Zy .

5.1 A “doubly-intractable” problem

If the tree topology is to be estimated, the calculation of Zy requires sum-
ming over all ranked tree topologies and, for each of these, integrating over
node heights (see Equation . It might be feasible to carry out this calcu-
lation analytically. Indeed, for a given vector of node heights, enumerating
the number of ranked tree topologies that satisfy the calibration constraints
seems doable. The present study follows a different route. The proposed ap-
proach relies on efficient numerical techniques that are relevant to Bayesian
inference using MCMC. Below is a description of one of these techniques,
namely the “exchange algorithm”, introduced in the context of molecular
dating.
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The posterior distribution of model parameters (¢, 7 and ) given genetic
sequences (d,) and calibration data (c(s)) is expressed below:

(710l ofs)) = Lralt TIP(T: 116, ¢(5))p(Blels))

Pr(d,)
_ Pr(dalt, T)p.(8]0) Pro(7)1(2, 7, ¢(s))p(0]c(s))
Z.g Pr(dn) ’
which is rewritten as follows:
_ Pr(dn‘t77—) fT(t797T)
p(77t79‘dnyc($)) - Pr(dn) p(e) Za )

whereby fr(t,0,7) := pr(t|0) Pry(7)1(t, 7, ¢(s)) and 6 is considered as inde-
pendent from ¢(s) by assumption, hence p(6|c(s)) = p(0).

[ assume that neither Zy nor Pr(d,) can be computed. For that reason,
the posterior density of interest can be considered as a doubly-intractable
distribution (Murray et al.,[2012). Updating the value of 6 using a traditional
Metropolis-Hastings (MH) algorithm is not feasible as the calculation of the
MH acceptance ratio « requires the values of both Zy and Zy:

a=1n|PO) plO) 2y q(010")

p(O) pe(tl0) Zy q(@']0)]"
where 6 and 6’ are the current and proposed values of the parameter respec-
tively and ¢(-|-) is the proposal density. One way to circumvent this issue is
to introduce an auxiliary variable, ¢ = {u, 1}, which is a composite param-
eter made of u, a vector of non-negative real numbers that has length n — 1,
i.e., the same as that of ¢, corresponding to the number of internal nodes in
the tree, and 1, the corresponding ranked tree topology. The joint density
of the model parameters then becomes:

()

B Pr(d,|t, )

T 797
p(t,7,0,u,¢|dy, c(s)) = PrL) f2(t,0,7)

p(u, ¢|t7 T, 97 C(‘S))p(e)T

A MH step is used to jointly update the values of # and . The MH acceptance
ratio for this operator is:

=N 0 Ze plu ol 0.cls)  a@d 0wy O
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A solution to our problem lies in the proposal for u, ¢» and 0. It is indeed
through the proposal density for these two parameters that Z, and Z, will
vanish from the acceptance ratio. A suitable proposal density is then as
follows:

g0, 00, u, ) = qu',¢10,60",u,¢)q(0|0, u, 1))
Jr(u', 0

= T ), @

9/
Updated values of 0, u and ¢ are thus proposed by first sampling ¢’ from
q(-|#). The parameter values u and 1’ are then drawn randomly from
fr(+,0',+)/ Zg. In other words, v’ and v’ arise from a valid trajectory gener-
ated under the tree process with calibration constraints. Replacing Equation

into [6] the MH acceptance ratio becomes:

p(") pu(tl0) p(u, 't 7,0 ¢(s))  po(ulf) q(66")
p(0)  pu(t0)  plu,lt,7,0,c(s))  po(w|0') q(0']0)

which does no longer involve either Zy or Zy. One can then use p(u’, ¢'|t, 7,6, c(s)) =
p(u, ¥|t,7,0,c(s)) < 1 for all (" and ¢ that satisfy c(s) so that the MH ac-
ceptance ratio further simplifies to give:

p(¢")  px(tl0)  pr(ulf) _CJ(W’)}
p(6)  po(tl0) po(w]0V) q(010)]

In practice, this operator suffers from low acceptance rate however. Ex-
amination of Equation [0] suggests that a low value of p(u|f), obtained by
generating an unlikely instance of the tree process, will force subsequent
acceptance probabilities for this operator to be small. In other words, the
ratio pr(ul@)/pr(v'|0") is working against p(t|0")/p+(t|0) so that the algo-
rithm tends to get stuck on values of # with low posterior densities. This
issue is particularly acute in the “burn-in” phase of the inference process.

An alternative approach, which outperforms the previous one in practice,
relies on the following joint posterior probability density:

p0) 82D )

azl/\[

|®

azm{ (9)

_ Pr<dn|T> t)

T 79/a
p(7t, 0,0, u,0|dy, c(s)) = Pl fr(u,0',4)

Zel

, (10)

which, when marginalizing over v, u and ¢ gives the posterior density of
interest. Consider that the current instance of the (augmented) model is
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{7,t,0,1,u,0'}, where u and ¢ were obtained by sampling from f.(-,0',-)/Zy
and ' was sampled in ¢(+|@), in accordance with the joint posterior density
above. A new instance of the model is then proposed by swapping 6 and
¢’. The proposed state is thus {7,¢,0' 9, u,0} and the Hastings ratio for
that move is equal to one because the exchange 0 <> 0’ is deterministic.
The acceptance ratio is therefore given by the ratio of the relevant posterior
densities:

p(7,t,0' ¢, u,0|d,, c(s))
p(7,t,0,10,u,0'd,, c(s))
pO) putl0) pluld) a0l)
p(0)  pe(tl0) pe(ul) q(0'0)]

This approach corresponds to the “exchange algorithm” first described in
Murray et al. (2012)). The MH acceptance ratios defined by Equations
and [J] are almost identical. Yet, the fact that the same instance of the
latent variable u is used in both the numerator and denominator of the ratio
pr(u]0)/pr(u|f’) in Equation[I2|makes it easier for this last operator to sample
values of § from the target density.

Equation (and Equation [7)) suggests that the value of u and 1 could
be obtained through exact simulations under the tree model with calibration
constraints. I was unable to design a suitable technique for that step unfor-
tunately. It is nonetheless possible to obtain valid samples from the relevant
distribution using traditional MH. Indeed, for a given value of #, the term
Zy cancels out in the Metropolis ratio and the acceptance ratio for updating
the value of v and v in a MH step is as follows:

6 = 1A pT(U*|0) . Q(%WU*,W) 7
pT(U|9) Q(U*7¢*|ua¢)
where u and 1 refer to the state currently occupied by the chain built in
this MCMC-within-MCMC step of the analysis, while u* and ¢* are the
proposed states. New values of node ages and ranked tree topologies are
proposed using standard operators in statistical phylogenetics. Therefore,
updating values of { does not present any particular difficulty. In practice,
100 MH steps were taken in order to obtain what was considered as a valid
draw from the target distribution.

a = 1A

(11)

= 1A (12)
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5.2 A small example

It is possible to derive an analytical expression for the posterior density of
interest in the special case where only three taxa are analyzed and sequences
of infinite length are considered. Let a, b and ¢ denote the three taxa. Also,
c(s) = {c1({a,b}),c2({a,b,c})} are two calibration intervals. It is short for
“the MRCA of taxa a and b lived at a time that is within the interval [u, v]”
and “the MRCA of a, b and c lived at a time that is within [z,y]”. Because
the sequences are of infinite length and a strict molecular clock with known
substitution rate applies, we have Pr(d,|t,7) = 1(¢,t*, 7, 7*), where t* and 7*
are the maximum likelihood estimates of node ages and ranked tree topology,
and 1(¢,t*, 7,7") =1 for t = t* and 7 = 7%, 1(¢,t*, 7, 7*) = 0 otherwise. Note
also that Pr(d,) = 1. The posterior density of interest takes the following
expression:

t 0)p(0)/ K ift=t"and 7 = 7"
p(T,t, e‘dn, C(S)) —_ p(T7 ‘6(8)7 )p( )/ 1 . an T T )
0 otherwise
K is a normalization factor (distinct from Zy) that ensures that p(7,t, 0|d,,, c(s))
as defined above is proper. Its expression is given below:

K= / (10, ¢(5))p(6)d6. (13)

The expression for p(7*,t*|6, c(s)) is given by Equation [3| I assume that the
tree process is a critical birth-death model (i.e., birth and death rates are
equal) with parameter 6. The joint density of node ages under this model is
as follows (see Equation 3.19 in (Stadler} 2008))):

3! 0

c(t,ta]0,n = 3) = .
prlly alfn = 3) = S gy

Only one ranked tree topology (7*) has non-zero probability. More precisely
Pri(7)1(t*,7,¢(s)) = 1 when 7 = 7% and Pr.(7)1(t*, 7, ¢(s)) = 0 otherwise.
In fact, if 7 # 7%, then Pry(7)1(¢, 7, ¢(s)) = 0 for all ¢ (see Figure[l]). Consid-
ering the special case where v < x (i.e., the two calibration intervals do not
overlap), the expression for p(7,t|c(s),d) is then given by Equation [3[ with
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Zyg as follows:

0
7, —
b / / 1+ th 1 + 0t,)?2 7 dtadty

3(v —w) ln(ZZii)

Puv+0(u+v)+ 1

Taking p(f) o 1, the posterior density for € is then:

p0ldcls)) = Pt = (1

where Equation [13| gives:

Zy
When ignoring Zy, i.e., using the “non-normalized” approach that is com-
monly implemented, the posterior density of 6 is instead:
pr(t*|0,n = 3)
K*

p*(Oldn, c(s)) = (15)

where
K* = / pe(£7]6,n = 3)d0.
0

Values of K and K* were computed for different t*, u, v, x and y using nu-
merical integration routines available in Maple 17 (http://www.maplesoft.
com/).

Posterior distributions of 6 were derived in the particular case where
1 =095 2=09,y=10,u=0.0 and v = 0.8. Figure gives the posterior
distributions of 6 for t; = 0.1 (left), t5 = 0.5 (center) and t5 = 0.8 (right).
The normalized (in red, Equation and non-normalized (in green, Equation
posterior densities tend to agree for older values of ¢5. Nonetheless, the
two distributions are distinct. Their modes are different, as well as their
expectations. The “correct” expectations are indeed 1.6, 2.0 and 2.1 times
that of the “incorrect” ones for t5 = 0.1,0.5 and 0.8 respectively.

Figure [3] shows the impact of the width of the calibration time interval
for the clade {a, b} on the marginal posterior of #. While that width does not
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VINVAAYAA

Figure 1: A toy example with three taxa. 7,  and 73 are the three
ranked tree topologies. 7, corresponds to the maximum likelihood ranked
tree topology (7*). t; and ty are node ages. They also correspond to the
maximum likelihood estimates of these parameters (i.e., if 7 = 7%, then
t =t and t5 = t3). w and v are the lower and upper bounds for the
calibration data c({a,b}). = and y are the lower and upper bounds for the
calibration data c({a,b,c}). The black disks and open circles indicate the
internal nodes to which ¢({a,b}) and c¢({a,b,c}) apply to respectively. For
7, and T3, the age of the MRCA for a and b (respectively a, b and ¢) cannot
fall within its calibration interval, provided the age of the MRCA of a, b
and ¢ (respectively a and b) is inside its calibration interval. Therefore,
PI‘»I‘(TQ)]_(tl,tQ,TQ, ( )) =0 and PI‘ ( )1(t1,t2,7’3,€(8)) = 0 for all t1 and to.
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Figure 2: Impact of node ages on the posterior distributions of ¢
using correct (in red) and incorrect (in green) calculations. In this
example, t7 = 0.95, x = 0.9, y = 1.0, v = 0.0 and v = 0.8. The values of ¢}
are given on top of each plot. In green: Zj is ignored (see Equation . In
red: the density accounts for Z (see Equation . Values of 6 are in the
[0, 50] interval.

affect the non-normalized densities (in green), the normalized ones (in red)
behave differently. When calibration data is very precise (e.g., u = 0.45 and
v = 0.55), the posterior distribution of the birth-death parameter is virtually
uniform. This flattening of the posterior distribution is expected. Indeed,
among all the possible birth-death trees, only considers those where t, falls
within [u,v] agree with the calibration data. Hence, the data-generating
process is heavily censored here and only a very small fraction of all possi-
ble birth-death trees are observable when the time interval [u,v] is narrow,
thereby decreasing the signal conveyed by the data about 6.

6 The origins of flowering plants

Smith et al.| (2010)) conducted a thorough analysis of the timing of speciation
in land plants. They used a nucleotide sequence data set that include 154
taxa and three genes (18S, atpB and rbcL) totaling 4,533 bp. The fossil data
available provide calibration time intervals for 33 sets of taxa. The authors
performed two analyses: one with a maximum age for the origin of eudicots
set to 125 Mya and another without this particular constraint. Because
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u=0.1,v=0.7 u=0.3,v=0.6 u = 0.45, v = 0.55

0.18 0.18 0.18

% 0.16 0.16 0.16
é) 0.14 0.14 0.14
y-g 0.1 0.12 0.1
— 0.10 0.10 0.10
-g 0.08 0.08 0.08
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8 00—1\ 0.04 0.04
Qq 0.02 ~ 0.02 | 0.0:
0 0 0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Figure 3: Impact of the precision of calibration data on the poste-
rior distributions of # using correct (in red) and incorrect (in green)
calculations. See caption of Figure [2] The values of u and v, defining the
calibration time interval for the age of clade {a, b} are given above each plot.

geographical and morphological evidence suggest an earlier origin for that
clade, this datum was discarded and the analysis conducted here focuses on
the remaining 32 calibration intervals.

Smith et al.| (2010) used the “product of marginals” approach imple-
mented in BEAST 1.4.7. A log-normal probability density was used to model
the marginal distribution corresponding to each fossil. Each distribution was
offset by a value corresponding to the minimum age of each clade (see Table
S2 in their article). These values were used in my own analysis to define
the lower bounds for the ages of the same clades. The corresponding upper
bounds are less straightforward to define as fossil data does not provide pre-
cise information about them. A preliminary analysis using the 95% quantiles
of every lognormal distribution with mean and standard deviation as deter-
mined by the authors (given in their Table S2) revealed that the timing of
some events (e.g., the origins of Eudicots) was largely defined by this soft
upper bound (i.e., increasing the standard deviation of the lognormal distri-
butions also increased the median posterior ages). I thus elected to use a
less stringent strategy whereby all calibrated nodes were constrained to be
younger than the upper bound of the oldest calibration (corresponding to
the stem age of the clade Tracheophyta). As in the preliminary analysis, this
upper bound was given by the 95% quantile of the corresponding lognormal,
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giving an age of 452 Mya.

The sequence alignment resulting from the concatenation of the three
genes was analyzed under the HKYY nucleotide substitution model (Hasegawa
et all |1985) and the FreeRate model (Soubrier et al., 2012)), which is a
non-parametric mixture model (with three classes here) that accommodates
for the heterogeneity of rates across sites. Truncated normals were used to
model the distributions of substitution rates on the edges of the phylogeny.
Let w; := r;c be the average substitution rate on edge i. The parameter ¢
corresponds to the “clock rate” of substitution which is common to all edges,
while r; corresponds to a multiplicative factor that is specific to edge . The
value of w; was assumed to be a random draw from a normal distribution
truncated to positive values, with mode set to ¢ and standard deviation cv.
Therefore, rates are not auto-correlated a priori under this model, following
Smith et al.|(2010) analysis. The parameter v measures here the deviation
from the strict clock assumption. Its posterior distribution was estimated
from the data. Lastly, the tree process was considered to be a birth-death
model with birth and death parameters A and pu. Complete sampling of
lineages was assumed here since the fraction of sampled lineages can not be
estimated whenever the birth and death of lineages are considered as two
separate parameters (Stadler] 2009).

The software PhyTime (Guindon, 2013)) was used to draw correlated sam-
ples from the joint posterior distribution of model parameters using MCMC
techniques. A series of standard operators were implemented that update
the model parameters (including the tree topology) using the Metropolis-
Hastings algorithm. We performed two series of experiments. In the first,
five analyses were run separately using different random seeds to initiate the
analysis. The values of A and p were updated using the exchange algorithm.
The second series consisted in five separate analyses where the same two
parameters were updated using the traditional approach, i.e., ignoring the
normalization factor Z in Equation [ Tuning parameters were adjusted
during the first 10,000 iterations of the MCMC algorithm — lasting a few
hours — so that the frequency of acceptance for each operator was brought
to 0.234 (following Roberts et al., |1997). Parameter values, including the
phylogeny, were recorded every 200 iterations. Each analysis was stopped af-
ter ten days of computation. The analysis of the trace files produced showed
that the effective sample size for each parameter was generally well beyond
200. Also, comparison of the five replicates for each of the two methods in-
dicated that the sampling had systematically converged to the same ranges
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of parameter values.

The analysis that relied on 32 fossils did not reveal any substantial dif-
ference between node ages estimated with and without Zy. The 95% poste-
rior credibility intervals for the timing of diversification of angiosperms were
[244;307] and [247;304] Mya with and without Zy respectively. Similarly,
the origin of eudicots was estimated to have taken place in [184;240] and
[189;243] Mya with these two approaches. These estimates are older than
those reported in Smith et al.| (2010), although the credibility intervals for
the origins of angiosperms reported here overlap with that reported in their
study. Also, when using BEAST 1.7.4 in the same conditions as in [Smith
et al.| (2010), increasing the standard deviation for every calibration distri-
bution from 0.5 to 10 except for that of the oldest fossil leads to node age
estimates similar to those obtained here.

In order to further investigate the impact of the amount of fossil data
available, I randomly picked 16 out of the 32 fossil data points available and
ran five independent repeats of the analyses with and without Zy in conditions
identical to those used before. The time estimates obtained with the exchange
algorithm are noticeably younger than those returned by the method that
ignores the normalization factor. Figure [4] shows the posterior distributions
and node ages corresponding to the origins of eudicots, angiosperms and
land plants. The 95% credibility intervals for these three events are [159; 225],
[221; 303] and [428; 990] Mya respectively when using the exchange algorithm.
Using the standard approach, the equivalent intervals are [177; 337], [240; 448]
and [475;1,367] Mya. Substantial differences in the posterior distribution of
the birth parameter are also observed: the 95% credibility intervals with and
without Zp are [0.006;0.014] and [0.005; 0.008] respectively. Conversely, the
posterior distributions of the death parameter do not show any noticeable
difference between the two approaches.

In conclusion, the analysis using the full set of 32 fossils does not reveal
any substantial difference between node ages estimates using the technique
introduced in this study compared to the one that ignores the normalization
factor. Yet, the analysis based on a reduced number of fossils gives substan-
tial differences in age and tree process estimates. In particular, using the
naive approach induces older node ages compared to the corrected estimates.
Inference of the birth parameter is also impacted with an overly precise and
biased posterior distribution obtained with the incorrect approach.
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Figure 4: Impact of ignoring Zy on the inferred timing of speciation
in lands plants. Smith et al. (2010) data set was analyzed with a sub-
sample of 16 fossils (randomly sampled in the full set of 32 fossils). The timing
of diversification of land plants, angiosperms and eudicots were estimated
using the “traditional” approach that ignores Zy (in blue) and the exchange
algorithm that accommodates for this factor (in pink).

7 Discussion

Hierarchical Bayesian modeling provides a suitable framework for inferring
the timing of evolutionary events from the joint analysis of molecular and
fossil data. On the first level of the hierarchy, molecular data convey evi-
dence about the evolutionary history of sampled species. This history forms
the basis of the second level of the hierarchy whereby fossil data help dis-
entangling times and rates of evolution. Although this construction is fairly
standard in statistics, accurate and precise Bayesian estimation requires cor-
rect mathematical handling of all aspects of the model.

The top level of the hierarchy, corresponding to the probability of the
sequence alignment given a phylogenetic tree, suffers no ambiguity. The
lower level, however, is more difficult to apprehend. Although the “product
of marginals” approach is very popular and fairly straightforward at first
sight, it has conceptual issues. As already pointed out in Rannalal (2016)
and elsewhere (see e.g.,|Warnock et al., [2011)), the distributions of node ages
defined by the tree process with calibration constraints generally conflict with
the user-defined distributions of ages for specific groups of species, thereby
limiting the relevance of the latter. This problem has no general solution.
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Moreover, this approach is marred with further, potentially more serious
issues. Indeed, simply taking the product of marginal densities for calibrated
nodes amounts to ignoring the probability mass (Zy) of all valid time trees
given the fossil data available. Because this probability is a function of the
parameters governing the tree process, it should not be overlooked when up-
dating the values of these particular parameters using a Metropolis-Hastings
algorithm. The same issue arises with the MCMC-based inference under
the “fossilized birth-death” model in case the probability mass of all tree
scenarios compatible with the observed fossil data is ignored.

The present study shows that accounting for this probability is a necessity.
It also demonstrates that doing so is feasible in practice, using a method
that does not depend on the specifics of the tree process. The distribution
of node ages obtained from any tree process with age constraints on some
nodes belongs to the family of doubly-intractable distributions. Murray et
al. (2012) recently described an original MCMC approach —the so-called
“exchange algorithm”— that generates valid random draws from this type of
distribution. This algorithm is relevant in the context of molecular dating. It
involves a modest computational overhead compared to the “naive” approach
and is straightforward to implement.

The exchange algorithm relies on simulating the tree process conditional
on time constraints coming from fossil data. In the present study, this task
involved a series of Metropolis-Hastings steps updating different components
of the model parameters. This approach is suitable from a computational per-
spective. Nonetheless, direct simulation from the generating process would
be preferable. Although generating birth-death or coalescent trees is fairly
straightforward, incorporating time constraints for some clades in these sim-
ulations is challenging. Efficiently generating random trees conditional on
calibration constraints would also help testing the correctness of the imple-
mentation of Bayesian samplers (through the comparison of sampled and
simulated tree distributions, ignoring sequence data). Furthermore, such a
generator would also help assessing the impact of calibration data on diver-
gence time estimates through simulations.

Finally, ignoring the normalization term Zy potentially leads to inaccurate
estimation of the parameters governing the tree process. Therefore, this issue
not only affects the divergence time estimates of particular groups of species,
it also impedes our understanding of the dynamics of speciation and death of
lineages. Time trees provide valuable data to study these phenomenons. Yet,
the processes involved are complex and some trends in the available data are
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not well understood (see e.g., Moen and Morlon, 2014)). It is thus paramount
that the mathematical treatment of all aspects of molecular dating techniques
suffers no flaw.
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