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Figure	3.	Connectedness	of	a	holey	landscape.	(A)	The	size	of	the	largest	connected	component	in	a	
random	30x30x30	lattice	relative	to	the	lattice	as	a	function	of	𝑃,	the	probability	that	a	lattice	cell	is	1	
rather	than	0.	The	critical	probability	𝑃O = 0.31,	below	which	the	largest	component	is	very	small,	is	
represented	by	the	dashed	line.	The	solid	line	shows	average	value	for	10	random	lattices,	narrow	
shaded	area	shows	a	bootstrapped	99%	confidence	interval.	(B)	a	cross	section	of	a	random	30x30x30	
lattice	with	P=0.2.		(C)	a	cross	section	of	a	random	30x30x30	lattice	with	P=0.4.	Dark	color	shows	the	
largest	component	and	light	color	shows	all	other	viable	components.	The	largest	component	in	C	
constitutes	33%	of	the	lattice,	whereas	the	largest	component	in	B,	with	P=0.2,	consists	of	only	0.2%	of	
the	lattice	and	therefore	isn’t	seen	in	the	figure.	See	online	supplementary	material	
(https://github.com/yoavram/UnderTheRug)	for	source	code.	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 3, 2017. ; https://doi.org/10.1101/112177doi: bioRxiv preprint 



Evolution	on	rugged	adaptive	landscapes	/	Obolski,	Ram,	Hadany	 	 	 										15-Feb-17	

	

	 12	

The	holey	adaptive	landscapes	theory	explains	how	most	fit	genotypes	could	appear	and	reach	high	
frequencies	due	to	mutation	and	natural	selection	under	several	conditions:	First,	the	observed	values	
of	𝑃	should	be	higher	than	the	critical	value,	𝑃O,	a	condition	that	is	difficult	to	test	and	that	might	not	be	
satisfied	in	many	scenarios.	Second,	if	ridges	connecting	high	fitness	genotypes	are	"narrow"	enough,	
evolutionary	trajectories	between	these	genotypes	can	be	very	rare,	and	additional	evolutionary	
processes	are	likely	needed	to	explain	adaptation.	This	relates	to	the	more	general	problem	of	the	
characterization	of	the	evolutionary	accessibility	of	adaptive	landscapes	(i.e.	existence	paths	in	genotype	
space	in	which	each	mutation	increases	the	fitness)	[24-27].	So	the	question	remains	–	how	do	
populations	reach	evolutionarily	inaccessible	adaptive	peaks?	

Models	of	evolution	on	adaptive	landscapes	
The	development	of	adaptive	landscape	models	inevitably	raised	the	question	of	how	populations	cross	
adaptive	valleys:	if	different	mutations	are	separately	deleterious	but	jointly	advantageous,	how	can	a	
population	evolve	from	one	adaptive	allele	combination,	or	peak,	to	a	fitter	one,	crossing	a	less	fit	
valley?	A	peak	shift	process	can	be	described	as	consisting	of	two	stages:	the	emergence	of	a	genotype	
on	the	higher	peak,	and	the	spread	and	fixation	of	this	genotype	in	the	population	[28].	Facilitating	each	
of	these	stages	usually	requires	conflicting	evolutionary	conditions.		

Intermediate	genotypes	are	usually	disfavored	by	natural	selection,	because	these	genotypes	are	
deleterious	or	neutral	compared	to	the	common	genotypes.	Since	the	emergence	of	a	genotype	on	a	
higher	adaptive	peak	is	usually	a	result	of	mutation	or	recombination	in	intermediate	genotypes,	large	
numbers	of	intermediate	genotypes	will	hasten	the	emergence	of	the	adapted	genotype.	Therefore,	
strong	selection	will	tend	to	postpone	the	appearance	of	the	adapted	genotype.	However,	high	
mutation	rates	(i.e.,	the	population-wide	rates	of	mutation)	may	allow	even	few	intermediate	genotypes	
to	produce	the	adaptive	change	in	a	process	called	stochastic	tunneling	[29-31].		

In	contrast,	weak	selection	can	help	the	emergence	of	the	adaptive	genotype	as	it	allows	a	larger	
number	of	intermediate	genotypes	to	survive;	however,	with	weak	selection,	the	advantage	of	the	
adaptive	genotype	is	small	and	it	is	therefore	more	likely	to	go	extinct	due	to	random	drift.	Due	to	these	
conflicting	conditions	for	each	stage,	the	expected	time	for	a	peak	shift	can	be	very	long,	especially	in	
small	populations	where	the	adaptive	advantage	of	the	higher	peak	is	small,	or	in	cases	where	the	
adaptive	disadvantage	of	intermediate	genotypes	is	large	[32-34].	

Wright	tried	to	solve	this	problem,	which	he	was	also	responsible	for	posing,	using	the	shifting	balance	
theory	of	evolution	(SBT)	in	1931	[1].	Wright	proposed	that	in	a	population	divided	to	small	
subpopulations,	each	subpopulation	is	subject	to	random	genetic	drift,	and	may	therefore	stochastically	
descend	from	an	adaptive	peak	to	a	valley.	When	the	population	is	found	in	the	valley,	mutation	or	
recombination	can	produce	new,	adaptive	genotypes	which	will	be	favored	by	selection,	effectively	
driving	the	subpopulation	up	to	a	nearby,	possibly	higher,	adaptive	peak.	Thereupon	the	adapted	
subpopulation	can	send	immigrants	to	“takeover”	other	subpopulations.	The	first	three	phases	(drift,	
mutation,	and	selection)	are	illustrated	in	Figure	4,	where	the	horizontal	plane	represents	genotypes,	
and	the	height	and	color	represent	fitness.	We	show	how	a	small	population	from	a	local	peak	can	
produce	maladapted	mutants	via	mutation	(Figure	4A);	these	mutants	increase	in	frequency	by	drift,	
and	create	the	fittest	genotype,	found	on	the	global	maximum,	by	recombination	or	mutation	(Figure	
4B);	the	fittest	genotype	can	reproduce	and	increase	in	frequency	(Figure	4C),	outcompeting	other	
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genotypes	due	to	its	superior	fitness	(Figure	4D).	The	time	scales	of	these	processes	are	represented	by	
the	clocks	on	Figure	4.	Whereas	selection	driven	processes	are	fast	(Figure	4B-D),	mutation	and	drift	
driven	processes	are	typically	much	slower	(Figure	4A)	[32-34].	

	

	

Figure	4.	Illustration	of	peak	shift	dynamics.	Genotypes	are	given	by	the	x	and	y	axes,	the	fitness	of	
each	genotype	is	represented	by	height	and	color,	and	individuals	are	marked	by	orange	circles.	Clocks	
loosely	represent	the	duration	of	evolutionary	processes.	(A)	The	initial	population	is	distributed	around	
a	local	adaptive	peak,	and	maladapted	mutants	appear	by	mutation	(arrows)	and	can	increase	in	
frequency	by	random	genetic	drift.	(B)	Maladapted	individuals	at	the	base	of	the	global	adaptive	peak	
can	produce	adapted	individuals	by	mutation	and/or	recombination	(arrows).	(C)	Adapted	genotypes	fix	
and	proliferate	due	to	natural	selection	and	(D)	eventually	take	over	the	population.	
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We	demonstrate	such	a	peak	shift	process	using	a	relatively	simple	landscape	with	epistasis	between	
just	one	pair	of	loci:	allele	combinations	ab,	aB,	Ab,	and	AB	contribute	1,	1-s,	1-s,	and	1+sH	to	the	
fitness;	25	additional	background	loci	have	multiplicative	effects,	where	each	deleterious	allele	reduces	
fitness	by	1-s.	Therefore,	ab	and	AB	are	local	and	global	adaptive	peaks,	respectively.	We	simulate	peak	
shifts	by	initiating	a	population	on	the	lower	peak	ab	and	letting	it	evolve	towards	the	higher	peak	via	
mutation,	drift	and	selection	(Figure	5A).	The	peak	shift	process	is	divided	into	three	distinct	time	
periods:	(i)	the	appearance	of	a	double	mutant	-	an	individual	with	AB	genotype	(Figure	5A	blue)	-	driven	
by	drift	and	mutation,	and	therefore	taking	a	long	time	(Figure	5C)		[35,	36];	(ii)	the	possible	extinction	of	
the	double	mutant	while	it	is	rare	(Figure	5B)	due	to	random	genetic	drift	-	this	can	be	usually	modeled	
as	a	branching	process	[37];	and,	if	the	double	mutant	avoided	extinction	(iii)	the	time	to	fixation	of	the	
double	mutant	due	to	natural	selection,	which	is	much	shorter	than	the	appearance	time	(Figure	5D)	
[38].	The	data	used	to	create	Figure	5C-D	was	taken	from	[39]	(see	source	code	and	details	in	the	online	
supplementary	material	(https://github.com/yoavram/UnderTheRug).	
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Figure	5.	Peak	shift	simulations	on	a	rugged	adaptive	landscape.	Populations	started	with	genotype	ab	
and	fitness	1	and	evolved	to	genotype	AB	with	fitness	1+sH	by	crossing	the	adaptive	valley	of	genotypes	
aB	and	Ab	with	fitness	1-s.	(A)	Frequency	of	different	genotypes	during	the	final	500	generations	of	an	
adaptive	peak	shift.	Colors	denote	the	genotype	at	the	two	loci	of	interest	(ab	in	red;	aB	and	Ab	
together	in	green;	AB	in	blue);	line	styles	denote	the	number	of	deleterious	mutations	in	the	background	
(solid:	zero;	dashed:	one;	dotted:	two).	The	frequency	of	the	intermediate	genotypes	(green)	increases	
around	generation	7778050	due	to	drift,	which	leads	to	the	appearance	via	mutation	of	the	double	
mutant	(blue)	around	generation	7778090.	The	double	mutant	avoid	extinction	and	then	increases	in	
frequency	due	to	selection,	eventually	becoming	the	dominant	genotype	(around	generation	7778220).	
(B)	Frequency	of	fixations	(blue)	and	extinctions	(red)	of	the	double	mutant	after	first	appearing.	(C)	The	
distribution	of	the	time	until	the	double	mutant	first	appears	in	the	population	in	simulations	ending	in	
fixation	(blue)	or	extinction	(red)	is	roughly	exponential	(note	the	log	scale).	(D)	The	distribution	of	the	
time	until	fixation	(blue)	or	extinction	(red)	of	the	double	mutant	after	it	appears.	Parameters:	106	
individuals;	selection	coefficients	s=0.05,	sH=0.1;	mutation	rate	at	focal	loci	8 ∙ 10TU	mutations	per	base-
pair	per	generation;	mutation	rate	at	background	loci	4 ∙ 10TK.	In	total,	3,246	samples	were	simulated,	
with	578	fixations	and	2,668	extinctions.	See	online	supplementary	material	
(https://github.com/yoavram/UnderTheRug)	for	simulation	and	analysis	code.	 	
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Recently,	Bitbol	and	Schwab	generalized	the	SBT.	Their	analysis	showed	that	subdivision	of	a	population	
into	smaller	subpopulations,	connected	by	migration,	is	enough	to	accelerate	the	peak	shift	process	
under	certain	parameter	ranges	[40].	In	contrast	to	SBT,	they	do	not	require	that	the	volume	of	
migration	from	subpopulations	will	depend	on	their	inhabitants'	fitness.	Despite	this	generalization	of	
SBT,	it	is	only	relevant	under	specific	biological	constraints	(e.g.	subdivided	population,	sequential	
appearance	of	mutants,	etc.),	which	might	not	apply	to	a	vast	range	of	biological	scenarios.	Some	critics	
even	hold	that	peak	shifts	under	the	SBT	framework	have	not	played	a	significant	role	in	evolution	[41,	
42],	although	evidence	to	the	contrary	also	exists	[43,	44].	As	a	reaction	to	SBT's	inability	to	account	for	
peak	shifts	under	diverse	circumstances,	a	plethora	of	theoretical	studies	have	offered	various	
environmental	conditions,	biological	mechanisms,	and	evolutionary	forces	that	could	facilitate	
adaptation	on	rugged	adaptive	landscapes.	

Michael	Whitlock	has	suggested	a	peak	shift	process	complementary	to	Wright's	SBT:	variance	induced	
phenotypic	shift	(VIPS)	[45].	In	the	first	stage	of	SBT,	small	populations	are	assumed	to	have	decreased	
genetic	variance	in	comparison	to	larger	populations	(which	effectively	increases	drift	and	allows	
intermediate	maladapted	genotypes	to	appear	and	survive).	However,	as	Whitlock	noticed,	the	amount	
of	variance	in	small	populations	is	itself	a	random	variable,	which	could	have	high	variance.	Therefore,	
some	of	the	populations	are	bound	to	have	higher	variance	then	the	expected	value	Wright	assumed.	
Whitlock	showed	(based	on	a	model	and	an	observation	made	in	[46])	that	the	mean	adaptive	
landscapes	of	populations	with	high	variance	could	be	substantially	different	from	the	adaptive	
landscapes	of	single	individuals.	Specifically,	he	proved	that	increased	variance	could	lead	the	mean	
fitness	of	a	population	to	be	a	unimodal	distribution	around	the	individual's	fitness	maximum.	Thus,	
selection	could	deterministically	lead	the	population	across	the	fitness	valley.	Notably,	Whitlock	has	also	
demonstrated	that	rugged	individual	fitness	maps	can	be	translated	into	unimodal	mean	adaptive	
landscapes	even	with	low	variance,	if	a	small	environmental	perturbation	changes	the	distribution	of		
the	population	[47].	

Other	researchers	have	tried	to	characterize	possible	biological	scenarios	reconciling	the	seemingly	
contrasting	conditions	needed	for	a	peak	shift.	Wright	conceived	that	changes	in	environmental	
conditions	could	remodel	the	adaptive	landscape	in	ways	that	may	aid	a	peak	shift	[2,	48].	More	
specifically,	Hadany	has	showed	that	peak	shifts	can	be	much	more	common	in	subpopulations	that	
experience	different	intensities	of	selection	and	are	interconnected	by	migration	[49]:	The	adaptive	
genotype	could	emerge	in	the	population	experiencing	weak	selection,	due	to	large	number	of	
intermediate	genotypes,	then	migrate	to	the	second	population,	and	spread	there	due	to	the	harsher	
selection	regime.		

Ram	and	Hadany	suggested	that	a	mutator	allele	that	increases	the	mutation	rate	specifically	in	low-
fitness	individuals,	found	below	the	adaptive	peaks,	can	significantly	decrease	the	time	for	an	adaptive	
peak	shift.	Furthermore,	such	an	allele	will	not	jeopardize	the	fitness	of	the	population	after	adaptation	
is	achieved,	which	is	the	main	disadvantage	of	standard	mutator	alleles	[35].	Similarly,	Peak	shifts	are	
facilitated	when	there	is	a	negative	association	between	fitness	and	the	generation	of	variation:	
recombination	[50],	dispersal	[51],	or	viral	coinfection	[52].	

Cooperative	behavior	has	also	been	recently	examined	as	a	factor	that	might	accelerate	crossing	of	
adaptive	valleys,	in	contrast	to	previous	research,	focusing	mostly	on	biological	mechanisms	and	
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environmental	constraints.	In	a	division	of	labor	type	of	cooperation,	wherein	individuals	contribute	
unique	products	necessary	for	the	population	survival,	a	mutant	capable	of	producing	several	products	
was	found	to	rapidly	arise	as	a	response	to	“cheaters”	that	do	not	produce	any	goods	[53,	54].	Another	
study	used	a	public	goods	cooperative	model,	where	individuals	contribute	a	portion	of	their	fitness	and	
redistribute	it	among	all	group	members.	Such	cooperative	behavior	effectively	“flattens”	the	adaptive	
landscape	by	redistributing	fitness	from	the	fit	to	the	unfit,	thereby	reducing	selection	against	
intermediate	genotypes.	This	accelerates	the	emergence	of	genotypes	at	the	adaptive	peak,	although	it	
may	also	hinder	their	spread	[55].		

Other	notable	studies	applied	and	extended	the	concept	of	adaptive	landscapes	without	directly	
referring	to	peak	shifts:	Bak	et	al.	[56]	used	an	extension	of	the	NK	model	to	study	the	coevolution	of	
community	of	mutually	dependent	species.	This	extension	is	called	the	NKC	model	[57],	as	the	fitness	of	
a	species	is	a	function	of	N	of	its	genes	and	C	genes	of	other	species.	They	showed	that	the	model	can	
result	in	two	distinct	scenarios,	depending	on	the	relationship	between	C	and	N.	In	the	first	scenario,	
every	species	finds	a	local	adaptive	peak	and	evolution	essentially	stops.	In	the	second	scenario,	only	
some	species	are	at	a	local	peak.	Other	species	are	evolving	towards	a	peak,	but	in	doing	so,	they	change	
the	landscape,	effectively	pushing	already	adapted	species	off	their	peaks.	In	this	scenario,	therefore,	
evolution	can	proceed,	perhaps	indefinitely.	

Kryazhimskiy	et	al.	[58]	developed	a	general	theory	to	analyze	adaptation	on	different	types	of	adaptive	
landscapes,	 including	 the	 HoC	 landscape	 and	 smooth	 landscapes	 such	 as	 the	 Stairway	 to	 Heaven	
landscape,	so	called	because	the	distribution	of	the	fitness	effects	of	new	mutations	is	the	same	for	all	
genotypes,	 allowing	 adaptation	 to	 proceed	 indefinitely.	 They	 found	 that	 adaptation	 dynamics	 can	 be	
characterized	by	the	expected	fixation	probability	and	fitness	increment	of	new	mutations.	They	suggest	
a	 classification	 of	 adaptive	 landscapes	 per	 the	 emerging	 adaptive	 dynamics	 and	 demonstrate	 how	
landscapes	can	then	be	inferred	from	fitness	data.			

Using	simulations	with	in	the	Avida	digital	evolution	platform	[59],	Clune	et	al.	found	that	on	smooth	
landscapes	natural	selection	can	optimize	mutation	rates	with	respect	to	fitness,	but	not	on	rugged	
landscapes	with	“wide”	adaptive	valleys.	The	mutation	rate	must	balance	between	the	ability	to	adapt,	
increased	by	the	rate	of	beneficial	mutation,	and	the	ability	to	remain	adapted,	decreased	by	the	rate	of	
deleterious	mutation	[60].	The	authors	show	that	the	reduced	likelihood	of	beneficial	mutations	on	
rugged	landscapes	tips	this	balance	towards	elimination	of	deleterious	mutations,	thus	limiting	
adaptation	in	the	long	term.		

Empirical	adaptive	landscapes	
Observations	of	epistatic	gene	interactions	in	a	limited	number	of	loci	and	alleles	have	been	described	
as	early	as	the	beginning	of	the	20th	century	[61].	However,	the	technological	leaps	in	molecular	biology	
methods	towards	the	end	of	the	20th	century	and	the	beginning	of	the	21st	century,	most	notably	the	
genomic	revolution	[62,	63],	have	significantly	changed	the	research	of	adaptive	landscapes.	For	the	first	
time,	large	empirical	adaptive	landscapes	could	be	comprehensively	characterized	and	studied.	

One	of	the	earliest	studies	characterizing	adaptive	landscapes	directly	from	known	mutations	(as	
opposed	to	indirect	measures	of	mutations,	relying	on	supposed	relationships	between	a	number	of	
mutations	and	fitness,	inbreeding	coefficients,	etc.	[64-67])		was	performed	by	de	Visser	et	al.	in	1997	
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[68].	They	studied	synergistic	epistasis	between	mutations	in	the	fungus	Aspergillus	niger	in	an	attempt	
to	test	the	claim	that	sexual	reproduction	is	advantageous	because	it	breaks	combinations	of	deleterious	
mutations	[69,	70].	Using	a	set	of	mutations	in	eight	genes,	conferring	drug	resistance,	auxotrophy,	and	
spore	color,	they	measured	the	fitness	of	the	fungus	with	all	256	allele	combinations.	Although	not	all	
mutants	were	observed	(only	186	of	256	possible	allele	combinations	were	viable),	the	sampling	was	
sufficient	to	create	an	adaptive	landscape.	Interestingly,	the	fitness	was	found	to	be	overall	log-additive	
in	the	number	of	deleterious	mutations,	but	this	was	the	result	of	synergistic	and	antagonistic	effects	of	
different	mutations	cancelling	each	other.	Generalizing	conclusions	from	such	results	is	precarious.	The	
lack	of	epistasis	in	a	small	set	of	loci	is	not	necessarily	indicative	of	the	interactions	between	other	loci.	
Moreover,	sets	of	mutations	within	the	same	gene	may	have	different	properties	compared	to	sets	of	
mutations	across	the	genome.	Furthermore,	mutations	in	this	study	were	only	defined	by	their	
phenotype.	Although	changes	in	phenotype	are	consistent	with	discrepancies	from	wild	type	alleles,	
different	mutations	leading	to	the	same	phenotype	could	have	had	different	effects	on	mutants'	fitness.	
This	confounding	effect	could	not	have	been	regarded	without	genetically	characterizing	each	mutant.	
Many	other	early	studies	[64-67]	characterized	empirical	adaptive	landscapes	but	were	constrained	by	
the	number	of	mutants	they	could	examine	and	the	lack	of	certainty	regarding	the	mutants’	genotypes.	
Such	caveats	emphasize	the	difficulty	of	constructing	general	and	reliable	empirical	adaptive	landscapes,	
especially	before	the	era	of	high-throughput	genetic	data.		

One	way	of	reducing	the	complexity	of	estimating	adaptive	landscapes,	but	retaining	high	
dimensionality,	is	focusing	on	single	macromolecules	rather	than	entire	organisms.	Fitness	can	then	be	
defined	as	a	molecule's	performance	of	a	certain	function,	serving	as	a	proxy	for	the	fitness	of	the	
organism	that	produces	this	molecule.	This	method	has	been	applied	on	various	protein	landscapes	[71-
78]	since	many	variations	of	them	can	be	produced	and	their	fitness	measured	in	bulk.	For	example,	Wu	
et	al.	[72]	have	characterized	the	adaptive	landscape	of	an	immunoglobulin-binding	protein	expressed	in	
Streptococcal	bacteria.	They	constructed	all	20	amino	acid	variants	in	four	sites	of	the	protein	(leading	
to	204=160,000	variants)	and	measured	the	stability	of	the	immunoglobulin's	and	its	affinity	to	a	
receptor	protein.	When	they	restricted	the	amino	acid	variants	to	a	small	subset,	or	when	they	
diminished	the	number	of	loci	examined,	sign-epistasis	obstructed	most	increasing	evolutionary	
trajectories.	However,	relaxing	the	constraints	smoothed	the	adaptive	landscapes	and	allowed	for	easier	
adaptation	through	the	dimensions	added.		

RNA	molecules	are	also	a	popular	alternative	to	whole	organisms	when	measuring	adaptive	landscapes	
[79-84].	Moreover,	they	are	even	smaller	and	simpler	to	handle	in	bulk	quantities	than	proteins.	Jiménez	
et	al.	have	estimated	the	adaptive	landscape	of	a	short	RNA	molecule	(24	nucleotides)	by	creating	all	
possible	sequence	variations	[81].	Fitness	was	defined	by	in	vitro	selection	of	sequences	best	
sequestering	GTP,	the	rationale	being	that	GTP	served	as	an	energetic	currency	in	the	ancient	stages	of	
evolution,	when	RNA	was	the	main	form	of	genetic	material	available.	The	measured	adaptive	landscape	
was	extremely	sparse,	with	the	frequency	of	peaks	being	approximately	10-13.	This	low	frequency	falls	
below	the	percolation	threshold	Pc	and,	in	accordance	to	Gavrilets’	theory	(see	above),	peaks	were	
indeed	extremely	isolated,	and	only	a	subset	of	the	peaks	were	connected	by	just	a	few	evolutionary	
trajectories.	The	colossal	number	of	variants	(4HK ≈ 10%K)	covered	by	Jiménez	et	al.	demonstrates	the	
problem	of	measuring	empirical	adaptive	landscapes,	even	for	small	molecules.	Although	they	have	
covered	all	possible	variations,	the	space	itself	was	low-dimensional	and	consisted	of	only	24	
nucleotides.	In	another	study,	Aguilar-Rodríguez	et	al.	measured	transcription	factor	binding	affinity	of	
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all	possible	combinations	of	an	8	nucleotide	DNA	sequence	across	many	eukaryotic	species,	from	yeast	
to	mice	[85].	The	study	produced	over	a	thousand	different	adaptive	landscapes,	but	retained	the	same	
caveat	as	the	previously	mentioned	studies:	it	covered	the	adaptive	landscape	of	only	a	small	DNA	
fragment	relative	to	the	entire	genome.			

This	raises	the	question	of	whether	a	sample	of	the	molecule	space	can	have	substantial	predictive	
power:	could	we	extrapolate	the	entire	molecule	space	from	the	effects	of	mutations	sampled	in	its	
subspace?	A	common	method	is	applying	regression	models	[74,	86,	87]	to	the	sampled	subspaces,	
often	with	regularization	to	reduce	over-fitting	[88],	to	try	to	extrapolate	to	higher	dimensions.	
However,	the	results	of	such	models	might	be	biased	[89].	Plessis	et	al.	have	tried	to	overcome	this	
problem	by	applying	different	sampling	methods	of	the	available	space	[90].	They	have	found	that	in	
their	dataset,	none	of	the	examined	methods	could	accurately	estimate	interactions	of	order	>2.	
Furthermore,	they	found	that	(i)	completely	random	sampling	of	the	available	subspace	around	a	
sequence	of	interest	is	usually	inefficient;	(ii)	exhaustive	sampling	of	only	a	subset	of	dimensions	allows	
a	good	prediction	of	the	fitness	of	genotypes	close	to	the	sampled	region,	but	poorly	predicts	fitness	of	
farther	genotypes;	(iii)	random	sampling	close	to	the	sequence	of	interest	is	slightly	worse	at	predicting	
the	fitness	of	close	genotypes,	but	can	extrapolate	more	easily	to	farther	genotypes	than	exhaustive	
sampling;	and	(iv)	sampling	genotypes	from	a	population	that	has	undergone	selective	pressure	and	
contains	mostly	high	fitness	genotypes	seemed	to	incorporate	the	advantages	of	all	other	methods	of	
sampling	and	produce	accurate	predictions.	Despite	these	remarkable	results,	the	extent	of	their	
application	to	other	adaptive	landscapes	is	unknown	and	would	have	to	be	studied.	

Of	course,	even	accurate	estimates	of	functional	differences	between	different	alleles	of	a	single	
molecule	(e.g,	affinity	of	a	protein	receptor)	are	only	proxies	for	organismal	fitness,	which	depends	on	
many	other	molecules	and	genes,	some	of	which	can	compensate	or	mask	the	differences	between	said	
alleles.	Indeed,	some	studies	actually	use	organismal	fitness	rather	than	in	vitro	molecule	function	[82,	
91,	92],	but	measuring	organismal	fitness	is	likely	to	increase	measurement	noise	and	introduce	
experimental	bias.	The	choice	of	the	measured	trait	and	experimental	setup,	therefore,	inherently	
entails	a	trade-off	between	resolution,	accuracy,	and	robustness.	

Another	approach	for	estimating	adaptive	landscapes	is	to	focus	on	mutations	in	a	single	gene	or	
macromolecule,	but	to	measure	the	effect	of	mutations	on	aspects	of	organismal	fitness	in	vivo	rather	
than	use	the	in	vitro	function	of	the	macromolecule	as	a	proxy.	Focusing	on	the	bacterial	TEM	gene	that	
confers	resistance	to	β-lactam	antibiotics,	Weinreich	et	al.	[76]	utilized	5	mutations	in	a	mutant	allele	
that	increases	resistance	to	the	antibiotic	cefotaxime	by	100,000-fold	to	create	25=32	allele	
combinations.	The	researchers	estimated	the	resistance	provided	by	the	different	allele	combinations	by	
measuring	the	minimal	concentration	of	the	drug	that	inhibits	growth	of	bacterial	colonies	that	
incorporate	each	specific	allele.	Using	this	approach,	they	could	show	that	sign	epistasis	is	prevalent	in	
TEM,	as	the	effect	of	many	mutations	could	be	either	positive	or	negative,	depending	on	the	identity	of	
the	other	alleles.	Due	to	the	prevalence	of	sign	epistasis,	only	18	evolutionary	trajectories	(i.e.	
alternative	orderings	of	the	5	mutations),	out	of	a	total	of	5!=120,	consisted	of	strictly	increasing	
resistance.	Furthermore,	applying	classical	population	genetics	–	that	the	fixation	probability	of	a	
mutant	genotype	is	proportional	to	its	advantage	over	the	resident	population	–	they	concluded	that	
two	of	these	trajectories	are	much	more	likely	than	the	other	16	(Error!	Reference	source	not	found.6).	
This	suggests	that	the	process	of	adaptation	to	cefotaxime,	in	terms	of	the	order	of	mutations	that	are	
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fixed	in	the	adapting	populations,	is	highly	predictable.	However,	a	recent	experimental	study	showed	
that	when	bacteria	were	first	selected	by	intermediate	and	then	by	harsh	antibiotic	selection,	they	
eventually	reached	different,	and	even	higher,	peaks	than	those	reached	in	the	TEM	landscape	imposed	
by	harsh	selection	alone	[93].	These	results	confirm	that	environmental	change	can	affect	peak	shifts	
substantially,	and	that	the	evolutionary	predictability	is	conditioned	on	the	environmental	context.	

A	similar	approach	was	taken	by	de	Vos	et	al.	[94],	who	focused	on	the	lac	operon,	responsible	for	lactose	
metabolism	when	and	only	when	lactose	is	the	major	carbon	source	in	the	media.	They	measured	the	
expression	of	the	lac	proteins	in	64	lac	repressor	and	operator	mutants.	The	resulting	rugged	empirical	
landscape	consists	of	720	alternative	evolutionary	trajectories.	The	authors	found	that	if	the	environment	
is	stable,	the	population	is	stuck	in	suboptimal	local	peaks.	But	if	the	environment	fluctuates	between	two	
conditions	 –	 with	 and	 without	 lactose	 –	 adaptation	 can	 proceed.	 They	 demonstrated	 that	 specific	
genotypes	 that	 constitute	 “adaptive	 valleys”	 in	 one	 environment	 become	 “peaks”	 in	 the	 other	
environment;	thus,	environmental	fluctuations	allow	selection	to	drive	the	adaptive	process	without	the	
long	waiting	times	associated	with	valley	crossing	(as	previously	suggested	by	Wright	[2]	and	Whitlock	
[47]).		

Combining	empirical	landscapes	with	theory	
For	many	years,	evolutionary	biologists	could	only	reason	and	extrapolate	about	the	topology	of	
adaptive	landscapes.	Therefore,	most	evolutionary	models	used	generalized	and	mathematically	
convenient	mappings	between	genotypes	and	fitness.	However,	the	increasing	availability	of	empirical	
landscapes	allows	to	examine	their	topological	properties	and	to	compare	them	to	theoretical	landscape	
models.	Two	recent	review	papers	have	performed	meta-analyses	of	published	empirical	landscapes’	
characteristics	[95,	96].	They	examined	how	features	such	as	the	number	of	fitness	peaks,	the	frequency	
of	epistatic	interactions	and	the	‘ruggedness’	of	the	landscape	correlate	in	empirical	data,	and	how	they	
would	be	expected	to	correlate	under	theoretical	landscape	models.	They	found	that	landscapes’	
topologies	are	substantially	more	rugged	than	those	expected	under	an	additive	model,	but	less	than	
ones	expected	under	a	completely	random	interaction	model	(e.g.	House	of	Cards).	Furthermore,	a	
rough	Mt.	Fuji	model	was	able	to	replicate	the	association	between	topological	characteristics	of	the	
observed	landscapes	well	[96],	suggesting	that	it	might	provide	a	realistic	way	of	generating	landscapes	
on	which	evolutionary	theory	could	be	studied.	Hence,	modelers	can	now	either	simulate	evolution	
using	estimated	statistical	and	topological	properties	of	empirical	landscapes	to	construct	generalized	
realistic	landscapes,	or	directly	simulate	on	specific	empirical	landscapes.		

We	demonstrate	the	latter	approach	by	simulating	adaptive	evolution	on	the	A.	nigeri	[68]	and	the	TEM	
[76]	landscapes,	using	the	classical	Wright-Fisher	model	[97].	This	model	is	widely	used	in	population	
genetics	because	it	captures	many	biological	scenarios	and	is	more	computationally	efficient	than	other	
methods,	such	as	individual-based	simulations	and	Moran	processes	[97].	The	Wright-Fisher	model	
follows	the	frequency	of	different	genotypes	over	time.	Here,	we	focus	on	an	asexual,	haploid	
population	with	a	constant	population	size,	undergoing	natural	selection,	random	genetic	drift,	and	
mutation.	The	effect	of	natural	selection	is	defined	as:	

𝑝9X =
𝜔9
𝜔
𝑝9 	
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where	𝑝9 	is	the	frequency	of	genotype	k	before	selection,	𝜔9 	is	the	fitness	of	genotype	k,	and	𝜔 =
𝜔5 ⋅ 𝑝55 	is	the	population	mean	fitness.	The	effect	of	mutation	is	modeled	by:	

𝑝9Z = 𝑀9,5 ⋅ 𝑝5X

5

	

where	𝑀*,5 	is	the	mutation	rate	from	genotype	j	to	genotype	i	and	∀𝑗, 𝑀*,5* = 1.	Finally,	the	effect	of	
random	genetic	drift	is	given	by:	

𝑝9] =
𝑛9
𝑁
, (𝑛%, 𝑛H, … )	~𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑁, (𝑝%Z, 𝑝HZ, … )	 		

where	N	is	the	population	size,	and	𝑛9 	is	the	number	of	individuals	of	genotype	k	after	drift,	drawn	from	
a	multinomial	distribution	with	N	trials	and	probabilities		𝑝Z,	determined	by	the	frequencies	after	the	
effect	of	selection	and	mutation.	Computationally,	selection	and	mutation	can	be	implemented	with	
matrix	multiplication	followed	by	division	by	𝜔,	which	is	the	inner	product	< 𝜔, 𝑝 >.	Drift	can	be	
implemented	by	drawing	from	a	multinomial	random	number	generator	and	dividing	by	the	population	
size	(see	SI	for	the	source	code	of	a	Python	implementation).	

Empirical	adaptive	landscapes	provide	the	simulation	with	the	set	of	genotypes	(𝑘)	and	their	fitness	
values	(𝜔);	however,	we	still	need	to	determine	the	mutation	rates	between	these	genotypes	(M).	
Mutation	rates	are	hard	to	measure	[98]	and	can	vary	between	species,	populations,	individuals	and	
even	loci	on	the	same	genome	[99].	In	the	case	of	the	TEM	landscape,	we	can	approximate	these	using	
the	E.	coli	genomic	mutation	rate,	which	has	been	estimated	in	numerous	studies	(see	[100-102]	for	
recent	estimates),	as	the	genotypes	differ	by	a	single	amino-acid,	although	this	approximation	still	
neglects	some	factors.	In	the	case	of	the	A.	nigeri	landscape,	we	have	a	greater	problem,	as	we	are	not	
aware	of	the	DNA	sequences	underlying	the	different	alleles,	nor	do	we	have	estimates	for	the	mutation	
rate	in	this	organism.	That	being	said,	we	can	still	set	the	mutation	rate	to	some	reasonable	level	and	
accept	the	results	with	a	“grain	of	salt”.	

Our	simulations	started	with	an	isogenic	population	far	from	the	global	peak	and	proceeded	until	the	
population	adapted.	The	results	demonstrate	several	evolutionary	phenomena.	First,	in	both	landscapes	
adaptation	starts	with	a	big	leap	forward,	but	additional	fitness	increases	become	smaller	and	farther	
apart	(Figure	6A,D).	Similar	dynamics	have	been	observed,	for	example,	in	bacteria	in	the	Long	Term	
Evolutionary	Experiment	[103]	and	in	experimental	evolution	in	fungi	[104].	Second,	in	the	smooth	and	
single-peaked	TEM	landscape,	every	step	along	the	evolutionary	trajectory	reached	high	frequency	
before	the	next	genotype	emerged	and	increased	in	frequency	(Figure	6B).	This	is	because	there	are	
several	trajectories	along	the	adaptive	landscape	that	are	strictly	increasing	in	fitness	(Figure	6C)	and	
natural	selection	is	likely	to	push	the	populations	along	these	trajectories.	Indeed,	each	subsequent	
frequent	genotype	was	just	one	mutation	away	from	its	predecessor.	In	contrast,	in	the	rugged	A.	niger	
landscape,	in	which	6%	of	the	genotypes	are	adaptive	peaks,	only	four	genotypes	reach	a	high	frequency	
(Figure	6E),	although	adaptation	proceeds	through	seven	different	genotypes.	Moreover,	these	four	
genotypes	differ	from	each	other	in	1,	3,	and	3	mutations	(Figure	6E,	bold	lines	in	Figure	6F).	On	this	
rugged	landscape	the	population	must	cross	at	least	two	adaptive	valleys	(Figure	6F),	and	the	
intermediate	genotypes	at	the	valleys	are	unlikely	to	become	very	frequent.	As	with	previous	
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simulations,	we	provide	the	source	code	and	analysis	of	the	simulations	in	the	online	supplementary	
material	(https://github.com/yoavram/UnderTheRug).	

Similar	approaches	to	simulations	on	empirical	fitness	landscapes	have	recently	been	used	to	suggest	
that	recombination	accelerates	adaptation	in	HIV	[105],	to	analyze	the	relationship	between	population	
size,	mutation	rate,	and	the	predictability	of	adaptation	[106],	and	to	test	if	sex	accelerates	adaptation	
on	rugged	landscapes	[107].	However,	simulations	on	empirical	adaptive	landscapes	are	still	rare,	and	
we	consider	this	new	approach	very	promising.	
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Figure	6.	Evolutionary	simulations	on	empirical	fitness	landscape.	Results	of	Wright-Fisher	simulations	
on	two	empirical	fitness	landscapes.	(A-C)	An	adaptive	landscape	consisting	of	32	genotypes	of	the	
bacteria	E.	coli	from	a	study	by	Weinreich	et	al.	(2006).	Genotypes	were	constructed	from	a	combination	
of	5	single	mutants	in	the	TEM	β-lactamase	gene.	Simulations	started	with	a	population	that	is	5	
mutations	away	from	the	global	adaptive	peak.	The	mutation	rate	is	10-8	mutations	per	base	pair	per	
generation.	(D-F)	An	adaptive	landscape	consisting	of	186	genotypes	of	the	filamentous	fungus	A.	niger	
from	a	study	by	de	Visser	et	al.	(1997)	(the	dataset	was	extracted	from	Franke	et	al.	(2011)).	Genotypes	
were	constructed	from	a	combination	of	8	single	mutants	(including	both	metabolic	and	resistance	
genes).	Simulations	started	7	mutations	away	from	the	global	adaptive	peak.	The	mutation	rate	was	10-4	
mutations	per	gene	per	generation.	(A,D)	The	population	mean	fitness	over	time	in	a	single	simulation.	
(B,E)	The	frequencies	of	the	most	frequent	genotypes	over	time	in	a	single	simulation.	(C,F)	Fitness	(y-
axis)	and	number	of	mutations	away	from	the	global	adaptive	peak	(x-axis)	for	all	genotypes.	Triangles	
denote	fitness	maxima	(▲);	other	genotypes	are	denoted	by	circles	(●);	thin	dotted	lines	connect	
genotypes	that	differ	by	a	single	mutation.	The	bold	lines	represent	the	most	common	evolutionary	
trajectories	in	our	simulations,	which	all	started	with	a	single	genotype;	marker	intensities	are	relative	to	
their	frequency	in	the	simulations.	Parameters:	109	individuals;	215	generations.	See	online	
supplementary	material	for	simulation	and	analysis	source	code.	
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Future	directions	
One	important	application	of	adaptive	landscapes	research	is	in	the	arms	race	between	pharmacology	
and	pathogens.	Drug	resistance	is	an	important	example:	pathogens	that	quickly	adapt	to	newly	
developed	drugs	are	a	major	public	health	hazard	[108-110].	Remarkably,	resistance	to	some	
antimicrobial	drugs	was	found	to	correlate	with	sensitivity	to	other	drugs	[111-114],	indicating	that	the	
underlying	adaptive	landscape	is	rugged.	This	notion	can	be	used	to	develop	treatments	regimens	that	
hinder	evolution	of	drug	resistance	[111,	115,	116].	First	steps	have	been	made	to	design	drug	regimens	
based	on	specific	empirical	adaptive	landscapes	related	to	bacterial	pathogens	[117-120],	malaria	[121,	
122]	and	HIV	[91].	Further	research	with	additional	drugs	and	increased	landscape	sampling	resolution	
will	be	necessary	to	make	this	a	part	of	standard	practice.		

A	related	concept	is	that	of	evolutionary	trapping:	the	use	of	a	drug	that	specifically	selects	for	a	
particular	genotype,	‘setting	the	trap’,	followed	by	a	second	drug	that	specifically	selects	against	that	
same	genotype,	thereby	‘springing	the	trap’.	A	proof-of-concept	has	been	demonstrated	in	yeast	[123],	
where	radicicol	was	first	applied	to	drive	the	gain	of	an	additional	chromosome	in	a	population;	this	
chromosome	gain	increased	the	sensitivity	to	hygromycin	B,	which	was	then	used	to	exterminate	the	
population.	Understanding	the	complex	adaptive	landscapes	involved	in	this	scenario	allowed	the	
authors	to	predict	that	escape	from	the	trap	is	highly	unlikely.		

Our	understanding	of	cancer	as	an	evolutionary	process	[124,	125]	is	to	some	extent	analogous	with	
microbial	evolution	[126].	An	important	part	of	understanding	the	evolution	of	malignancy,	progression,	
and	metastasis	is	to	measure	and	model	the	adaptive	landscape	on	which	this	evolution	occurs.	
Eventually,	this	knowledge	could	help	us	design	safer	and	more	efficient	treatments	[127].	As	
experimental	cancer	evolution	becomes	a	major	research	program	in	both	evolutionary	biology	and	in	
oncology	[128,	129],	we	expect	that	empirical	adaptive	landscapes	of	cancer	cells	will	be	published	in	
the	next	decade.	

Symbiotic	microbes	can	also	provide	an	important	extension	to	the	adaptive	landscape	paradigm	via	the	
hologenome	concept,	which	accounts	for	the	genetic	material	of	both	the	host	and	its	entire	microbial	
community	(also	known	as	the	microbiome)	[130].	The	evolution	of	the	host,	per	this	view,	depends	on	
co-evolution	with	its	symbionts,	which	usually	have	much	shorter	generation	time	and	larger	population	
sizes,	as	well	as	considerably	different	ecology	and	genetics.	Novel	sequencing	and	analysis	methods	
now	enable	researchers	to	characterize	and	explore	the	dynamics	of	microbiomes	over	time	[131,	132].	
Associations	between	the	host	immune-related	responses	and	pathways	and	the	microbiome	genetic	
composition	have	been	found,	implying	that	host-symbiont	evolution	may	be	tightly	linked	[132,	133].	
Research	into	host-symbiont	adaptive	landscapes	can	significantly	affect	our	understanding	of	evolution,	
as	well	as	lead	to	innovations	across	various	fields,	including	agriculture,	with	crop	plants	[134],	fish,	and	
farm	animals	[135]	as	hosts;	medicine,	with	human	hosts	[136,	137];	and	conservation,	with	wildlife	
hosts	[138].	Theoretical	models	of	community	adaptive	landscapes	have	already	been	developed	[56],	
but	there	is	much	left	to	be	done	to	integrate	these	models	with	empirical	data.	

Adaptive	landscape	models	can	also	be	extended	to	include	epigenetic	effects.	Epigenetic	mechanisms	
allow	for	plastic	responses	to	environmental	changes,	for	example	by	gene	regulation	mechanisms	
[139],	and	they	are	frequently	heritable	through	non-genetic	inheritance.	Some	theoretical	work	has	
been	done	to	establish	that	epigenetics	can	substantially	affect	evolution	on	adaptive	landscapes	[140-
142].	However,	epigenetic-genetic	interactions	are	very	hard	to	measure,	due	to	the	real-time	nature	of	
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epigenetic	effects	and	their	dependence	on	environmental	conditions.	More	data	will	be	required	for	
realistic	evolutionary	simulations	encompassing	epigenetic-genetic	interactions.		

	

Conclusions	
We	believe	the	following	three	issues	will	be	important	for	the	study	of	adaptive	landscapes	in	the	near	
future:		

(1)	New	technologies	and	methodologies	must	be	designed	and	deployed	to	efficiently	measure	diverse,	
complex,	and	sizable	empirical	adaptive	landscapes	with	high	resolution.	The	interdisciplinary	nature	of	
this	effort	will	require	collaborations	between	teams	of	molecular	biologists,	geneticists,	engineers,	
physicists,	theoreticians,	and	computer	scientists.		

(2)	New	methods	and	analyses	must	be	developed	to	extract	quantitative	properties	of	the	topology	of	
landscapes,	as	well	as	the	evolutionary	dynamics	that	they	lead	to.	Like	other	fields	in	which	new	
theoretical	and	computational	methods	are	developed,	this	will	likely	include	integration	of	knowledge	
from	biochemistry,	evolutionary	theory,	epidemiology,	and	ecology,	with	methods	from	quantitative	
fields	such	as	information	theory,	probability	theory,	topology,	and	statistical	physics.	

(3)	Dissemination	of	new	ideas	and	insights	into	diverse	fields	such	as	oncology	and	agriculture	will	
require	interdisciplinary	teams	combining	applied	biologists	and	theoreticians.		

Adaptive	landscapes	are	a	very	important	factor	in	evolutionary	biology,	and	as	more	and	more	
empirical	landscapes	are	measured	and	published,	they	will	be	used	to	inform	our	understanding	of	
many	biological	phenomena,	from	drug	discovery	and	cancer	treatment	to	community	ecology	and	
conservation	biology.	
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