
1 

 

Combining Inferred Regulatory and Reconstructed Metabolic Networks 1 

Enhances Phenotype Prediction in Yeast 2 

Zhuo Wang
1
, Samuel A. Danziger

2,3
, Benjamin D. Heavner

2,4
, Shuyi Ma

2,3,5
, Jennifer J. Smith

2
, Song Li

2
, 3 

Thurston Herricks
2
, Evangelos Simeonidis

2
, Nitin S. Baliga

2,6,7,*
, John D. Aitchison

2,3,*
, Nathan D. Price

2,*
 4 

1
The Bio-X Institute, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 5 

200240, China 6 

2
Institute for Systems Biology, Seattle, WA, 98109, USA 7 

3
Center for Infectious Disease Research, Seattle, WA, 98109, USA 8 

4
Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA 9 

5
Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, IL, 61801, 10 

USA 11 

6
Departments of Biology and Microbiology & Molecular and Cellular Biology Program, University of 12 

Washington, Seattle, WA, 98195, USA 13 

7
Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA 14 

*Correspondence: Nitin S. Baliga  nbaliga@systemsbiology.org  15 

John D. Aitchison jaitchison@systemsbiology.org  16 

Nathan D. Price  nprice@systemsbiology.org  17 

 18 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 13, 2017. ; https://doi.org/10.1101/087148doi: bioRxiv preprint 

mailto:nbaliga@systemsbiology.org
mailto:jaitchison@systemsbiology.org
mailto:nprice@systemsbiology.org
https://doi.org/10.1101/087148
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Short title: Phenotype Prediction with IDREAM 1 

Keywords: metabolic network; Environment and Gene Regulatory Influence Network (EGRIN); Probabilistic 2 

Regulation of Metabolism (PROM); metabolic flux; synthetic lethal 3 

There are 2 Tables and 5 Figures in the manuscript. 4 

 5 

Abstract 6 

Gene regulatory and metabolic network models have been used successfully in many organisms, but inherent 7 

differences between them make networks difficult to integrate. Probabilistic Regulation Of Metabolism 8 

(PROM) provides a partial solution, but it does not incorporate network inference and underperforms in 9 

eukaryotes. We present an Integrated Deduced REgulation And Metabolism (IDREAM) method that combines 10 

statistically inferred Environment and Gene Regulatory Influence Network (EGRIN) models with the PROM 11 

framework to create enhanced metabolic-regulatory network models. We used IDREAM to predict phenotypes 12 

and genetic interactions between transcription factors and genes encoding metabolic activities in the eukaryote, 13 

Saccharomyces cerevisiae. IDREAM models contain many fewer interactions than PROM and yet produce 14 

significantly more accurate growth predictions. IDREAM consistently outperformed PROM using any of three 15 

popular yeast metabolic models and across three experimental growth conditions. Importantly, IDREAM’s 16 

enhanced accuracy makes it possible to identify subtle synthetic growth defects. With experimental validation, 17 

these novel genetic interactions involving the pyruvate dehydrogenase complex suggested a new role for fatty 18 

acid-responsive factor Oaf1 in regulating acetyl-CoA production in glucose grown cells.  19 
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Author Summary 1 

The integration of gene regulatory and metabolic network models is an important goal in computational 2 

biology, in order to develop methods that can identify the underlying mechanistic links in biological networks 3 

and advance metabolic engineering techniques. In this paper, we develop a framework called Integrated 4 

Deduced REgulation And Metabolism (IDREAM) that can improve our ability to predict phenotypes of 5 

microorganisms, and particularly it can address the challenges in evaluating phenotypic consequence of 6 

perturbing transcriptional regulation of metabolism in a eukaryotic cell. We compare the predictive 7 

performance of an IDREAM S. cerevisiae model with a PROM model using a TRN available from the 8 

YEASTRACT database. IDREAM outperforms PROM using any of three popular yeast metabolic models and 9 

across three experimental growth conditions, making it possible to identify subtle synthetic growth defects, and 10 

a new role for Oaf1 in the regulation of acetyl-CoA biosynthesis.  11 

 12 

Introduction 13 

A major goal of systems biology is to predict the phenotypic consequences of environmental and genetic 14 

perturbations. Metabolism is a fundamental cellular system that strongly influences cell fate, and as such it is 15 

important to study the behavior and regulation of metabolic and to build models that integrate its functions with 16 

other cellular systems. Despite extensive study of the biochemistry and enzymology of metabolism for over a 17 

century, our ability to simulate the functions of metabolic networks and their interactions is still limited by their 18 

size and complexity, including their nonlinear dynamic behavior (1, 2). Traditionally, metabolic simulation has 19 

been performed using kinetic modeling, where each reaction and the dynamics of all of its components 20 
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(reactants, products and enzymes) are modeled in detail. Kinetic modeling is usually applicable to small-scale 1 

biological processes and can produce accurate, dynamic predictions for fluxes, concentrations and regulatory 2 

states of the system. Kinetic modeling is limited by difficulties in parameterization, as well as the mathematical 3 

complexity of the resultant systems of differential equations. Sidestepping these size and knowledge limitations, 4 

constraint-based modeling utilizes network topology and thermodynamic constraints to make mechanistic, 5 

large-scale predictions for metabolic networks, without being dependent on detailed kinetic parameter 6 

knowledge. In recent years, the gap between kinetic and constraint-based modeling has been closing to some 7 

extent, as a number of large scale kinetic models have become available (3-6). While some of the computational 8 

limitations of kinetic modeling are being progressively overcome in well characterized systems, genome-scale 9 

models are still predominantly made using the constraint-based approach. Additionally, the dearth of publicly 10 

available, experimentally measured kinetic parameters that are necessary to populate these models, as well as 11 

their variation across different genetic polymorphisms, remains an issue. In the meantime, constraint-based 12 

modeling provides a simple, scalable, and informative method for metabolic network simulation with minimal 13 

information requirements.  14 

Constraint-based modeling techniques (7, 8) were developed to allow researchers to simulate genome-scale 15 

metabolic networks despite these challenges, by imposing a steady state assumption. Thus, constraint-based 16 

techniques are based on computing what steady states are possible given the stoichiometry of the biochemical 17 

reaction network. Applying steady-state reaction network modeling to simulate metabolism has its roots in the 18 

60s (9, 10), but was formalized in the 90s (11-14) under the label of flux balance analysis (FBA) (15). FBA 19 

relies on optimization techniques to identify the optimal achievable value for a particular user-defined objective 20 

in the model, such as biomass accumulation.  21 
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FBA is a powerful method for phenotype prediction due to its ability to describe stoichiometrically 1 

determined levels of substrate consumption and product production for reactions in very large metabolic 2 

systems in the absence of kinetic information or enzyme concentrations. However, one of its main drawbacks is 3 

that it does not incorporate constraints imposed upon the network by regulation of gene expression. In fact, 4 

metabolic networks are dramatically affected by complex transcriptional regulatory networks (as well as by a 5 

host of small molecule regulation processes not to be addressed herein). Changes in transcriptional regulation in 6 

response to environmental cues lead to changes in enzyme abundance or activity, which in turn lead to changes 7 

in physiological states and growth. Incorporating information about how metabolic genes are differentially 8 

regulated to metabolic network models may improve the predictions made by constraint-based analysis. The 9 

ability to integrate computational models of transcriptional regulation with models of metabolism would allow 10 

us to better describe the impact of mutations and environmental perturbations on functional metabolism. Such 11 

integrated models would have the potential to guide rational rewiring of metabolic flux and addition of new 12 

metabolic capabilities into a network (16, 17). 13 

A common strategy for incorporating gene regulatory information into metabolic network models is to use 14 

gene expression information to impose condition-specific flux constraints on the metabolic model. This strategy 15 

depends upon the assumption that elevated gene expression measurements make it more likely that there is 16 

increased activity for the metabolic enzymes encoded by the genes with increased expression, while lower gene 17 

expression levels are more likely to correspond to lower activity of the corresponding metabolic enzymes. 18 

Methods that impose condition-specific flux constraints on metabolic network models based upon gene 19 

expression data include GIMME (18), iMAT (19), E-Flux (20), MADE (21), GX-FBA (22), MTA (23), 20 

CoreReg (24), mCADRE (25) and EXAMO (26). However, in many cases, the predictions obtained by FBA 21 
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using a growth maximization objective are as good or better than those obtained using methods that incorporate 1 

gene expression to provide additional constraints (27). This discordance suggests that gene expression is not 2 

directly correlated to the activity of the encoded metabolic enzyme, or that more sophisticated methods must be 3 

employed to link gene expression data to metabolic network models. We propose that information about 4 

condition-dependent differential regulation of genes expression, such as can be captured with EGRIN (28), can 5 

provide information that can be used to improve conditional flux predictions by flux balance analysis of 6 

metabolic network models. 7 

In previous work, some of us developed the Probabilistic Regulation of Metabolism (PROM) method for 8 

integrating transcriptional regulatory networks (TRNs) and metabolic networks (29, 30). In order to build an 9 

integrated model of a metabolic and transcriptional regulatory network for an organism using PROM, the 10 

following components are needed.  11 

1. The genome-scale reconstruction of the metabolic network of the organism. The simulation of the 12 

metabolic network within the PROM method is performed using FBA subject to additional constraints and a 13 

penalty function.  14 

2. A regulatory network structure, which consists of a list of transcription factors, the targets of these 15 

transcription factors, and their interactions. These transcriptional regulatory networks have generally been 16 

constructed based on high-throughput protein–DNA interaction data and/or statistical inference of functional 17 

relationships from genomic and transcriptomic data.  18 

3. A collection of gene expression data measured under different conditions, which will allow the observation 19 

of various phenotypes for the organism under study.  20 
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PROM introduces probabilities to represent gene states and interactions between a gene and a transcription 1 

factor. In short, PROM estimates how much less an enzyme encoding gene will be transcribed when a TF is 2 

deleted and proportionally reduces the maximum flux through that enzyme. We have previously applied PROM 3 

to predict the effects of TF knockout on growth for Escherichia coli and Mycobacterium tuberculosis (29, 31). 4 

However, to date, there has not been a successful application of a PROM-like semi-automated approach to build 5 

integrative regulatory-metabolic models to predict the phenotype of TF mutants for a eukaryotic organism.  6 

The abundance of transcriptomic data has enabled development of a number of algorithms to infer 7 

genome-scale transcriptional regulatory networks in addition to the coexpression frequency approach used in 8 

PROM (32-35). These methods have been implemented and made gene expression predictions to varying 9 

degrees of accuracy. The DREAM project (Dialogue on Reverse Engineering Assessment and Methods) 10 

evaluated over 30 network inference methods on E. coli, Staphylococcus aureus, and S. cerevisiae (36). Several 11 

methods performed relatively well for E. coli data sets, including CLR (32), ARACNE (37), and ANOVA (38), 12 

but not well for Yeast. Recently, several more methods were developed. RPNI (Regulation Pattern based 13 

Network Inference) defined the co-regulation pattern, indirect-regulation pattern and mixture-regulation pattern 14 

as three candidate patterns to guide the selection of candidate genes (39). Zhao et al. (40) proposed a new 15 

measure, "part mutual information" (PMI), to quantify nonlinearly direct associations in networks more 16 

accurately than traditional conditional mutal information (CMI). Another multi-level strategy named GENIMS 17 

showed better accuracy and robustness, by comparison with the methods on the DREAM4 and DREAM5 18 

benchmark networks (40). However, significant challenges remain in accurately inferring such networks from 19 

gene expression data, particularly given the more complicated eukaryotic regulatory mechanisms in S. 20 

cerevisiae (36). 21 
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Environment and Gene Regulatory Influence Network (EGRIN) is an approach to meet those challenges by 1 

building a comprehensive model of condition-specific gene regulation (28). EGRIN describes which factors 2 

influence gene expression and under what environmental conditions those factors are relevant. It uses the 3 

biclustering algorithm, cMonkey (41) to find conditionally co-regulated genes from heterogeneous 4 

genome-wide datasets, and Inferelator (42) to use the mRNA expression levels of TFs or other regulators to 5 

predict the expression level of a target gene with linear regression model. EGRIN construction techniques were 6 

originally developed to study Halobacterium salinarum (28), but this approach was further developed for 7 

eukaryotic gene expression in the yeast S.cerevisiae (43). This work demonstrated that the yeast EGRIN 8 

accurately predicted condition-specific gene expression, and was able to identify transcription factors that 9 

regulate peroxisome-related genes when yeast is grown on oleic acid (43). 10 

Here, we build upon the previous EGRIN and PROM methods to develop a framework called Integrated 11 

Deduced REgulation And Metabolism (IDREAM). IDREAM uses bootstrapping-EGRIN inferred 12 

transcriptional factor (TF) regulation of enzyme-encoding genes, then applies a PROM-like approach to apply 13 

metabolic network constraints in an effort to improve phenotype prediction, as shown in Figure 1A. We 14 

compared the predictive performance of an IDREAM S. cerevisiae model with a PROM model using a TRN 15 

available from the YEASTRACT database (44, 45). This comparison included growth rates predicted for TF 16 

deletion mutants, which were tested experimentally, demonstrating that predicted growth phenotypes from 17 

IDREAM were more consistent with observed phenotypes than predictions made by the PROM model. 18 

Previous work has demonstrated significant variability in growth phenotype prediction among yeast models 19 

(46), nevertheless IDREAM proved to be robust and to outperform PROM with several metabolic network 20 

models and different environmental conditions tested (Figure 2 and 4). 21 
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Furthermore, IDREAM enabled predictions of genetic interactions between genes encoding TFs and 1 

enzymes of the metabolic network. We experimentally tested the strongest interactions using a quantitative 2 

growth assay and validated five novel interactions between the TF Oaf1 and components of the pyruvate 3 

dehydrogenase complex. These data reveal an unexpected potential role for Oaf1 in regulating acetyl-CoA 4 

production during mitochondrial dysfunction, in addition to its well-characterized role in regulating fatty acid 5 

metabolism in the absence of glucose. Therefore, because of the inference component, the integrated network 6 

modeling approach IDREAM can uncover previously uncharacterized gene regulation of metabolism. 7 

 8 

Results 9 

Overview of the IDREAM approach for integrative regulatory-metabolic modeling 10 

The original PROM framework represents the TF influence with a conditional probability derived from analysis 11 

of gene expression profiles. This conditional probability estimates the likelihood that an ON/OFF state in a TF 12 

will lead to an ON/OFF state in the target genes (29). For IDREAM, the conditional probability was instead 13 

represented by the bootstrapping EGRIN-derived FDR values for the subset of EGRIN-discovered regulator 14 

interactions that also have evidence for direct interaction in the YEASTRACT database. As shown in Figure 1B 15 

and 1C (see details in Methods), this allows us to represent the TF influence, while leaving the rest of the 16 

metabolic reactions unconstrained by regulation. Essentially, IDREAM focuses on our highest confidence set of 17 

interactions, where there is both evidence for direct regulation from YEASTRACT and a strong transcriptional 18 

influence that is sufficient to be predicted by the inference techniques of EGRIN. In addition, we generated an 19 

IDREAM-PROM hybrid model, which is able to adjust the conditional probabilities for the indirect interactions, 20 
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using the conventional PROM approach coupled with the IDREAM constraints on the high confidence. As 1 

above, EGRIN inferred interactions also have evidence for direct interaction in the YEASTRACT database. We 2 

compared these two integrated models with a standard PROM model that solely uses interactions from the 3 

YEASTRACT database as the regulatory component, without any information from the EGRIN regulatory 4 

network model. The strategies for construction of the three integrative models are described in Figure 1B. For 5 

all the approaches, we used Yeast6 as the base metabolic model (47). Yeast6 was found to be as accurate as any 6 

available yeast reconstruction for growth predictions based on an extensive metabolic comparison across all 7 

published models and available datasets (46), and also performs best with IDREAM. We compared the network 8 

properties and the predictive performance of the resulting three integrative models: PROM, IDREAM, and 9 

IDREAM-hybrid. To test the effectiveness of these integrated models, we validated the growth predictions 10 

against growth rate data for 119 TF knockouts measured by the Sauer Laboratory (48).  11 

The standard PROM model included 177 TFs and a total of 31,075 regulatory associations from 12 

YEASTRACT, of which 7,292 were direct interactions with evidence of TF binding. By mapping the target 13 

genes in the TRN with metabolic genes in the MN, we integrated 2588 EGRIN-inferred influences consisting of 14 

91 TFs transcriptionally regulating 794 genes encoding enzymes of the metabolic network with false discovery 15 

rates (FDR) ≤ 0.05 (See Methods for details). There were 307 interactions in the IDREAM model annotated as 16 

direct regulatory associations in YEASTRACT for which evidence of TF-chromatin binding has been 17 

generated. Although there are many more TFs and interactions in YEASTRACT, 15 out of the 17 TFs observed 18 

to cause growth defects upon deletion (48) are included in the EGRIN network (shown in Figure S1). 19 

Additionally, for the total 900 genes encoding enzymes of the metabolic network in the Yeast6 model, PROM 20 

and IDREAM included 863 and 794 genes respectively, which suggested that the regulatory network generated 21 
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by EGRIN captures the part of the network that is most relevant to phenotypic predictions influenced by 1 

changes in metabolic flux, while sparing extraneous components. 2 

IDREAM predicted growth phenotypes with significantly better accuracy than PROM 3 

Predicting gene essentiality is a basic and important task for genome-scale metabolic models (49-51). Advanced 4 

models that include TF regulators of genes encoding metabolic enzymes (such as IDREAM and PROM) can 5 

also predict growth rates when TFs are deleted. We used FBA to calculate the optimal growth rate on 6 

glucose-containing minimal medium using the Yeast6 model. Then, using the three regulatory-metabolic 7 

models, we simulated the growth rate for each TF knockout. The ratio of mutant vs. wild-type growth rate was 8 

compared with the growth ratio for 119 TF knockouts previously measured (48). There are 90 TFs and 52 TFs 9 

with corresponding deletion mutant growth ratios in the PROM and IDREAM models, respectively. There were 10 

51 TFs in common between the two integrative models, so we distinguish PROM by TF90 (the whole 11 

YEASTRACT-based model) and TF51 (the portion of the YEASTRACT-based model that overlaps with that 12 

from IDREAM). As shown in Table 1, the Pearson Correlation Coefficient (PCC) between experimental results 13 

and predictions by IDREAM is much higher than that by PROM (PCC is 0.43 vs. 0.17), and the normalized sum 14 

of squared error is significantly lower for IDREAM (0.12 vs. 0.25). We performed a two-tailed t-test testing the 15 

null hypothesis that the mean absolute residuals for IDREAM are the same as the mean absolute residuals for 16 

PROM, and obtained p-value=0.01 (Table 2). Interestingly, the performances of IDREAM and 17 

IDREAM-hybrid were very similar, suggesting that the core set of direct regulatory interactions predicted from 18 

the EGRIN approach plays a key role in affecting phenotype, irrespective of the conditional probabilities 19 

calculated for the indirect interactions. 20 
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In order to more fully evaluate the generality of these results, we expanded our set of predictions for two 1 

additional growth conditions measured previously (48): galactose with ammonium as a nitrogen source, and 2 

glucose with urea as a nitrogen source. Additionally, across all three growth conditions, we evaluated the effect 3 

of changing the cutoff for binarizing the data into categories of “growth defect” vs. “no growth defect”. We 4 

utilized the Matthews correlation coefficient (MCC) (52) as it is the common method of choice for statistically 5 

assessing performance of binary classifications. The MCC results for the two IDREAM predictions were much 6 

better than those for PROM overall (Figure 2). In particular, when the threshold of ratio for growth defect was 7 

less than 0.5, the Fisher’s transformation test for the pairs of MCC values showed that IDREAM significantly 8 

outperformed PROM across all measured conditions (p <0.05). IDREAM can also decrease the variability of the 9 

estimated internal fluxes in addition to predicting reaction essentiality for growth. Applying flux variability 10 

analysis (FVA) to the IDREAM model can reveal predicted changes in the reaction flux solution space that 11 

result from each TF perturbation. Comparison with the FVA results of the original YEAST6 model showed that 12 

the solution space is reduced for IDREAM (Table S1). 13 

We also estimated the significance of the predictive performance by randomly permuting the expression data 14 

and TF-gene associations. For the expression dataset, we fixed the number of genes and randomly permuted the 15 

expression values 500 times, and then calculated the percentage of permutations that generated higher MCCs 16 

than the constructed IDREAM model (designated as a p-value). Additionally, we generated 500 permutated 17 

regulatory networks by fixing the number of TFs and genes and randomly permuting their connections, while 18 

the expression dataset remained unchanged. The percentage of permuted networks that generated higher MCCs 19 

than the constructed IDREAM model was calculated as a p-value. We found that the MCCs from the IDREAM 20 

and IDREAM-hybrid model were all significant against the distribution of permutations of expression and 21 
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network associations (p < 0.05 in each case) (Table S2). The predictive accuracy of the EGRIN-derived TF 1 

regulatory influences on metabolism was further underscored by the observation that an integrated model that 2 

was constructed by integrating TF influences inferred by CLR (36) made growth rate predictions that did not 3 

correlate with experimental data (Table S3). 4 

To further evaluate the performance of IDREAM compared to PROM, and because growth ratios are 5 

continuous values, we tested whether PROM or IDREAM performed better at predicting a range of growth 6 

defects. Thus, instead of considering only 50% ratio as defining a growth defect, we considered multiple 7 

threshold ranging from severe growth defects (~10% of WT) to virtually normal growth rates and compared the 8 

performance of IDREAM and PROM using Receiver Operator Characteristic curves (53) (Figure 3, Figure S2 9 

and Table S4). Overall, the mean Area Under the Curve value (54) for this wide range of thresholds was 10 

significantly higher for IDREAM than PROM (0.67 vs 0.58, Wilcoxon signed rank p-value < 0.004; Figure S2, 11 

Table S4) indicating that IDREAM more accurately predicted growth defects.  12 

IDREAM outperforms PROM for different yeast metabolic models 13 

To further validate the performance of IDREAM, we tested our approach with two metabolic reconstructions of 14 

yeast other than Yeast6: Yeast7, the latest published reconstruction of yeast (55), and iMM904 by the Palsson 15 

Lab (56), probably the most widely used reconstruction. We compared the MCC between predicted and 16 

experimental growth ratios for three representative thresholds (0.2, 0.5, and 0.95) by binarizing a call as either 17 

‘growth defect’ or ‘no growth defect’. As shown in Figure 4, the MCCs for IDREAM were larger than those for 18 

PROM for all three metabolic models, especially for thresholds of 0.2 and 0.95. Although the MCCs for Yeast6 19 

were larger for most thresholds, there was no significant difference for ROC curves among the three 20 
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reconstructions (Figure S3A). Also, the ROC curves produced by PROM for the three metabolic models did not 1 

show significant differences (Figure S3B), but the AUC values for IDREAM were generally higher than those 2 

for PROM. The PCC between predicted and experimental growth ratio by the three models also demonstrated 3 

that IDREAM outperformed PROM, two-tailed p-values testing the mean absolute residuals were (in aggregate) 4 

significant (p-value < 0.05) across all metabolic models, as shown in Table 2. 5 

We also predicted the growth ratios for the three reconstructions across different conditions, calculated the 6 

Pearson's correlation to experimentally determined growth ratios, and determined p-values based on the Fisher's 7 

Z transform (see Methods). As shown in Table S5, the aggregate correlation for IDREAM predictions was 8 

significantly higher than that for PROM or for IDREAM-hybrid. We conclude that phenotypic predictions were 9 

significantly better with IDREAM, whether analyzed with Matthews or Pearson correlation. 10 

IDREAM model effectively predicted phenotypes of double gene deletions 11 

Using the IDREAM model, we further simulated the growth phenotypes of strains with double-deletions of 12 

genes encoding a TF paired with a gene encoding an enzyme of the metabolic network, as shown in 13 

supplemental Figure S4. The model predicted a dramatically reduced growth rate for several double deletion 14 

strains, but predicted no growth defects for the corresponding single deletion strains. Thirty-nine such pairs 15 

were predicted to vary by over 90% when comparing predictions for single and double deletion growth rates 16 

(see detail in Methods). Figure 5 shows the predicted interacting pairs with the most dramatic reduction in 17 

predicted growth rates for the double deletion mutants (> 95% less than each single deletion). For these, deletion 18 

of either the TF or metabolic gene individually had no predicted effect on growth, but the double deletion 19 

resulted in a predicted growth rate of zero. These predictions are based on global mRNA levels in response to 20 
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gene deletions and other perturbations, with the assumption that mRNA levels reflect abundance or activities of 1 

their encoded proteins. If mRNA levels were perfectly matched with protein levels, we would consider such 2 

gene pairs as predicted synthetic essential (57); but as mRNA and protein levels are only partially correlated 3 

(58), we instead consider these pairs to be candidate negative/aggravating interacting pairs. 4 

These 9 predicted genetic interactions were tested experimentally along with 8 control pairs (consisting of the 5 

same TFs and randomly selected genes encoding metabolic enzymes where the double deletion was predicted to 6 

have no synthetic defect) (Figure 5, Figure S5). We used a quantitative technology called ODELAY (One-cell 7 

doubling evaluation by living arrays of yeast) (59) to test each double deletion strain in the presence of 2% 8 

glucose, which can track the growth of many individual colonies for each strain over time using high resolution 9 

imaging (Figure 5A). The method yields a measure of doubling times for each clone in a population. Synthetic 10 

interactions are revealed when the growth defect of the double mutant is greater than the sum of each single 11 

mutant. The quantitative approaches showed genetic interactions between OAF1 and five genes encoding 12 

components of the pyruvate dehydrogenase (PDH) complex including LAT1, PDA1, PDB1, PDX1 and LPD1. 13 

Beyond these genetic interactions between OAF1 and genes encoding components of the pyruvate 14 

dehydrogenase (PDH) complex, ODELAY also validated the predicted genetic interaction between CIN5 and 15 

GRX5 but did not confirm the remaining 3 of the 9 predictions. Overall, it demonstrated that IDREAM made 16 

accurate predictions of synthetic interactions among gene pairs (Figure 5B, AUC = 0.792, Mann-Whitney 17 

p-value = 0.018). 18 

 19 

 20 
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Discussion 1 

In this study, we developed and applied an approach, IDREAM, which integrated together a network inference 2 

algorithm (EGRIN) into the previous constraint-based regulatory-metabolic modeling framework (PROM) to 3 

build a combined gene regulatory-metabolic network model for yeast. The major outcomes of this study were 4 

(1) the prototyping of the IDREAM approach; (2) demonstrating superior performance of IDREAM compared 5 

with PROM across a variety of metrics, where the latter approach had not been successful in building a 6 

combined gene regulatory-metabolic network model for a eukaryotic cell; (3) demonstrating direct interaction 7 

sets and activation/inhibition status are important factors for generating accurate predictions with IDREAM;  8 

(4) predicting genetic interactions, including across joint TF and enzyme perturbations. Importantly, these 9 

predictions were experimentally validated, both using existing gene knockout essentiality and growth rate 10 

information, as well as in a set of experimental results generated herein and in quantitative growth assessments 11 

in the yeast mutants using ODELAY (59). Each of these points will be discussed in detail in the following.  12 

Integration of an inferred regulatory network with a constraint-based metabolic model 13 

Integration of a gene regulatory network with a metabolic network at genome-scale poses significant 14 

challenges, in part because they are distinct network types requiring very different modeling frameworks. While 15 

the PROM framework integrates regulatory and metabolic networks at genome-scale, the type of regulatory 16 

interactions it has incorporated have typically been limited to those that are supported by physical evidence such 17 

as from ChIP-chip/Seq experiments (29). Since a comprehensive map for protein-DNA (P-D) interactions of all 18 

TFs and their targets is not typically available for most organisms, this greatly limits the general utility of 19 

PROM. Even when they exist, the P-D interaction map for any given organism is incomplete as the interactions 20 
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are typically mapped in one or few environmental conditions, and all interactions may not have causal 1 

consequences on metabolism. EGRIN overcomes this limitation by discovering direct and indirect causal 2 

regulatory influences of TFs that act in an environmental condition-dependent manner on their downstream 3 

target genes (28, 43). With IDREAM, we have demonstrated an approach that integrates regulatory influences 4 

learned from EGRIN to augment the previous PROM approach for building integrated metabolic-regulatory 5 

network models. This approach led to accurate predictions of growth-altering synthetic interactions across the 6 

regulatory and metabolic network of S. cerevisiae. IDREAM is generalizable to any organism with a sequenced 7 

genome, reconstructed metabolic model, and sufficient gene expression data. Accuracy of phenotype 8 

predictions by IDREAM were significantly better with EGRIN relative to when regulatory interactions from the 9 

CLR method was integrated (32). This result demonstrated the importance of incorporating indirect causal 10 

influences in accurate phenotype prediction by IDREAM, as the CLR method considers only previously known 11 

and mostly direct regulatory interactions supported by evidence of physical P-D interaction of the TF and its 12 

target gene promoter (Table 1 and Table S3).  13 

The integrative IDREAM model predicted phenotypes better than the PROM model 14 

One of the important roles of constraint-based models is to predict which genes encoding metabolic enzymes 15 

are essential for growth in a particular environmental condition, given a set of nutritional inputs. Here, we 16 

expanded the scope of our model through integrative regulatory-metabolic modeling of the effects of TF 17 

knockout on growth. The Pearson correlation coefficient between predicted and experimental growth ratios for 18 

IDREAM was significantly higher than that for PROM (Table 2: PCC=0.43 vs. 0.17 respectively, 19 

p-value=0.01). However, since there was no linear relationship in the distribution of growth ratio for each TF 20 

mutant, we also computed the Matthews Correlation Coefficient for model predictions by setting different 21 
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growth ratio thresholds for categorizing gene deletion strains that have ‘growth defect’ or ‘no growth defect’. 1 

Overall, MCCs were much larger for IDREAM-predictions relative to PROM, especially when the growth ratio 2 

cutoff was less than or equal to 0.5 (Figure 2). IDREAM also outperformed the standalone metabolic model at 3 

predicting gene essentiality (Figure 3): the standalone metabolic model cannot predict the effects of TF 4 

knockouts, therefore we assume its ROC curve is the same as random (the diagonal line in Figure 3). 5 

To examine whether these predictions were sensitive to a particular metabolic reconstruction, we tested 6 

IDREAM performance with three distinct models: the consensus reconstructions Yeast6 (47), Yeast7 (55), and 7 

iMM904 (56). Although Yeast6 generated better correlations across several growth ratio thresholds (Figure 4), 8 

the AUC for the ROC curves was similar across the three metabolic models. Importantly, IDREAM performed 9 

better than PROM, regardless of which metabolic model was used (Figure S3). These comparisons demonstrate 10 

that IDREAM is significantly better at uncovering the influence of regulation on downstream phenotypes, 11 

irrespective of the version of the reconstructed metabolic model. 12 

Direct interaction sets and activation/inhibition status are important factors for generating 13 

accurate predictions 14 

The original PROM method used a gene regulatory network structure from public resources (such as 15 

YEASTRACT), including both direct and indirect interactions, and the probabilistic influence for these two 16 

different interaction sets was calculated from gene expression correlations between the TFs and their target 17 

genes. However, there was poor correlation between PROM model predictions and observed growth ratios 18 

(PCC=0.17, p-value=0.23). The correlation was even worse when we restricted the PROM model to include just 19 

the 7,292 interactions with binding evidence in YEASTRACT (PCC=0.076, p-value=0.48). In contrast, there 20 
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was significant correlation between observed phenotypes and IDREAM model predictions when constraints 1 

derived from EGRIN were applied to a core set of regulatory interactions with binding evidence (direct 2 

interactions) from YEASTRACT. This correlation was significant whether the TF influences of indirect 3 

interactions were constrained using PROM as is done for IDREAM-hybrid (PCC=0.42, p-value=0.002) or left 4 

unconstrained (PCC=0.43, p-value=0.001). Thus, constraints on direct interactions using EGRIN-derived FDR 5 

produces much better TF knockout phenotype predictions by IDREAM relative to the standalone PROM 6 

approach. Growth rate prediction by IDREAM was further improved by accounting for the activator and 7 

inhibitor status of TFs and by using the bootstrapped-EGRIN FDR to guide the probabilistic influence of TFs on 8 

their target metabolic genes. These results demonstrated that PROM may overlay unnecessary constraints on 9 

indirect TF interactions, and may therefore erroneously predict that a TF deletion will result in decreased growth 10 

rate. In contrast, IDREAM can differentiate direct and indirect interactions, and furthermore identify the high 11 

confidence TF-interactions that have both evidence of direct regulation from YEASTRACT and 12 

EGRIN-predicted influence on downstream target genes.  13 

Predicted genetic interactions with OAF1 were validated and relevant to acetyl-CoA regulation 14 

The IDREAM-predicted negative interactions of OAF1 (encoding TF Oaf1) with genes PDX1, PDA1, PDB1, 15 

LPD1, and LAT1 in the presence of glucose were validated experimentally (Figure 5). These 5 genes encode 16 

components of the PDH complex, a mitochondrial enzyme that generates acetyl-CoA from pyruvate. 17 

Acetyl-CoA has important roles in various aspects of cell biology and its metabolism is compartmentalized and 18 

tightly regulated. 19 
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These predictions were initially surprising as Oaf1 functions primarily in presence of fatty acids to 1 

up-regulate genes involved in peroxisome biogenesis and function, including β-oxidation (60). By contrast, 2 

glucose represses Oaf1-mediated activation (61). However, acetyl Co-A can also be produced in peroxisomes 3 

(62), from where it is exported to the cytoplasm for a diverse array of functions in the TCA cycle, amino acid 4 

and carbohydrate biosynthesis (63), and cell signaling (64). It is likely that Oaf1 plays a role in regulating acetyl 5 

CoA production in peroxisomes and compensates for a dysfunctional PDH complex during growth in the 6 

presence of glucose. This regulatory interaction is further supported by flux balance analysis, which predicted 7 

that biomass production is lower when both the PDH complex and acetyl-CoA producing reactions in the 8 

peroxisome are active, relative to biomass produced when only one of these pathways is active. In sum, these 9 

data suggest that Oaf1-mediated control of alternate pathways for acetyl-CoA production has significant 10 

influence on biomass production. 11 

This hypothesis implicates communication between the mitochondrion, where the PDH complex is localized, 12 

peroxisomal acetyl-CoA production and the nucleus, where Oaf1 controls transcription. Such communication is 13 

evident by systems level studies demonstrating coordinated activities between peroxisomes and mitochondria 14 

(61), shared and differential localization of peroxisomal and mitochondrial proteins (63), and the discovery of 15 

retrograde signaling molecules controlling communication between peroxisomes, mitochondria and the nucleus 16 

(65, 66). Thus, in response to mitochondrial PDH complex dysfunction, peroxisomes could export acetyl-CoA 17 

via the carnitine shuttle or export glyoxylate pathway intermediates such as citrate to the cytoplasm (62). 18 

Indeed, peroxisomal citrate synthase (CIT2) is up-regulated in the retrograde response (67), and CIT2 has 19 

negative genetic interactions with components of the PDH complex (PDA1, PDB1, PDX1, and LAT1) (68). 20 
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Additionally, YAT2, one of three carnitine acetyltransferases in S. cerevisiae, is dramatically upregulated in an 1 

OAF1 deletion in the presence of glucose (5.2 fold, p-value 0.01773) (34). 2 

OAF1 deletion and PDH dysfunction form synthetic lethal pairs which can be understood by analyzing the 3 

glyoxylate pathway. Deletion of OAF1 results in moderate downregulation of 4 of 5 glyoxylate metabolic genes 4 

including MDH3, CIT2, ACO1, and ICL1 during growth in glucose (34), suggesting Oaf1 normally has a role in 5 

promoting the expression of these genes. This suggests that in the absence of Oaf1, cells may be poorly suited to 6 

increasing the export of glyoxylate pathway intermediates due to reduced expression of glyoxylate metabolic 7 

genes. Oaf1 could also function by upregulating PEX genes involved in peroxisome biogenesis, which could 8 

affect localization of peroxisomal metabolic enzymes. Data show that deletion of OAF1 results in reduced 9 

expression of 21 of 27 PEX genes measured including greater than 2-fold downregulation of PEX3, PEX12, 10 

PEX13, PEX17, PEX19, and PEX34 during growth in 2% glucose (34). Consistent with this, 13 negative 11 

genetic interactions have been found between PEX genes and components of PDH complex (68) and 12 

peroxisomes have been shown to proliferate under conditions of mitochondrial dysfunction (69).  13 

 14 

Conclusion 15 

In conclusion, the IDREAM approach demonstrates that it is possible to predict phenotypic consequence of 16 

perturbing transcriptional regulation of metabolism in a eukaryotic cell. This predictive capability of IDREAM 17 

revealed a new role for Oaf1 in the regulation of acetyl-CoA biosynthesis, exposing the phenotypic consequence 18 

of combinatorial perturbations to this regulatory-metabolic network during growth on glucose. It is notable that 19 

IDREAM is capable of making reasonably accurate predictions without explicitly modeling many additional 20 
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layers of control, such as allosteric regulation and post-translational protein modification, that are known to 1 

establish important mechanistic linkages between transcription and metabolism (17). While this capability of 2 

IDREAM to predict flow of information from transcription->metabolism->phenotype is powerful and useful for 3 

directing laboratory experiments, it is important to integrate and model the intervening regulatory processes in 4 

order to identify the mechanistic linkages and advance metabolic engineering.  5 

 6 

Materials and Methods 7 

Yeast regulatory network inferred using EGRIN 8 

We expanded the yeast gene regulatory network derived using EGRIN and presented in (43), in order to 9 

integrate it with PROM by focusing on predicting regulation for individual genes rather than for gene clusters as 10 

had been done previously. The yeast EGRIN was constructed using two computational tools (cMonkey and 11 

Inferelator) trained considering 5939 yeast genes in 2929 microarray experiments and evaluating 392 of those 12 

genes as possible regulators (i.e. factors). cMonkey identified biclusters of genes that were coherently expressed 13 

in some of these experiments, while Inferelator identified regulators of those genes by using (hybrid) linear 14 

models (42). To improve the gene level predictions over those in the previously published yeast EGRIN, we 15 

made the Inferelator regression more robust by generating additional linear models. For each of the 5939 target 16 

genes, we constructed separate models from 200 randomly selected subsets of the 2929 experiments, as well as 17 

a 201
st
 model constructed using the entire data set. This resulted in 201 generated gene regulatory models for 18 

each of the 5939 yeast genes, for a total of 1,193,739 models. For each gene, we estimated a false discovery rate 19 

(FDR) for each factor by tallying the fraction of models that identified that factor as a regulator. Thus, if factor X 20 
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was predicted to regulate gene Y in 191 of 200 models, then X would have an FDR=1–191/200 = 0.045. We 1 

included only those interactions that passed an FDR cutoff of 0.05 and interpreted the remaining FDRs such that 2 

the fraction of times that a factor was predicted to regulate a target corresponded to the fraction of that targets 3 

activity that was not controlled by that regulator. Therefore, if X is predicted to activate Y with an FDR of 0.045, 4 

only 4.5% of Y’s activity would be predicted to remain if X was deleted. If X is predicted to deactivate Y, then 5 

we use the much larger 1 - FDR (e.g., 95.5% of activity) to represent that Y is somehow disturbed without a 6 

significant reduction in activity. We predicted whether a factor was an activator or repressor by testing if its 7 

mRNA expression was correlated or anti-correlated (respectively) with the expression of its target under the 8 

relevant experimental condition. The interactions between TFs and target genes in EGRIN and YEASTRACT 9 

TRN are listed in Table S6. 10 

Yeast metabolic model and flux balance analysis 11 

The genome-scale metabolic model for yeast has been updated through iterative collaborative curation by 12 

multiple research groups. We downloaded the yeast consensus reconstruction (70) versions 6.06 (47) and 7.01 13 

(55) from the SourceForge repository (http://yeast.sf.net/), and acquired the iMM904 model from (56).  14 

We used the COBRA Toolbox (51) to conduct FBA. Briefly, FBA is a mathematical optimization method for 15 

calculating a maximum or minimal achievable metabolic flux, subject to the constraints imposed by metabolic 16 

network stoichiometry, thermodynamic information, and capacity constraints (51).  17 

IDREAM integrative model construction 18 

We constructed the IDREAM model by using the inferred EGRIN regulatory network to constrain reactions in 19 

yeast metabolic network models. There were 307 interactions in the EGRIN network annotated as direct 20 
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regulatory associations in YEASTRACT that have binding evidence. If the deleted TF is an activator with 1 

binding evidence, the probability of a target gene being ON was set as the bootstrapping Inferelator-derived 2 

FDR, i.e. Prob(Gene=ON|Factor=OFF)=FDR. If the deleted TF is an inhibitor with binding evidence, we set 3 

Prob(Gene=ON|Factor=OFF)=1-FDR, as shown in Figure 1B. In contrast, the TF influences of indirect 4 

interactions were unconstrained (IDREAM) or had conditional probabilities inferred using the expression 5 

datasets (IDREAM-hybrid). Then the constraints on the corresponding reaction flux were Vmax
.
Prob, where Vmax 6 

was derived by flux variability analysis (and thus represents the effective Vmax based on constraints throughout 7 

the network). The implementation of the IDREAM method for yeast can be downloaded as supplemental Script 8 

S1.  9 

Experimental growth rate for TF knockouts in Saccharomyces cerevisiae 10 

Fendt et al. (48) systematically measured growth rates in 119 transcription factor deletion mutants of 11 

Saccharomyces cerevisiae under five growth conditions. Since low pH and high osmolarity cannot be simulated 12 

with FBA, we took the growth rates of 119 mutants under three conditions: glucose with ammonium as nitrogen 13 

source, galactose with ammonium as nitrogen source, and glucose with urea as nitrogen source. 14 

Matthews correlation coefficient for evaluation of gene essentiality prediction 15 

The agreement between model gene essentiality predictions and the reference lists was quantified using the 16 

Matthews Correlation Coefficient (equation 1) (52), a metric that considers true positive, true negative, false 17 

positive, and false negative predictions without any assumption of the frequency of observations in the reference 18 

dataset. MCC ranges from -1 (when model predictions are the exact opposite of the reference dataset) to +1 19 

(when model predictions match the reference data set).  20 
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MCC =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (1) 

Where true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) are defined based 1 

on the measurement by (48). A true positive prediction is one in which the model predicts that a gene is essential 2 

for growth, and the gene has also been annotated as essential.  3 

Pearson correlation coefficient for evaluation of growth predictions 4 

Experimentally determined yeast growth rates that have been normalized to wild-type growth rates (48) were 5 

compared to growth rates predicted by the metabolic models. The reported Pearson product-moment correlation 6 

(71) measures the linear correlation between the predicted and experimentally determined growth rates for yeast 7 

strains. Aggregate predictions were made by concatenating the lists of predictions for all three models and 8 

comparing to the appropriate experimentally determined growth rates. Thus, if each of the three models makes a 9 

different growth rate prediction for the same yeast strain, then that yeast strain will be represented three times in 10 

the aggregate calculation. 11 

Prediction of interacting pairs of genes encoding TFs and metabolic genes 12 

Synthetic lethality or sickness occurs when the combination of two gene deletion results in reduced fitness and 13 

can identify buffering relationships where one gene can compensate for the loss of another (57). We predicted 14 

these synthetic relationships based on the variation of growth rates between single and double deletions. We 15 

calculated the difference in growth rates between single_TF_deletion and double_TF_gene_deletion, 16 

represented as Diff1, and the difference in growth rates between single_gene_deletion and 17 

double_TF_gene_deletion, represented as Diff2. Then, we defined the variation between single and double 18 
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deletions by taking the average of Diff1 and Diff2 divided by the wild-type growth rate. The higher variation 1 

means that either the particular TF or metabolic gene is not essential for growth, while double deletion of this 2 

pair will decrease growth a lot. We identified 39 synthetic lethal or sick pairs of TFs and metabolic genes by 3 

setting the variation to greater than 90%. Moreover, most synthetic interacting pairs resulted in no growth, but 4 

single deletion of the corresponding TF or gene can maintain at least 95% of the wild-type growth. 5 

We validated the predicted synthetic lethal or sick pairs by experimental growth assay. Saccharomyces 6 

cerevisiae single deletion strains were from the yeast deletion haploid collection (BY4742; Invitrogen). All 7 

double deletion strains were haploids generated by mating corresponding single deletion strains from the same 8 

library or from the BY4741 collection (Invitrogen), followed by tetrad dissection and selection by G418 9 

resistance and PCR.  10 

ODELAY validation of synthetic lethal or sick pairs of TFs and metabolic genes 11 

ODELAY was used to provide objective measurements of yeast growth defects (59). Yeast strains were cultured 12 

in YPD media in 96 well plates overnight. Cultures were diluted to an OD600 of 0.09 and allowed to grow for 6 13 

hours at 30C. The cultures were then diluted to an OD600 of 0.02 and spotted onto YEP agarose media with 2% 14 

glucose. In ODELAY, colonies growing from individual cells are imaged and tracked using time-lapse 15 

microscopy for 48 hours with 30 minute intervals between images (59). All images were collected on Leica 16 

DMI6000 microscopes with a 10X 0.3NA lens using bright field microscopy. Colony area measurements are fit 17 

to the Gompertz function to estimate the colony doubling times. Between 100 and 300 cells growing into 18 

colonies were observed per strain. Estimated doubling times inform a confidence score identifying double 19 

deletion strains with synthetic growth defects (i.e. defects more severe than expected from the growth rates of 20 
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constitutive single deletion strains). More details about the ODELAY analysis are available in the 1 

supplementary table (Figure S5) as well as the raw data (Table S7) and analysis script (Script S2). 2 
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 14 

Figure legends 15 

Figure 1. Strategy for IDREAM on integration of an EGRIN TRN with a metabolic model. 16 

A. Principle illustration of combining EGRIN and PROM for building an integrated model of a 17 

metabolic network and its corresponding gene regulatory network. 18 

B. Comparison of three integrative models: PROM, IDREAM, IDREAM-hybrid.  19 
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C. Detailed illustration of probability constraints in an IDREAM model. The direct and indirect 1 

interactions are represented using solid and dashed lines, respectively. For activators (red), we set 2 

the probability to Prob(Gene=ON|Factor=OFF)=FDR. For inhibitors (blue), we set 3 

Prob(Gene=ON|Factor=OFF)=1-FDR. The constraints on the reaction flux were Vmax
.
Prob. For 4 

indirect interactions, no effects of TF knockout on flux constraints. 5 

Figure 2. MCCs between predicted and experimental growth changes across different media and at different 6 

thresholds for binarizing a call as “growth defect” or “no growth defect.” 7 

Under each condition, we calculated the ratio of growth rates between TF knockout and wild-type. 8 

When the ratio was lower than some particular threshold, the corresponding TF is considered growth 9 

defective. By adjusting the threshold of growth ratio from 0.1 to 0.95, the MCCs between prediction 10 

and measurement were derived. 11 

Figure 3. ROC curves for growth defect predictions using IDREAM and PROM on Yeast6 model. 12 

A. Threshold is 0.5 for binarizing a call as “growth defect” or “no growth defect”  13 

B. Threshold is 0.2 for binarizing a call as “growth defect” or “no growth defect” 14 

Figure 4. MCCs by different integrative models using different thresholds of growth ratio determining growth 15 

defect. Y6, Y7, and iMM904 refer to the Yeast metabolic models Yeast 6, Yeast 7, and iMM904 16 

respectively. 17 

Figure 5. Synthetic growth defect interactions identified by IDREAM.  18 
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A. Growth defect confidence scores  measured by ODELAY. Beyond the genetic interactions 1 

between OAF1 and genes encoding components of the pyruvate dehydrogenase (PDH) complex, 2 

ODELAY also validated the predicted genetic interaction between CIN5 and GRX5, but did not 3 

confirm the remaining 3 of the 9 predictions. 4 

B. ROC curve describing identification of IDREAM or control strains based on ODELAY scores. 5 

 6 

Tables 7 

Table 1. Comparison of PROM and IDREAM predicted growth ratio with experiments under glucose 8 

minimal medium. 9 

The ratio of mutant vs. wild-type growth rate was compared with the growth ratio for 119 TF knockouts 10 

previously measured by Sauer Lab. There were 51 TFs in common between the two integrative models, so 11 

we distinguish PROM by TF90 (the whole YEASTRACT-based model) and TF51 (the portion of the 12 

YEASTRACT-based model that overlaps with that from IDREAM). 13 

Integrative model Correlation p-value Sum of squared error Normalized sum of squared error / permutation p-value  

PROM_TF90 0.2110 0.0459 4.298 0.205 / 0.029 

PROM _TF51 0.1712 0.2297 3.566 0.249 / 0.144 

IDREAM-hybrid 0.4183 0.0020 2.481 0.118 / 0.004 

IDREAM 0.4325 0.0014 2.506 0.121 / 0.003 

 14 

 15 
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Table 2. Comparison of mean absolute residuals for IDREAM and PROM aggregating different yeast models. 1 

The first column shows three different yeast metabolic models, aggregate refers to the predictions for all three 2 

models taken together. Column 2-4 show the Pearson correlation coefficient, p-value, and mean absolute 3 

residuals difference between predicted and actual growth by IDREAM and IDREAM_hybrid model. Column 4 

5-7 show the Pearson correlation coefficient, p-value, and mean absolute residuals difference by PROM_TF51. 5 

Column 8 ‘vs.res.pVal’ represents the significance of difference in correlations between the two IDREAM 6 

models and the PROM model. P-values were calculated using a Fisher’s Z transform. IDREAM_h means the 7 

IDREAM_hybrid model. 8 

Model IDREAM IDREAM.p IDREAM.meanAbsDif PROM PROM.p PROM.meanAbsDif vs.res.pVal 

Y6 0.4325 0.0014 0.1871 0.1712 0.2297 0.3501 0.0099 

Y7 0.2724 0.0507 0.2388 0.1386 0.3321 0.3739 0.0447 

iMM 0.3689 0.0071 0.2348 0.2261 0.1106 0.3665 0.0487 

Aggregate 0.3546 0.0000 0.2202 0.1781 0.0276 0.3635 0.0001 

Model IDREAM_h IDREAM_h.p IDREAM_h.meanAbsDif PROM PROM.p PROM.meanAbsDif vs.res.pVal 

Y6 0.4183 0.0020 0.1972 0.1712 0.2297 0.3501 0.0139 

Y7 0.1733 0.2193 0.2974 0.1386 0.3321 0.3739 0.2527 

IMM 0.3202 0.0206 0.2602 0.2261 0.1106 0.3665 0.1084 

Aggregate 0.2973 0.0002 0.2516 0.1781 0.0276 0.3635 0.0028 

 9 
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Supplemental files 1 

Figure S1. Composition of the integrated models PROM and IDREAM. 2 

A. The number of transcription factors in PROM and IDREAM. ‘Match_measuredTF’ is the number 3 

of TFs having a corresponding phenotype in Fendt’s experiment for 119 TF mutants. 4 

‘Match_17defectTF’ is the number of TFs out of the 17 defect-inducing TFs that are involved in 5 

the two integrated models.  6 

B. The log value of number of regulatory interactions and metabolic genes in PROM and IDREAM. 7 

Figure S2. ROC curves for growth defect predictions with series of different thresholds using IDREAM and 8 

PROM on Yeast6 model. Across 16 different thresholds, the AUC value is significantly higher for 9 

IDREAM (mean = 0.67) than PROM (mean = 0.58).  10 

Figure S3. ROC curve of IDREAM and PROM built on different yeast metabolic models (threshold=0.5). 11 

There are no significant differences by the three yeast models. 12 

Figure S4. Predicted growth ratios for double deletions of TFs and metabolic genes using the IDREAM model. 13 

Each row represents a metabolic gene, and each column represents a gene encoding a TF. 14 

Figure S5. The analysis of double knockout strain phenotypes by ODELAY. Estimated doubling times inform a 15 

confidence score identifying double deletion strains with synthetic growth defects. The first 16 

columns shows the metric and plate, such that ‘Mean.1’ means that for replicate 1, the average 17 

growth rate of many colonies was estimated using the mean and ‘Geometric Mean.2’ means that for 18 

replicate 2, the average growth rate was calculated using the geometric mean.  ‘# Exp’ and ‘# 19 

Control’ refers to the number of strains in the experiment and control sets (respectively) where the 20 
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growth rate in the double deletion was significantly less than that expected by adding together the 1 

growth rates for single deletions. ‘Mean Exp’ and ‘Mean Control’ are the mean growth decrease in 2 

growth rate beyond that expected from adding together the single deletion decreases in growth rate 3 

for the experimental and control sets (respectively).  ‘Fisher p-Val’ uses a Fisher’s exact test to 4 

compare the ‘# Exp’ to the ‘# Control’ while ‘T-test p-Val’ uses the measured magnitudes of the 5 

synergistic growth defects. 6 

 7 

Table S1. Flux variability for models with “frozen” state of fluxes constrained by each TF perturbation 8 

Table S2. Significance test on MCC of IDREAM by randomly permuting the expression data and TF-gene 9 

interactions.  10 

Table S3. Predicted growth ratio for TF knockouts using CLR-inferred regulatory network to link with the 11 

Yeast6 metabolic model. 12 

Table S4. The comparison of AUC for growth defect predictions with series of different thresholds using 13 

IDREAM and PROM on Yeast6 model. 14 

Table S5. Growth predictions with IDREAM by aggregate correlation. 15 

Table S6. Yeast regulatory network from the YEASTRACT database and inferred by EGRIN. 16 

Table S7. The raw doubling times for individual colonies as measured by ODELAY.  17 

 18 
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Script S1. The implementation of the IDREAM method. 1 

Script S2. The R script for analysis of the results by ODELAY. 2 
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