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Abstract

In this note, we combined pediatric sarcoma data from Columbia
University with adult sarcoma data collected from TCGA, in order
to see if one can automatically discern a unique pediatric cluster in
the combined data set. Using a novel clustering pipeline based on
optimal transport theory, this turned out to be the case. The overall
methodology may find uses for the classification of data from other
biological networking problems.

1 Introduction

The present note describes a novel method for data clustering applied to the
classification of pediatric sarcoma data. Namely, in this work, we combined
two data sets: the first consisting of the gene expression of predominantly
pediatric sarcoma patients, and the second consisting of the gene expression
of adult sarcoma patients taken from the The Cancer Genome Atlas (TCGA)
database. We then wanted to see if one could discern some quantifiable
difference between the pediatric and adult cases.
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Accordingly, we applied a method based on the Earth Mover’s Distance
(EMD) to the data; see Sections 2 and 4 below for all the details. Briefly,
the proposed pipeline constructs a weighted graph based on the network
topology inferred from the Human Protein Reference Database (HPRD),
and then treating the graph as a Markov chain, constructs the invariant
(stationary) measure, computes the pairwise distances via EMD among all
the networks, and then represents the resulting distance matrix as a heat
map. Other than an outlier (see Section 3 below), our method was able to
segregate the pediatric cases from the adult cases, i.e., we found two rather
distinct clusters.

We should note that ideas based on the Earth Mover’s Distance (also known
as the Wasserstein 1-metric [19, 26, 27]) have already been applied in study-
ing various properties of cancer networks. In particular, the Wasserstein
1-metric leads to a notion of curvature [17] that turns out to be positively
correlated with network robustness; see [1, 20]. This geometric network ap-
proach to studying cancer, led to some work indicating that cancer networks
are more functionally robust than their normal counterparts [20)].

The EMD (and more generally optimal mass transport theory) is very natu-
ral for studying the properties of various weighted graphs modeling biological
networks, since it gives a natural metric between probability distributions.
Its use has become very widespread in recent years being employed for prob-
lems in communications, finance, engineering, and biology [6, 19, 26, 27].
This work continues this line of research, by using the distance to cluster
biological data.

Finally, we believe that the overall pipeline can be more generally applied in
clustering many different types of network data (represented as a weighted
graph). We note that we associate the invariant measure to each individual
network in the class of data to be classified, and then apply the EMD.
This is a distinct advantage since no preprocessing is necessary, other than
normalizing the weighted graphs to ensure that they define a Markov process

[13].
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2 Results

2.1 Data

The gene expression data sets used in the present work, consist of two parts.
The first part includes the gene expression of 27 patients diagnosed with
pediatric-associated sarcoma and treated at Columbia University Medical
Center (CUMC). Informed and signed consent for clinical and research se-
quencing was obtained in the context of the pediatric precision medicine
program (PIPseq) established at CUMC and under the CUMC Institutional
Review Board (IRB)-approved protocol AAAN8404 [15]. The second part
was downloaded from The Cancer Genome Atlas (TCGA) database, cover-
ing the gene expression data of 265 adult patients. We have one sample per
patient for both of them, so 292 samples in total. The data sets were nor-
malized utilizing one of the standard methods for treating RNA-Seq counts
data via the variance-stabilizing transformation (VST) in the DESeq2 pack-
age for R [11]. This normalization was done amongst all of the 292 sarcoma
samples.

The network topology (graph adjacency matrix) was constructed using in-
teraction information from the Human Protein Reference Database (HPRD)
[18]. Specifically, we took the intersection of the genes that appear in both
HPRD data and the gene expression data, and then kept the largest con-
nected component. After discarding the redundant genes, we arrived at a
gene regulatory network with 8844 nodes (genes) and 34926 edges (interac-
tions). The average and median degrees are 7.9 and 4, respectively.

2.2 Weighted graph and invariant measure

We constructed a weighted graph for each sample using the mass action
principle [25]. In particular, for given gene expression {x; >0 | 1 <i<n}
the weight p;; on the edge (7,7) is defined as

Dii = Ly
Y ZkeN(i) Tk

for any j € N(i). Here n = 8844 is the number of nodes and NN (i) denotes the

set of neighbors of the node i. Note by construction the matrix P = [Pijmjzl

is a stochastic matrix and satisfies that p;; = 0 if the edge (4, j) doesn’t exist.

(1)
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The stochastic matrix P defines a Markov chain [13] on the gene regulatory
network. Different properties such as entropy and curvature have been con-
sidered for this object to study robustness of cancer network [20, 29]. Here
we consider the invariant measure (stationary distribution) of this Markov
chain. The Markov chain describes the information flow between genes.
When the underlying network is connected, the system will eventually reach
an equilibrium and this equilibrium is described by the invariant measure.
Mathematically, it is a probability vector w satisfying

P =m. (2)

Thus 7 is a left eigenvector of P with non-negative entries that sum to 1.
The value m; at node ¢ reflects the portion of contribution of that node to
the entire network. In other words, the invariant measure 7 is a centrality
measure of the significance of different genes.

In general, to obtain the invariant measure, one needs to solve the linear
equation (2). However, for the specific stochastic matrix in (1), 7 has the

explicit structure
1
i = ST Z T (3)
JEN()
where Z is a normalization factor (partition function) forcing 7 to be a
probability vector.

The expression (3) is very interesting. Note that the value of m; at node i
reflects the significance of gene ¢ in the gene regulatory network. It consists
of two components: the gene expression level x; of gene 7 and the total gene
expression of its neighbors Zje N() Tj- In other words, the invariant
measure captures the key property that a gene is important if its
expression level is high and it interacts with many other genes.

2.3 Optimal transport on graphs

Consider a connected undirected graph G = (V,€) with n nodes in V and
m edges in €. Given two densities p¥, p! € R™ on the graph, the original
formulation of the optimal transport problem seeks a joint distribution u €
R™" of p° and p' minimizing the cost the total cost Cijltij, that is,

n
Wi (p% p') = min S cijpi |Y ik =p0 > g =pj Visj . (4)
ij=1 k k
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Here ¢;; is the cost of moving unit mass from node 7 to node j and is taken to
be the minimum of the number of steps to go from i to j. For example, if the
edge (i,7) exists, then ¢;; = 1. The minimum of this optimization problem
defines a metric W; (the Earth Mover’s Distance) on the space probability
densities on . An alternative formulation is defined on the fluxes ©v € R™
on the edges. Let D € R™ ™ be the oriented incidence matrix of G, then

W1<p0,p1>=mgn{2|uz-r | PO—PI—DUZU}- (5)

i=1

Note that the incidence matrix D = [d;;] € R™*™ is defined by associating
an orientation to each edge ep = (i,5) = (j,i) of the graph: one of the
nodes 4, j is defined to be the head and the other the tail, and then we set
di, = +1(—1) if ¢ is the head (tail) of e; and 0 otherwise. Compared to
(4), which has n? variables, the above formulation has only m variables. It
may greatly reduce the computational load when the graph G is sparse, i.e.,
m << n?. This is the case in our data sets, where n = 8844 and m = 34926.
In implementation, we used the standard convex optimization package CVX
[3] written in Matlab, in order to numerically solve (5).

2.4 Clustering of sarcoma data

We define a distance function between different gene expression data sets
using optimal transport theory on graphs. More specifically, we define the
distance between two gene expression data sets to be the W; optimal mass
transport distance between the two invariant measures induced by the gene
expressions as in (3). This distance Wj can be computed through convex
programming [0, 19]. We computed the W distances between each pair of all
the 292 samples (27 pediatric sarcoma and 265 adult cancer). The heat map
of the resulting distance matrix is as shown in Figure 1. The samples clearly
split into two clusters; one cluster for the 27 pediatric sarcoma samples and
one cluster for the 265 adult cancer patients.

To visualize more clearly the two clusters, we truncate the distances using
some threshold: set the value to be zero if the distance is less than the
given threshold and one otherwise. The results with threshold value 0.075
and 0.1 are depicted in Figure 2 and 3, respectively. Note that there is a
small gap between these two clusters, which indicates that the last sample
in the pediatric sarcoma is an outlier. Figure 4 is a 3D plot of the distance
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Figure 1: Heat Map Showing Pediatric Cluster

matrix, from which we can see an obvious difference that distinguishes this
outlier from the rest of the sarcoma samples. The clusters and the outlier
can be also seen based on the histograms. Figures 5-7 are the histograms
of the distances within the pediatric sarcomas, within the adult sarcomas,
and between these two age groups, respectively. Apparently the distances
within the two groups (pediatric, adult) are smaller than the distances be-
tween them. In particular, the average distances within the two groups are
0.0891,0.0665 while the average distance between them is 0.1366. The dis-
tance between the outlier and the other samples is shown in Figure 8, with
mean value 0.2424, which is significantly larger than the average. See our
discussion in the next section for further analysis of these results.
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Figure 2: Heat Map Showing Pediatric Cluster with threshold value 0.075

3 Discussion

Sarcomas represent a heterogeneous group of malignant solid tumors of con-
nective tissue. Sarcomas comprise approximately 1.5% of all malignant tu-
mors diagnosed in adults and over 7% of cancers in children [7]. Although the
diversity of sarcoma subtypes can be encountered across the age spectrum,
there exists a pattern of sarcoma subtypes that significantly distributes
between adults and children. For example, osteosarcoma and Ewing sar-
coma (malignant bone tumors) are predominant in children and early adults,
whereas undifferentiated pleomorphic sarcoma (previously called malignant
fibrous histiocytoma), liposarcoma and leiomyosarcoma are extremely rare
in children [16, &].

In addition to the observation that particular sarcoma subtypes predominate
in either childhood or in adulthood, there are also differences in the clinical
outcomes of adult and childhood sarcoma patients that extend beyond the
differences in treatment regimens between adult and childhood sarcomas
[1, 2,8, 21]. With the emergence of next-generation sequencing technologies,
we are afforded the opportunity to evaluate the biologic differences between
pediatric-associated and adult-associated sarcomas.
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Figure 3: Heat Map Showing Pediatric Cluster with threshold value 0.1

In our analysis of 27 sarcoma cases treated at CUMC, only 26 of the 27
original cases would be categorized as a pediatric-associated sarcoma. In-
terestingly, one case originally included in the pediatric set segregated as an
outlier. This case represents a 25 year old female with a history of multiply
relapsed, metastatic alveolar soft part sarcoma (ASPS). ASPS is a rare sar-
coma subtype comprising 0.2-0.9% of all soft tissue sarcomas [11]. ASPS is
extremely rare in childhood, and is more commonly diagnosed in adolescence
and young adulthood (15-35 years of age) [7].

A second adult case included in the pediatric cohort is from a 38 year old
male with metastatic synovial sarcoma. In contrast to the previous adult
cases of ASPS, this case segregated with the pediatric cohort. Synovial sar-
coma is a soft tissue sarcoma with a peak incidence in the 3rd decade of
life, and with about 1/3 of cases occurring within the pediatric age range
[23]. Synovial sarcoma is more common than ASPS and is the most fre-
quent non-rhabdomyosarcomatous soft tissue sarcoma in adolescents and
young adults [28]. Although historical differences in the approach to ther-
apy between pediatric and adult oncologists have existed for the treatment
of sarcomas and other tumors, there has been acknowledgement in the adult
oncology community of the clinical utility of pediatric-based regimens for
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Figure 4: 3D Plot Showing Pediatric Cluster

the treatment of sarcomas occurring in adulthood [5, 22]. However, despite
use of more dose-intense chemotherapeutic approaches to the treatment of
sarcomas in adulthood, pediatric-associated sarcomas diagnosed and treated
in adulthood continue to have inferior outcomes compared to treatment in
childhood [9, 10].

These observations suggest that there may exist age-dependent differences
in the biology of sarcomas. However, it is unclear what the thresholds for
age may be that would contribute to differential responses to treatment and
clinical outcome as the cutoffs for age and the definition of “adult age” has
varied in the literature. The results from this analysis suggest that the sar-
coma subtype may supersede, in this instance, the contribution of age to the
biologic behavior and genomic signature. So from this classification scheme,
it seems that there are indeed biologic differences between sarcoma subtypes
that are generally associated with childhood (such as synovial sarcoma) ver-
sus those more commonly associated with adulthood (such as ASPS), and
provides a rationale for the use of pediatric regimens for the treatment of
these diseases regardless of the patient’s age.

Genomic characterization of a larger cohort of pediatric-associated and adult-
associated sarcomas will be imperative in specifically clarifying the genomic
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Figure 5: Distances within the Pediatric Cluster
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Figure 6: Distances within the Adult Cluster

lesions that result in the clinical differences in behavior of sarcomas across
the age spectrum. In any event, we did manage to cluster 26 out of the 27
CUMC cases from the TCGA data using our methodology.

We should finally note that the pipeline sketched in Figure 1 is quite general
and may be quite useful in clustering various biological networks. These
typically may be represented as weighted graphs, and thus after suitable
normalization as Markov chains for which there exist the corresponding sta-
tionary measures. Optimal mass transport theory realized by the Earth
Mover’s Distance seems to be an ideal tool for capturing distances among
these measures, and thus leads to a natural clustering/classification frame-
work.

10
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Figure 8: Distances between the Outlier (PIP13-81192) and the other Sam-
ples

4 Methods

4.1 Overall Sketch

Figure 9 illustrates the overall pipeline of the clustering methodology de-
scribed in the previous sections. The basic idea is that once one has de-
fined the network topology (in this case via the Human Protein Reference
Database), and the weights connecting the nodes (derived here from the
mass action principle), one can use in a straightforward manner an invari-
ant of each network, and then compute the distance matrix defined by the
EMD or Wasserstein 1-metric. In the next section, we will review the defi-
nition and properties of this central mathematical object underpinning our
analysis.

11
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Figure 9: Overall Sketch of Method

4.2 FEarth Mover’s Distance

In this section, we briefly review the Earth’s Mover’s Distance (EMD) from
optimal mass transport theory, the key method on which all the previous
results were based. The classical Earth Mover’s Distance was formulated by
Monge in 1781 to solve the problem of moving a pile of soil to a excavation
site with the least amount of work relative to some cost. See Figure 10. For
full details and a long lists of references, see the monographs [19, 26, 27].

Mathematically, we let p° and p' denote two probability densities on R™.
This means that p’ : R™ — R with p’ > 0 for i = 0, 1, such that

/m P(x)dr = /m pl(x)dr = 1.

Then the Earth Movers’ Distance (also called the Wasserstein 1-metric, W)

12
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Figure 10: Classical Earth Mover’s Problem

between them is

Wi p") = min / e — yllu(de, dy), (6)
LEII(p%,p1) JRM xR™

where IT(p°, p!) denotes the set of couplings between p® and p'. The Wasserstein-
1 distance has the dual formulation [(]

W1<p0,p1>=sup{ F@)(0°(x) = ' (2))dz | ||f||ups1}. G
f R™
Here

@) = f)l
I fllzip - ii‘; P

Clearly when f is differentiable, ||f||ri;p < 1 is equivalent to ||V, f|| < 1. So
formally, the above can be rewritten as

W) =sp { [ 0)6e) — s | 191 <1} 9
One can then take the dual once again, i.e., starting from (8), one sees that
Wi, o) = in { [ @l | 60— p 9, = o} o

u R™

13
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of Wi with flux u being the optimization variable.

As described above, using this “dual of the dual” formulation applied to
sparse graphs, one gets a tremendous saving in computational burden since
equation (6) involves solving systems on the order of the square of the num-
ber of nodes, while equation (9) is of the order of the number of edges.
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