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Abstract

DNA methylation is involved in regulation of gene expression. Although modern methods
profile DNA methylation at single CpG sites, methylation levels are usually averaged
over genomic regions in the downstream analyses. In this study we demonstrate that
single CpG methylation can serve as a more accurate predictor of gene expression
compared to average promoter / gene body methylation. CpG positions with significant
correlation between methylation and expression of a gene nearby (named CpG traffic
lights) are evolutionary conserved and enriched for exact TSS positions and active
enhancers. Among all promoter types, CpG traffic lights are especially enriched in poised
promoters. Genes that harbor CpG traffic lights are associated with development and
signal transduction. Methylation levels of individual CpG traffic lights vary between
cell types dramatically with the increased frequency of intermediate methylation levels,
indicating cell population heterogeneity in CpG methylation levels. Being in line with the
concept of the inherited stochastic epigenetic variation, methylation of such CpG positions
might contribute to transcriptional regulation. Alternatively, one can hypothesize that
traffic lights are markers of absent gene expression resulting from inactivation of their
regulatory elements. The CpG traffic lights provide a promising insight into mechanisms
of enhancer activity and gene regulation linking methylation of single CpG to expression.

Keywords

Regulation of transcription, DNA methylation, enhancers, CAGE, chromatin states,
CpG traffic lights

1/23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2017. ; https://doi.org/10.1101/095968doi: bioRxiv preprint 

https://doi.org/10.1101/095968
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 1

Epigenetic regulation of gene expression attracted a lot of research attention over 2

the last decade with cytosine methylation being probably the most well-investigated 3

mechanism. DNA methylation is linked to many normal and pathological biological 4

processes: organism development, cell differentiation, cell identity and pluripotency 5

maintenance (reviewed in [23, 42, 61]), aging [7], memory formation [15, 44], responses to 6

environmental exposures, stress and diet [25,33,45]. There is an increasing evidence of 7

abnormalities in DNA methylation present in various diseases, including metabolic [10], 8

cardiovascular [67], neurodegenerative [53, 65] diseases and cancers (reviewed in [4]. 9

For about a decade, DNA demethylating drugs (Decitabine, Azacytidine) are used in 10

clinic for the treatment of acute myeloid leukemia and myelodysplastic syndrome [9]. 11

Recent advances in site-specific editing of DNA methylation [56] suggest the possibility 12

of exploring DNA methylation as a promising target for non-invasive therapies against 13

many diseases linked with aberrant methylation. 14

Functionally, DNA methylation of the promoter region is tightly associated with the 15

repression of transcription initiation, while methylation of the gene body, on the contrary, 16

increases with the the increased expression intensity (reviewed in [26]). Enhancers, 17

distant regulatory regions, that contribute to the establishment of the correct temporal 18

and cell-type-specific gene expression pattern, have been shown to initiate transcription 19

of short RNAs by PolII [27]. Therefore, it is no surprise that DNA methylation might also 20

regulate the enhancer function as well [19,29,48]. Recent studies support the role of DNA 21

methyltransferase in enhancer-associated transcription [50]. The enhancers locations 22

are more difficult to determine genome-wide than those of genes. Some progress in this 23

direction has been made with the use of histone modifications profiles, transcription 24

factor binding or DNase I hypersensitive sites (DHSs) (reviewed in [57]) or the presence 25

of balanced bidirectional capped transcripts (CAGE) [1]. Yet, due to the difficulties in 26

localization of enhancers, the role of their methylation is not completely clear. 27

It is important to emphasize that epigenetic profiles vary between cells that belong 28

to the same organism and therefore share the same genetic background. The majority of 29

these epigenetic differences are established during development and can be explained 30

by cell types and tissues in a multicellular organism. Yet, an epigenetic heterogeneity 31

has been observed in the normal tissues of inbred laboratory mice [22] and at the level 32

of single cells [13], suggesting stochasticity in the epigenetic profiles intrinsic to some 33

genome loci but not others [14]. The effect of genome-wide epigenetic stochasticity for 34

gene expression has not been addressed so far in fine details [13]. 35

Contemporary methods to study DNA methylation based on bisulfite sequencing allow 36

detection of single cytosine methylation. Yet, at the step of downstream bioinformatic 37

analysis, methylation levels of several dozens of cytosines are usually averaged with the 38

aim to increase statistical power [5,28]. However, several examples show that changes 39

in methylation of a single CpG affect gene transcription [36]. Recently, we have shown 40

that methylation levels of particular single CpGs are tightly linked to expression for 41

specific cases [40]. We have called such positions CpG traffic lights (CpG TL) and 42

have demonstrated a strong negative selection against them in transcriptional factor 43

binding sites. In this study we show enrichment of CpG TL in transcriptional start sites 44

(TSS), in particular, in poised promoters, enhancers and regions with active chromatin 45

marks, suggesting additional mechanism of transcriptional regulation. Also, a study of 46

methylation at the level of a single CpG dinucleotide allows one to address the issue 47

of methylation heterogeneity. Although allele-specific methylation, being a result of 48

intra individual variations, may contribute to observed methylation heterogeneity, its 49

contribution is reduced when samples from non-related individuals are studied together. 50

So technical errors aside, intermediate values of methylation, show regions of high cell 51

population heterogeneity. Here, we report a high level of cell population heterogeneity 52
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of methylation levels in CpG TL suggesting a novel flexible yet abundant mechanism of 53

transcriptional regulation. 54

Results 55

CpG traffic lights determination 56

As has been shown many times, DNA methylation of a promoter can repress a corre- 57

sponding gene. Nevertheless, correlation between gene expression and methylation of 58

its promoter or body is not straightforward, suggesting the need to deconvolute DNA 59

methylation profiles into the regions smaller than promoters. For this purpose, we focus 60

on a methylation level of particular CpGs to investigate the link between methylation 61

and expression. Following the logic previously reported in our works [40,47] where we 62

used the reduced set of CpGs in the RRBS data, we expanded our previous approach and 63

use whole-genome DNA methylation data (bisulfite sequencing, WGBS) and expression 64

(RNA-seq) levels for 40 normal human primary cells and tissues from the Roadmap 65

Epigenomics Project. We define CpG traffic lights as CpG dinucleotides with significant 66

Spearman correlation coefficient (SCC) between DNA methylation and expression levels 67

of a neighbouring gene (FDR < 0.1, Fig. 1). 68

Figure 1. Schematic representation of a CpG traffic light determination.
Left panel. Suppose we analyze a particular genomic region (chr1:123..11654), which
contains for simplicity one gene, for 6 cell lines. For each CpG in this region and the gene
we have methylation and expression vectors, respectively. CpG positions are represented
by dark blue lollipops (filled: methylated CpG, empty: unmethylated CpG). First three
CpGs are located within the promoter region, while the last three are located in gene
body. Gene expression or lack of it is represented by green arrows. Right panel. A
yellow column shows methylation of a random CpG (used as a background), methylation
vector of this CpG demonstrates low correlation with gene expression (green box on
the right, in RPKM). Correlation between an average promoter/gene body methylation
(shown in light blue and light purple columns, respectively) and the corresponding
gene expression is also low. However, for CpG TL (shown in red), methylation level
significantly correlates with gene expression.

Here we state that the average methylation of promoter/gene body less frequently 69

demonstrate a significant correlation with gene expression compared to the methylation 70
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of CpG TL, even then a proper multiplicity correction applied in each case. In particular, 71

at the level of FDR < 0.1 we find only 44/58 genes for which average promoter/gene 72

body methylation vectors correlate with expression vectors, while at the same level of 73

significance we observe 6153 genes to correlate well with methylation levels of CpG TL. 74

Other levels of significance demonstrate similar tendency (Table 1). 75

Table 1. Number of genes which have significant correlation between expres-
sion and methylation. Note: for multiplicity testing correction the number of genes
was used in (1) and (2), while number of all CpG positions in each studied gene was
used for the same purpose in (3). The (TTS) refers to a Transcript Termination Site.

FDR-corrected p-value
(significance level)

Total number of genes, which have signifi-
cant correlations between gene expression
and methylation
average
methylation of
promoter
regions
(-1000..500) (1)

average
methylation of
gene bodies
(+500..TTS) (2)

methylation of
CpG TL (3)

0.05 0 11 2706
0.1 44 58 6153
0.2 300 406 12,040

Among CpG TL, defined above (FDR < 0.1), the majority of those located in 76

promoters demonstrate negative SCC, while the majority of those located in intron 77

demonstrate positive SCC, and CpG TL in exons demonstrate similar number of both 78

positive and negative SCC (Fig. 2). CpG TL are uniformly distributed along the genome 79

(Manhattan plot, Supplementary Figure S1). 80

Figure 2. The distribution of SCC in the CpG TL. The total number of CpG
TL in promoters, exons and introns are present at the bottom. Green (left) / pink (right)
parts of the violin plots show the distribution of positive and negative SCC, respectively.
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CpG traffic lights are associated with highly heterogeneous ge- 81

nomic regions 82

A single CpG position can be either methylated or not, resulting in 0 or 1 methylation 83

levels, in a diploid cell, allele specific methylation for some CpG positions can result 84

in the methylation levels of 0.5. Allele-specific methylation has been reported to affect 85

up to 10% of human genes [66] and is usually linked to genetic polymorphisms [58,66]. 86

Since the allele specific methylation is usually linked to SNPs, intermediate methylation 87

levels reported at the same genomic locations for several genetically unrelated samples 88

represent heterogeneity of methylation levels among individual cells at a given CpG 89

position. For the majority of CpG positions not detected as CpG TL (background CpGs, 90

CpG BG, see Methods section for details), the levels of methylation were close either to 0 91

or 1 in all studied cell types (Fig. 3a,b), demonstrating homogeneity of the methylation 92

levels in the cell population. At the same time the CpG TL with negative SCC between 93

expression and methylation, both located in promoters and gene body, are intermediately 94

methylated in many cell types (Fig. 3c,d). The similar tendency was observed for CpG 95

TL with positive SCC (Supplementary Figure S2). 96

Figure 3. The distribution of CpG methylation and corresponding gene
expression for CpG TL and background (negative SCC). The color represents
the density of points in logarithmic scale. The distribution is shown for (a) random
background, CpG BG in promoters (the number is equal to the number of CpG TL), (b)
random background, CpG BG in gene bodies, (c) CpG TL in promoters (-1000...+500),
(d) CpG TL in gene bodies (+500...TTS), (e) levels of 5hmC in CpG TL and CpG BG,
(f) levels of 5hmC for CpG TL with positive and (g) negative causality score between
DNA methylation and gene expression. Whiskers represent minimum/maximum out of
the 10 random background samples.

Since methylation levels of CpG TL are clearly more heterogeneous than that of 97

background CpG dinucleotides, we decided to test whether methylation of these positions 98

is also more dynamic in time. As a proxy of methylation dynamics we used levels of 99

hydroxymethylcytosine (5hmC). Although the functional role of 5hmC is not fully 100

elucidated, one of the most supported hypothesis is that 5hmC is an intermediate 101

product of active DNA demethylation [17]. In standard bisulfite conversion experiments 102

5hmC cannot be distinguished from its precursor 5mC [24]. To compensate for that we 103
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used Illumina 450K oxBS-array data [16]. We report that CpG TL are enriched for 5hmC 104

as compared to the CpG BG, supporting the idea of dynamic methylation in CpG TL 105

(Fig 3e). This dynamic methylation of the CpG TL, caught by the snapshot experiment 106

at different stages, might provide an explanation of the heterogeneity observed among 107

them. 108

As a next step we divided CpG TL into subgroups based on causality scores, which 109

allows one to computationally determine which of the vectors (methylation or expression) 110

is a causal variable (see the Methods section for details). In our case, positive causality 111

scores reflect cases where changes in DNA methylation cause the change in expression, 112

whereas negative values of causality score correspond to CpG positions for which levels 113

of methylation are a consequence of expression level. Surprisingly, it is mostly CpG 114

TL with negative causality scores that demonstrate enrichment of high concentrations 115

of 5hmC per site (Fig. 3g), which may suggest a positive feedback loop of the active 116

transcription that activates DNA demethylation. 117

CpG traffic lights are conserved across mammals and primates 118

To address functionality of CpG TL, we first investigate their evolutionary conservation. 119

CpG TL are enriched with conserved positions both in mammals and in primates, 120

estimated by GERP RS and PhyloP conservation scores, respectively (Fig. 4ab). Also, 121

CpG TL are depleted in polymorphisms from ExAC (Fig 4c), as well as in repetitive 122

sequences determined by both chromatin states (chromHMM, Fig. 4e) and repeatMasker 123

(Fig 5a). This is in agreement with Eigen non-coding scores being significantly higher 124

for CpG TL (Fig 4d). Moreover, gene enrichment analysis for GO terms shows that 125

CpG TL are linked to genes involved in development, cell-to-cell communication and 126

apoptosis (Table 2). Taken together, these results clearly suggest the functional role of 127

CpG TL in the genome. 128

Figure 4. Number of CpG TL and BG sites demonstrating evolutionary
conservation (a) in mammals and (b) in primates, (c) polymorphisms from ExAC,
(d) Eigen non-coding functionality score, (e) averaged across 127 cell types ratio of TL /
BG in chromatin states determined by chromHMM. Whiskers (abc) represent minimum
/ maximum out of the 10 random background samples. The color (e) reflects absolute
number of CpG TL located in the given chromatin state.
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Table 2. Enrichment of CpG TL in biological processes (www.pantherdb.org)

PANTHER
GO-Slim Biological
Process

Homo
sapi-
ens
(REF)

#
genes
with
CpG
TL

#
genes
ex-
pected

Fold En-
richment

+/-
P value

developmental pro-
cess

1938 627 451.14 1.39 + 2.11E-14

cellular process 8199 2160 1908.62 1.13 + 3.24E-11
cell communication 2674 787 622.47 1.26 + 1.21E-09

cell adhesion 481 190 111.97 1.7 + 1.57E-09
biological adhesion 481 190 111.97 1.7 + 1.57E-09
system development 1065 358 247.92 1.44 + 2.05E-09
signal transduction 2390 702 556.36 1.26 + 3.16E-08
nervous system de-
velopment

668 238 155.5 1.53 + 5.81E-08

cell-cell adhesion 305 124 71 1.75 + 1.43E-06
intracellular signal
transduction

991 312 230.69 1.35 + 2.46E-05

mesoderm develop-
ment

447 159 104.06 1.53 + 5.96E-05

ectoderm develop-
ment

405 142 94.28 1.51 + 5.32E-04

heart development 143 62 33.29 1.86 + 1.23E-03
cellular component
movement

413 137 96.14 1.42 + 1.03E-02

mitosis 372 122 86.6 1.41 + 4.05E-02
induction of apopto-
sis

85 38 19.79 1.92 + 4.12E-02

transcription co-
factors

906 288 121.56 2.37 + 1.80E-46

transcription fac-
tors

1636 413 219.50 1.84 + 2.20E-38

epigenetic regula-
tors

692 221 92.84 2.38 + 4.48E-36

histones 72 5 9.66 0.52 - 0.48

CpG traffic lights are enriched in transcription start sites, pro- 129

moters and enhancers 130

To specify the functional role of CpG TL we tested various different genomic markups 131

for the overrepresentation. We observe that CpG TL are enriched in all promoter types, 132

determined by chromHMM [11], including active, bivalent and poised promoters (Fig. 133

4e). Interestingly, the strongest enrichment was observed in poised promoters (>3.5 134

times). Since the poised or bivalent chromatin is thought to be able to easily switch 135

between active and repressed states [34], such enrichment may suggest a contribution of 136

CpG TL to the maintenance of the bivalent state of the chromatin. 137
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Figure 5. Frequency of CpG TL and CpG BG repeats (a), TSS determined
by CAGE (b), enhancers (c) and DNase hypersensitive sites (d). Whiskers represent
minimum/maximum out of the 10 random background samples. All differences are
significant (p− value < 5E − 5).

We also notice that CpG TL are highly enriched in all the chromatin states, corre- 138

sponding to transcriptional start site (TSS). To dig deeper, we use TSS, determined 139

by CAGE (Cap Analysis of Gene Expression), currently the most accurate technique 140

to determine exact locations of TSS [12]. We determine 3.5-fold overrepresentation 141

of CpG TL at the exact TSS position (Fig 5b). It should be noted that among all 142

the groups of CpG TL located at TSS, the biggest group with the most pronounced 143

overrepresentation over the background, has negative correlation and causality scores 144

(Supplementary Figure S3). Negative causality score represents that changes in levels of 145

expression drive the methylation levels, suggesting that for TSS regions methylation of a 146

CpG TL is a marker, not the cause of expression. 147

Our data also show that CpG TL are enriched in various regulatory regions, yet 148

the strongest enrichment is observed in enhancers, determined by CAGE bidirectional 149

transcription (Fig 5a) and by chromatin states (Fig 4). Although all the enhancers are 150

enriched for CpG TL, some types of enhancers are more prone to harbour them. We 151

detect that among all enhancer categories the most enriched are various stem cell and 152

hematopoietic cell enhancers (Fig. 6, Supplementary Table S1). All open chromatin 153

regions determined as regions sensitive to DNaseI are also enriched for CpG TL (Fig 4e, 154

5d). On the other hand, as we reported before [40], CpG TL are not enriched in TFBS, 155

if TFBS prediction is performed within the DNaseI sensitive regions. 156
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Figure 6. Functional categories of human enhancers enriched with CpG TL
(negative SCC).

Discussion 157

DNA methylation is tightly involved in regulation of gene expression in various normal 158

and pathological processes. Therefore, this regulatory mechanism is an attractive target 159

for therapies of the diseases with epigenetic abnormalities (reviewed in [52]). Modern 160

technologies based on bisulfite sequencing allow for detection of DNA methylation with 161

a single CpG dinucleotide resolution. Yet, at the stage of the downstream analysis 162

methylation levels are averaged over the large regions. In this work we demonstrate that 163

methylation profiles of particular single CpG dinucleotides (CpG TL) are more often 164

significantly correlated with gene expression as compared to average promoter / gene body 165

methylation even if for the multiplicity testing total number of CpG-gene pairs is used. 166

It is a surprising observation, since it is widely accepted that DNA methyltransferases 167

once bound to DNA move along [18] it or multimerize [59] methylating all neighbouring 168

CpGs unless a boundary protein, such as Sp1, is bound in their way (reviewed in [63]). 169

Yet, only a small fraction of CpG TL are located within the promoter and body of 170

the same gene. We speculate that local change in DNA methylation can be achieved 171

rather through active DNA demethylation, probably with the help of TET proteins, 172

since byproduct of active demethylation, 5hmC is found to be overrepresented in CpG 173

TL. However, a direct experiment, probably with the use of CRISPR/TALEN-based 174

technology, is required to validate this hypothesis. 175

CpG TL are evolutionary conserved in both mammal and primate lineage, suggesting 176

possible selection constraint, as well as depleted in SNPs, repeats and heterochromatin 177

regions, supporting the hypothesis of CpG TL functionality. Genes that harbor CpG TL 178

are associated with fundamental biological processes, such as development and signal 179

transduction. CpG TL are also enriched in open chromatin and various regulatory regions, 180
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in particular at the exact TSS positions and active enhancers, especially those detected 181

by bidirectional CAGE transcription [1]. This observation is in line with the recent 182

reports that DNA methylatransferases DNMT3a/b are associated with enhancers and are 183

important regulators of enhancer RNA production in hematopoietic stem cells [50]. Also, 184

distal regulatory regions can initiate transcription themselves, being in turn regulated 185

by DNA methylation [54], contributing to the similarity of TSS and enhcancers in terms 186

of CpG TL enrichment. 187

In the light of overrepresentation in regulatory regions, depletion of CpG TL within 188

TFBS is puzzling. One possible explanation would be that CpG TL are CpG dinucleotides 189

located within the enhancers but outside the sites of regulatory protein binding. In 190

this case, cytosine methylation accumulates as a consequence of the absence of TF 191

binding [60,64], which makes methylation of CpG TL not a primary cause, but just a 192

“passive” marker of absent gene expression resulting from inactivation of its regulatory 193

element. Still, CpG traffic light methylation is a reliable marker of enhancer activity 194

and gene expression, and can be used for practical applications. 195

Methylation levels of CpG TL vary between cell types dramatically and are charac- 196

terized by increased frequency of intermediate methylation levels, indicating that only 197

a fraction of cells within the same tissue have a certain CpG traffic light methylated. 198

This variation cannot be attributed to genetic polymorphisms, since for our study we 199

used samples from genetically different subjects, so it would be highly unlikely to have 200

the same allele in a given position in the huge fraction of samples in the study. The 201

more probable explanation is heterogeneity at the cell population level, which is in- 202

directly supported by methylation dynamics in the form of increased levels of 5hmC. 203

This heterogeneity is most likely stochastic, suggesting the role for CpG TL as a novel 204

highly dynamic yet abundant markers of transcriptional regulation. This hypothesis is 205

supported by the observation that the CpG TL are highly overrepresented at enhancers 206

and poised promoters, suggesting their contribution into dynamics of expression. 207

Conclusions 208

In this work we demonstrate that CpG TL are enriched in regulatory regions, including 209

poised/bivalent promoters and enhancers.The mechanis of CpG traffic lights provide 210

a promising insight into enhancer activity and gene regulation linking methylation of 211

single CpG to expression. 212

Methods 213

DNA methylation and expression data processing 214

We selected 40 tissues and cell types (see Supplementary Table S2) for which both 215

WGBS and RNA-seq data were available in Roadmap Epigenomics Project (NCBI). 216

For WGBS data for each cell type we used three replicates with the highest number 217

of reads and the best genome-mapping ratio. For 28 cell types 3 RNA-seq replicates 218

were available, while for 7/5 cell types only 2/1 replicate were available respectively. All 219

WGBS data and the majority (95 out of 103) RNA-seq files were obtained by Illumina, 220

while 8 RNA-seq files were obtained by SOLiD. The quality of all files were checked with 221

FastQC [2]. For all files sequenced by Illumina read trimming and adapter removal were 222

performed by Trimmomatic [6] (adapters available at Epigenomics Project (NCBI); up 223

to 2 mismatches between an adapter and a read sequence; 5bp sliding window; quality 224

threshold of 20; removing sequences if their length after trimming becomes less than 20 225

bp) For the SOLiD samples we used Cutadapt [37] (adapters from NCBI, up to 10% 226

10/23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2017. ; https://doi.org/10.1101/095968doi: bioRxiv preprint 

https://doi.org/10.1101/095968
http://creativecommons.org/licenses/by-nc-nd/4.0/


error rate relative to the length of the matching region; quality threshold of 20; removing 227

sequences if their length after trimming becomes less than 20 bp). 228

We mapped WGBS data to the genome (assembly GRCh38-Ensembl 78) with Bismark 229

[30] (zero mismatches permitted in the seed, 20bp seed length, 0/500bp the min/max 230

insert size for valid paired-end alignments). We used only methylated cytosines in CpG 231

context, covered with not less than 4 reads. For each CpG position in each of the 40 232

samples, the methylation values were averaged from the three replicates per sample. We 233

removed a CpG position if methylation values were available for less than 20 samples. 234

We also removed a CpG position if methylation values were the same value for all the 235

samples (i.e. all zeros, all ones, etc.). 236

We mapped RNA-seq data to the genome (assembly GRCh38-Ensembl 78) with 237

Tophat v2.0.13 [62] (allowing for up to 2 mismatches and 2 gaps per read, reporting 238

read alignments for paired-end reads only if both reads in a pair can be mapped). We 239

generated expression matrix using the FeatureCount [35], while the expression profiles 240

were normalized to RPKM values. Genes with zero reads in all samples were excluded. 241

The expression profiles were normalized to a range [0, 1] to match the range with the 242

one of the methylation profile: 243

y = (x− xmin)/(xmax − xmin), 244

where y is normalized expression value for the gene, x is RPKM value for the gene, xmin 245

and xmax are minimum and maximum expression (RPKM) values respectively. 246

CpG traffic lights detection 247

To determine CpG TL we considered all pairs of genes and CpGs located within 1000 248

bp upstream of TSS to 3’ gene end (genome assembly GRCh38-Ensembl 78). One CpG 249

might be associated with multiple genes, similarly, one gene might be associated with 250

multiple CpGs. For each CpG-gene pair we created two 20-40-dimensional vectors of 251

methylation levels [0, 1] and normalized gene expression [0, 1], we further refer to each 252

of the two vectors as a methylation and expression profiles. In total we had 1,774,602 253

CpGs associated with 46,692 genes (which gives 1,963,205 pairs). 254

For each CpG position, we calculated SCC between the methylation and expression 255

profiles for all available samples. FDR was performed by Benjamini-Hochberg procedure 256

for correction for multiplicity testing for the total number of position-gene pairs. We 257

called a CpG position a CpG traffic light (CpG TL) if it had a significant correlation 258

coefficient between methylation and expression profiles at the level of FDR < 0.1 (unless 259

explicitly mentioned otherwise). We found 16,178 such CpG TL (0.9% of the original 260

number of CpGs) that correspond to 6153 genes. 261

We also calculated a causality score between methylation and expression profiles 262

to computationally assess the pairwise causal direction between these two variables. 263

We used a pairwise linear non-Gaussian acyclic model, LINGAM [20] to calculate the 264

likelihood ratio defined as follows: 265

R(Meth,Expr) = logL(Meth→ Expr)− logL(Expr →Meth) 266

The positive causality means that the change in methylation is expected to cause the 267

expression change, and vice versa for the negative causality values: expression determines 268

methylation. It should be noted that the range for possible causality scores depends on 269

the number of samples. Since for different CpG positions we used various numbers of 270

samples (20-40), we normalized causality scores to the normal distribution N(0, 1). To 271

make the causality scores directly comparable between CpG positions, we performed this 272

normalization independently for each group of CpGs that have the same profile length. 273

To avoid noise in the causality scores, we did not consider values close to 0 (between 274
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-1 and +1) and for simplicity we call “positive” the values that are higher than 1 and 275

“negative” the values that were smaller than -1. 276

Construction of background datasets 277

We aimed to explore enrichment with CpG TL inside various genomic regions. For this 278

purpose we needed to have an equal size background set. For every CpG TL position we 279

selected a random background CpG position (CpG BG) with not more than 5% difference 280

for both GC- and CpG contents in 200bp window, as some genomic annotations are 281

sensitive to GC- and CpG- content. We repeated the selection process 10 times to obtain 282

10 different independent background sets. 283

For heatmaps (Fig. 2) we selected CpG TL with negative SCC and an equal size ran- 284

dom background set, split all the CpGs into promoter regions [TSS−1000, TSS+500] and 285

gene body [TSS+500, end of the gene] and created density plots using gaussian kdefrom 286

scipy.stats. 287

Recently, we have shown that methylated CpGs within CpG islands are more preserved 288

from substitutions in primate evolution even in the same local GC- and CpG content [46]. 289

Yet, the algorithms for CpG islands search use some arbitrary parameters and may not 290

be accurate in determination boundaries [38]. Therefore, controlling for a presence of a 291

CpG island would not necessarily reduce the bias. However, CpG islands usually contain 292

internal sequence patterns, for example transcriptional factor binding sites [39]. So, we 293

tested if regions of a 100 bp around randomly selected 1000 CpG TL (CpG TL excluded) 294

contain different sequence motifs that the one of the CpG BG [31]. The obtained motifs 295

were fairly similar for CpG TL and CpG BG sequences (Supplementary Figure S4), 296

suggesting that control for GC- and CpG contexts is sufficient for the purpose of this 297

study. 298

Genomic annotations 299

We annotated all CpG positions with overlapping genomic features. For each feature 300

we calculated the number of CpG TL and background positions located within the 301

annotation. To test the significance of the overrepresentation we used the exact Fisher test. 302

Additionally, we calculated the overrepresentation for CpG TL with positive/negative 303

SCC/causality scores separately. 304

To address the frequency of 5-hydroxymethylcytosine in CpG TL we used oxidative- 305

bisulfite (oxBS) assay data from human cerebellum (GEO, GSE63179) [16]. We converted 306

the coordinates to genomic ranges with the help of R Bioconductor ‘minfi’ [3] package 307

and to hg38 with liftOver. Four oxBS replicates were averaged. 308

We use repeats obtained by RepeatMasker for hg38 track from USCS Genome Browser 309

hgdownload.soe.ucsc.edu/goldenPath/hg38/database/rmsk.txt.gz 310

We obtained the robust CAGE clusters [12] from fantom.gsc.riken.jp/5/data/ and 311

the robust hg19 enhancers [1] from FANTOM5 from (enhancer.binf.ku.dk/presets/ 312

robust enhancers.bed) and mapped them to hg38 with the liftOver. 313

The DNaseI hypersensitivity clusters were downloaded from UCSC Genome Browser 314

(hgdownload.soe.ucsc.edu/goldenPath/hg38/database/wgEncodeRegDnaseClustered.txt.gz).315

Conservation and Eigen scores 316

Conservation of CpG TL and background sites in mammalian and primate lineages 317

was assessed with UCSC Genome Browser GERP RS [8] and PhyloP [49] hg19 tracks, 318

respectively. We calculated how many sites in each dataset have GERP RS score greater 319

than 2, which we considered as conserved in mammals and PhyloP score greater than 320

0.5, which we considered conserved in primates. Overall functional scores for each site 321
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were calculated with Eigen, an approach to predict functionality of non-coding variants 322

using different annotations [21]. Higher Eigen scores imply more likely functionality of 323

respective genome sites. 324

TFBS 325

For transcriptional factor binding site (TFBS) prediction we used models provided in 326

HOCOMOCO v10 [32]. PWM thresholds were selected according to the pre-calculated 327

the P − value < 0.0005 (i.e., when 5 of 10,000 random words had scores no less than 328

the thresholds). Out of all predicted TFBS we considered only those present in DNaseI 329

hypersensitivity regions. 330

ChromHMM 331

The Roadmap Epigenomics Consortium 25-state segmentation of 127 epigenomes pre- 332

dicted with ChromHMM [11, 51] was used to assess chromatin location of CpG TL. 333

The annotation in based on the imputed data for 12 chromatin marks (H3K4me1, 334

H3K4me2, H3K4me3, H3K9ac, H3K27ac, H4K20me1, H3K79me2, H3K36me3, H3K9me3, 335

H3K27me3, H2A.Z, and DNaseI). The annotations were downloaded from egg2.wustl.edu/ 336

roadmap/web portal/imputed.html#chr imp. 337

Each of the CpG TL/background datasets was characterized by an average frequency 338

of a CpG from a dataset to be located in one of the 25 chromatin states. 339

Gene enrichment analysis 340

For the gene ontology enrichment analysis (GO) we used Panther [43] with default 341

parameters and Bonferroni correction. Separately, we tested for the enrichment of 342

genes with CpG TL among transcriptional factors and co-factors [55] and epigenetic 343

regulators [41] using Fisher exact test with Bonferroni correction. 344
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Supplementary materials

Supplementary Figure S1. Distribution of CpG TLs along the genome.

Supplementary Figure S2. The distribution of CpG methylation and corre-
sponding gene expression for CpG TLs and background (positive SCC). The
color represents the density of points in logarithmic scale. The distribution is shown
for (a) random background CpG (BG) in promoters (the size is equal to the number of
CpG TL points), (b) random equal size BG in gene bodies, (c) CpG TL in promoters
(-1000...+500), (d) CpG TL in gene bodies (+500...TTS)
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Supplementary Figure S3. Frequencies of CpG TL and BG in CAGE TSS
and enhancers. CpG TL are separated in groups based on the sign of correlation and
causality score.

Supplementary Figure S4. Motives near CpG.

Supplementary Table S1. Most enriched with CpG TLs categories of en-
hancers

Enhancer category
CpG TL/BG
ratio

P value

CD8+, alpha-beta T cell 6.620 9.475E-15
neutrophil 6.029 1.090E-12
natural killer cell 5.294 7.295E-14
CD4+, alpha-beta T cell 5.190 1.187E-11
mature alpha-beta T cell 4.951 1.251E-13
mature T cell 4.951 1.251E-13
alpha-beta T cell 4.951 1.251E-13
T cell 4.555 1.866E-15
single nucleate cell 4.526 5.416E-13
mononuclear cell 4.526 5.416E-13
lining cell 4.511 7.098E-19
barrier cell 4.473 1.659E-18
meso-epithelial cell 4.430 7.258E-16

endothelial cell 4.380 2.606E-14
endocrine cell 4.346 2.165E-13
neurecto-epithelial cell 4.340 7.265E-15
lymphocyte of B lineage 4.249 1.453E-13
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secretory cell 4.238 1.083E-18
columnar cuboidal epithelial cell 4.228 1.090E-14
vascular associated smooth muscle cell 4.216 2.165E-13

melanocyte 4.192 1.376E-12
pigment cell 4.189 2.606E-14
smooth muscle cell 4.173 1.453E-13

multi fate stem cell 4.153 3.080E-20
mast cell 4.128 2.471E-11
biogenic amine secreting cell 4.128 2.471E-11
histamine secreting cell 4.128 2.471E-11
CD14+, CD16+ monocyte 4.102 9.677E-14
somatic stem cell 4.089 7.315E-20
ecto-epithelial cell 4.087 1.080E-14
granulocyte 4.073 9.677E-14
conventional dendritic cell 4.068 3.896E-11
dendritic cell 4.068 3.896E-11
mesenchymal cell 4.061 1.692E-17
lymphocyte 4.020 1.692E-17
contractile cell 4.000 4.174E-15
stem cell 3.984 1.781E-21
basophil 3.972 2.072E-12

stuff accumulating cell 3.964 2.444E-25
muscle cell 3.936 1.502E-14
embryonic stem cell 3.885 5.567E-11
macrophage 3.883 3.182E-13
blood cell 3.866 3.574E-14
embryonic cell 3.754 8.707E-14

electrically responsive cell 3.747 7.984E-17
electrically active cell 3.747 7.984E-17
connective tissue cell 3.744 1.465E-21
myeloid leukocyte 3.660 2.904E-19
motile cell 3.609 4.564E-25
hematopoietic cell 3.581 9.966E-25

nucleate cell 3.571 6.678E-16
fibroblast 3.547 9.294E-13
epithelial cell 3.530 8.584E-21

defensive cell 3.524 2.416E-15
phagocyte 3.524 2.416E-15
classical monocyte 3.523 2.165E-13
CD14+, CD16- classical monocyte 3.523 2.165E-13
cell 3.476 9.456E-26
eukaryotic cell 3.454 9.456E-26
animal cell 3.454 9.456E-26
somatic cell 3.451 1.852E-25
native cell 3.446 9.456E-26
monocyte 3.438 1.313E-14
myeloid cell 3.422 9.128E-19
nongranular leukocyte 3.375 2.252E-17

leukocyte 3.344 2.965E-19
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Supplementary Table S2. Names of the cell samples in the study

Sample Name
Number of
Methylation
Replicates

Number of
Expression
Replicates

bladder 3 1
CD14 primary cells 3 1

CD56 primary cells 3 1
H9 cell line 3 1
iPS DF 6.9 cell line 3 1
CD3 primary cells 3 2
H1 +BMP4 cell line 3 2
H1 BMP4 derived mesendoderm cultured cells 3 2
H1 derived mesenchymal stem cells 3 2
iPS DF 19.11 cell line 3 2
liver 3 2
placenta 3 2
adipose 3 3
adrenal gland 3 3
esophagus 3 3
gastric 3 3
H1 cell line 3 3

H1 derived neuronal progenitor cultured cells 3 3
heart aorta 3 3
heart left ventricle 3 3
heart right atrium 3 3
heart right ventricle 3 3
hESC-derived CD184+ endoderm cultured cells 3 3

hESC-derived CD56+ ectoderm cultured cells 3 3
hESC-derived CD56+ mesoderm cultured cells 3 3
HUES64 cell line 3 3

IMR90 cell line 3 3
large intestine 3 3
lung 3 3

muscle leg 3 3
muscle trunk 3 3
ovary 3 3
pancreas 3 3
psoas muscle 3 3
sigmoid colon 3 3
small intestine 3 3
spinal cord 3 3
spleen 3 3
stomach 3 3
thymus 3 3
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