


Figure 3: For subcritical noise loads, protein noise remains bounded even under
stringent feedback conditions.

Figure 4: For supercritical noise loads, protein noise diverges for increasingly
strong feedback.
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zero: any positive noise load is supercritical. The Hill function (6) formally
reduces for H = ∞ to a step function which is equal to ε for 0 < x < K
and is zero for x > K. Under such step-wise regulation, non-zero bursts occur
only if x is smaller than K (i.e. very small), and their size is independent of
K (i.e. large); after one such large burst no further bursts can occur—or we
may say that they still do but their size is necessarily zero—until the protein
concentration slowly decays back beneath K. Clearly, however small, but fixed,
ε may be, these infrequent but large bursts will drive the variability to infinity
if K is lowered sufficiently. However, for finite cooperativities a non-zero burst
would typically fire well before the concentration decays down to levels of O(K),
and would be of a lesser size as a result: it is exactly this mechanism that enables
low-cooperativity feedbacks to cope with ever increasing feedback strengths; the
underlying scaling will be identified and analysed by matched asymptotics in
Section 6. Prior to doing that, we perform in the following Section 5 a traditional
small-noise analysis, obtaining explicit mean and noise results, which are valid
as ε→ 0 for bounded ranges of K.

5 Small-noise asymptotics

The master equation (7) can succinctly be written as a continuity equation

∂p

∂t
+
∂J

∂x
= 0, J =

1

ε

∫ x

0

p(x′, t)e
− x−x′
εθ(x′) dx′ − xp, (9)

where

θ(x) =
1

1 + (x/K)H
(10)

gives the factor by which the mean burst size is reduced at protein concentration
x due to self-regulation. Being the product of the burst frequency ε−1 and the
mean burst size (6), it can also be interpreted as the mean protein production
rate. The function θ(x) has a (unique) fixed point x0, i.e. a solution to

θ(x0) = x0, (11)

which can be interpreted as the protein concentration at which its mean pro-
duction rate is equal to its rate of decay (cf. Fig. 1, right panel). It is shown
below that in the small-noise regime the steady-state protein concentration is
constrained with high probability to a small neighbourhood of the fixed point.

The stationary distribution is the time-independent, zero-flux, and nor-
malised solution p(x) to (9), i.e the normalised solution to the integral equation

1

ε

∫ x

0

p(x′)e
− x−x′
εθ(x′) dx′ − xp = 0. (12)

In order to examine the behaviour of the solution p(x) = p(x; ε) to (12) in the
small-noise regime (ε� 1), we use the transformation

x = x0 +
√
εξ, x′ = x− εu, p(x0 +

√
εξ) = p̃(ξ). (13)
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Figure 5: Protein concentration mean and the relative CV2 in response to in-
creasing feedback strength for H = 5 and a selection of values of ε, compared
with the small-noise approximation (SNA).

The substitution for x reflects the (presumed) O(
√
ε) scale of fluctuations of

x around the fixed point x0, cf. Eq. (5); the substitution for x′ reflects the
O(ε) scale of individual bursts. Inserting the substitutions (13) into the integral
equation (12), we obtain∫ “∞”

0

p̃(ξ −
√
εu)e

− u
θ(x0+

√
εξ−εu) du− x0p̃−

√
εξp̃ = 0. (14)

By extending the upper integration boundary from x
ε to infinity in (14), we will

have introduced an error that is inconsequential (exponentially small) in the
ε� 1 regime (Hinch, 1991). Inserting the expansions

p̃(ξ −
√
εu) = p̃(ξ)−

√
εu

dp̃

dξ
(ξ) +O(ε),

e
− u
θ(x0+

√
εξ−εu) = e

− u
x0

+
√
ε
θ′(x0)ξu

x20 +O(ε)

= e−
u
x0

(
1 +
√
ε
θ′(x0)ξu

x20

)
+O(ε)

into (14) and carrying out the integration with respect to u we obtain

√
ε(−x20p̃′(ξ) + (θ′(x0)− 1)ξp̃(ξ)) +O(ε) = 0, (15)

the O(1) terms having cancelled each other out. Dividing (15) by
√
ε and

neglecting the small O(ε)/
√
ε term, we arrive at a linear first-order differential

equation for the leading-order approximation to p̃, solving which yields

p̃(ξ) ∼ Ce
− (1−θ′(x0))ξ2

2x20 , ε� 1, (16)
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where C is the normalisation constant. The result implies that ξ is approxi-
mately normally distributed with mean zero and variance x20/(1− θ′(x0)). Con-
sequently x = x0 +

√
εξ has mean x0 and variance εx20/(1− θ′(x0)), i.e.

〈x〉 ∼ x0,
CV2

ε
∼ 1

1− θ′(x0)
=

1

1 +H(1− x0)
, ε� 1, (17)

hold in the small-noise regime. Also, since the variance is O(ε), we obtain

〈x2〉 = 〈x〉2 + Var(x) ∼ x20, ε� 1, (18)

for the mean square.
In Fig. 5, we compare for H = 5 the small-noise approximations (17) (SNAs;

dashed lines in Fig. 5) to the exact (i.e. not asymptotic) mean and relative CV2

for a range of values of K and three selected values of ε: a subcritical ε = 0.05,
the critical ε = 0.1, and a supercritical ε = 0.2. The fixed point x0 of the
function θ(x) (10) was calculated in the Python programming language with the
fixed point routine of the scipy.optimize library. For each value of ε, and for
the range of values of K, the exact mean and the CV2 were estimated from the
temporal average of a single and long sample path generated by Algorithm 1,
which we implemented in the C programming language (see Appendix A for
details).

By Fig. 5, left panel, the small-noise approximation of the mean agrees well
with the exact mean, decreasing monotonically from one in the absence of reg-
ulation (K = ∞) to zero under stringent regulation (K → 0). Contrastingly,
the small-noise approximation of the CV2 agrees with the exact CV2 only if ε
is subcritical or K is sufficiently large; in particular, if ε is low and subcritical,
the exact relative CV2 remains close, as K → 0, to the small-noise approxima-
tion limit value of 1/(H + 1) ≈ 0.167. For supercritical noise loads, however,
simulations suggest divergence, as K tends to zero, of the exact CV2 to infinity,
which the small-noise approximation fails to predict.

6 Strong-feedback asymptotics

In the small-noise analysis presented in the previous section, we tacitly assumed
that the fixed point x0 of the Hill function (10) is of order one. However, x0
becomes increasingly small as K tends to zero; more precisely, the dominant
balance in the fixed-point equation x−10 = 1+(x0/K)H is found between the x−10

and the (x0/K)H terms, the equating of which yields a power-law relationship

x0 ∼ K
H
H+1 , K � 1, (19)

between the fixed-point x0 and the critical concentration K in the strong feed-
back regime. As x0 becomes increasingly small, the terms which have been
neglected in the small-noise approximation procedure become significant, and
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the approximation leads to incorrect predictions; in particular, it fails to pre-
dict the grow-up of noise under supercritical noise-load conditions (Fig. 5, right
panel).

In order to obtain a truthful characterisation of the model behaviour in the
strong-feedback regime, we consider the steady-state protein probability density
function in this section as a function of K which tends to zero, whereby the value
of ε is fixed and not necessarily small. By (12) and (10), the steady-state protein
pdf satisfies the integral equation

xp(x) =
1

ε

∫ x

0

p(x′)e−
(x−x′)(1+(x′/K)H )

ε dx′. (20)

Below we show that a solution p(x) = p(x;K) to (20) tends to two separate
distinguished limits, one occurring on the inner x = O(KH/(H+1)) concentration
scale associated with the fixed-point asymptotics (19), the other emerging on
the outer O(1) scale associated with large, uncontrolled, bursts. The relative
importance of the inner or outer limits will determine, in particular, whether
the CV2 converges or diverges as K tends to zero.

Inner solution. We rescale the variables of (20) according to

x = K
H
H+1 y, x′ = K

H
H+1 y′, p(x) = P (y), (21)

obtaining

yP (y) =
1

ε

∫ y

0

P (y′)e−
(y−y′)(KH/(H+1)+(y′)H )

ε dy′. (22)

Inserting
P (y;K) = P0(y) +O(KH/(H+1)) (23)

into (22) and collecting leading-order terms yield

yP0(y) =
1

ε

∫ y

0

P0(y′)e−
(y−y′)(y′)H

ε dy′. (24)

If y � 1, then the exponential in the integrand is close to one, implying that
P0(y) ∼ φ0(y), where φ0(y) satisfies yφ0(y) = 1

ε

∫ y
0
φ0(y′)dy′, i.e. φ0(y) =

Cy1/ε−1; for uniqueness and algebraic simplicity we fix the arbitrary constant
C to one, thus obtaining

P0(y) ∼ y 1
ε−1, y � 1. (25)

We refer to the (uniquely determined) solution to (24) which additionally satis-
fies (25) as the inner solution; it depends on ε and H but is independent of the
value of K.

The integral equation (20) determines an exact solution p(x) up to a mul-
tiplicative constant. The inner solution approximates the exact solution which
additionally satisfies

p(x) = P
(
K−

H
H+1x

)
∼ K−

H(ε−1−1)
H+1 x

1
ε−1, x� K

H
H+1 . (26)
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The (uniquely determined) solution p(x) to (20) and (26) is not a probability
density function, as it does not necessarily integrate to one. Prior to normalising
the solution, we characterise its approximation on the outer scale and evaluate
the asymptotic behaviour of its moments.

Outer solution. We substitute x′ = Kz into (20), while leaving x = O(1),
which gives

xp(x) =
1

ε

∫ x/K

0

p(Kz)Ke−
(x−Kz)(1+zH )

ε dz. (27)

Recalling that x′ has the interpretation of the protein concentration immediately
before a burst and x represents (a lower bound for) the concentration after the
burst, the current scaling relates to the possibility that the protein may deviate
to very low O(K) levels, at which the burst size ceases to be under regulation,
hence the following burst is O(1) large.

Since the O(K) concentration scale is smaller than the O(KH/(H+1)) inner
concentration scale, we can approximate p(Kz) on the right-hand side of (27)
by the asymptotic expansion (26), i.e.

p(Kz) ∼ K
ε−1−1
H+1 z

1
ε−1. (28)

We insert (28) into (27), extend the upper limit of integration in (27) to infin-
ity and neglect small O(K) terms in the argument of the exponential in (27),
obtaining

xp(x) ∼ ε−1K
ε−1+H
H+1 e−

x
ε

∫ ∞
0

z
1
ε−1e−

xzH

ε dz. (29)

Substituting u = xzH/ε in the integral in (29) and dividing both sides of the
relation by x, we obtain

p(x) ∼ p0(x) := ηK
ε−1+H
H+1 e−

x
ε x−

1
εH−1, (30)

where

η = η(ε,H) =
ε

1
εH−1

H
Γ

(
1

εH

)
(31)

is a constant which depends on ε and H only. We refer to the function p0(x)
defined by the right-hand side of (30) as the outer solution.

Approximating the moments. The n-th moment of the solution p(x) to (20)
satisfying (26) is defined by

mn =

∫ ∞
0

p(x)xndx. (32)

By (30), the outer approximation p0(x)xn of the integrand in (32) is of the order

of xn−
1
εH−1 as x tends to zero; if n − 1

εH > 0, it is integrable: it increases too
slowly as x → 0 for the boundary layer to make a significant contribution to
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the integral (Hinch, 1991). Thus, the n-th moment, for n > 1
εH , of the exact

solution p(x) can be approximated for small values of K by the n-th moment
of its outer approximation (30), i.e.

mn ∼
∫ ∞
0

p0(x)xndx = µnK
ε−1+H
H+1 , for n >

1

εH
, (33)

where

µn = ηεn−
1
εH Γ

(
n− 1

εH

)
=
εn−1

H
Γ

(
1

εH

)
Γ

(
n− 1

εH

)
(34)

is a constant which does not depend on K.

Substituting x = K
H
H+1 y in (32), we express mn for n < 1

εH in terms of the
inner variable,

mn = K
(n+1)H
H+1

∫ ∞
0

P (y)yndy. (35)

By asymptotic matching (Kevorkian and Cole, 1981), the asymptotic behaviour
of the inner solution P0(y) as y → ∞ coincides with that of the outer solution
p0(x) as x→ 0. Consequently, the inner approximation P0(y)yn of the integrand

in (35) is of the order of yn−
1
εH−1 as y → ∞. If n < 1

εH , the inner solution is
integrable, decreasing too rapidly as y → ∞ for the outer region to contribute
significantly to the integral (Hinch, 1991).

Thus, we can write

mn ∼ νnK
(n+1)H
H+1 , for n <

1

εH
, (36)

where

νn =

∫ ∞
0

P0(y)yndy (37)

is the n-th moment of the inner solution, which does not depend on K and
depends on ε and H only.

Normalisation. The normalised steady-state protein pdf is obtained by di-
viding the solution p(x) to (20) satisfying (26) by its norm m0 =

∫∞
0
p(x)dx.

Combining (26), (30) and (36) we arrive at asymptotic approximations

p(x)

m0
∼

{
ν−10 K−

H
ε(H+1)x

1
ε−1 if x� K

H
H+1 , (38a)

ην−10 K
ε−1

H+1 e−
x
ε x−

1
εH−1 if x� K

H
H+1 . (38b)

Figure 6 shows an excellent agreement between the theoretical scalings (38a)–
(38b) and probability distributions estimated by extensive kinetic Monte Carlo
simulation with Algorithm 1.
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Figure 6: Protein distributions for selected parameter sets. Discrete mark-
ers: probability distributions estimated by kinetic Monte Carlo simulation with
Algorithm 1; dashed line: the critical concentration K; solid lines: theoret-
ical predictions for the inner (38a) (purple colour) and outer (38b) (orange
colour) scalings of the probability distributions with manually tuned prefactors
ν−10 = O(1). The simulation data were estimated from 106 sample paths after
the stationarities of the process were reached.
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Approximating the protein mean and CV2. Using the asymptotic re-
sults (33) and (36) for the moments m0, m1, and m2, we can also derive ap-
proximations for the mean and the mean square, which are given by the ratios

〈x〉 =
m1

m0
, 〈x2〉 =

m2

m0
. (39)

The mean satisfies, as K → 0,

〈x〉 ∼


ν1
ν0
K

H
H+1 if ε < 1

H , (40a)

µ1

ν0
K

ε−1

H+1 if ε > 1
H . (40b)

By (40a), under low-noise conditions (ε < 1
H ), the mean exhibits the same

power-law decrease as K → 0 as its small-noise prediction x0 (19), albeit with
a prefactor which is different from one. As ε exceeds the threshold 1

H , the
exponent of the power law (40b) becomes smaller with increasing ε, implying
a slower decrease of the mean as K → 0 as that predicted by the small-noise
approximation.

For the mean square we obtain in the small-K regime the asymptotics

〈x2〉 ∼


ν2
ν0
K

2H
H+1 if ε < 1

2H , (41a)

µ2

ν0
K

ε−1

H+1 if ε > 1
2H . (41b)

Thus, for small values of ε, the mean square 〈x2〉 decreases as K → 0 with the
same exponent 2H/(H+1) as its small-noise prediction x20 (18). The alternative,
slower, exponent ε−1/(H + 1) applies if ε exceeds the threshold 1

2H , which is
half the threshold in (41) for the mean and which we previously in Section 4
referred to as the critical noise load.

The coefficient of variation can be approximated for small values of K by

CV2 =
〈x2〉
〈x〉2

− 1 ∼



ν2ν0
ν21
− 1 if ε < 1

2H , (42a)

µ2ν0
ν21

K−
2H− 1

ε
H+1 if 1

2H < ε < 1
H , (42b)

µ2ν0
µ2
1

K−
ε−1

H+1 if ε > 1
H . (42c)

By (42a), CV2 converges to a constant value as K → 0 for subcritical noise
loads (ε < 1

2H ). For supercritical noise loads (ε > 1
2H ), the CV2 exhibits a

power-law increase as K decreases to zero. As ε increases beyond the critical
value 1

2H , the absolute value of the exponent of the power law in (42b) first
increases, reaching a maximum of H/(H + 1) for ε = 1

H ; after ε exceeds 1
H , the

exponent of the power law in (42c) begins to decrease in absolute value. Thus,
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Figure 7: The squared mean (top left), the mean square (top right) and the
CV2 (centre left), obtained by stochastic simulation (Algorithm 1), as functions
of critical concentrations K � 1 for H = 5 and a selection of values of ε
(centre right). The discrete markers are the numerically measured results. The
exponents of the power-law dependence on K of 〈x〉2, 〈x2〉 (bottom left), and
CV2 (bottom right), obtained by linear regression (solid lines in top left, top
right, and centre left) and asymptotic analysis (40)–(42), as functions of the
inverse noise load ε−1.
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the fastest grow-up in the coefficient of variation as K → 0 is achieved for ε = 1
H

by a combination of a relatively fast decrease in the mean and a relatively slow
decrease in the variance. Under excessive noise conditions (ε � 1

H ), feedback
plays a limited role, which is evidenced by low grow-up rates of CV2.

For numerical analysis, we fixed H = 5, used a selection of 20 values for
ε ranging from 0.05 to 1, and a geometric sequence of 5 values for K ranging
from 10−7 to 10−3. For each of the 20 × 5 parameter combinations from the
(H, ε,K) parameter space of the model, we estimated the steady-state mean
concentration value 〈x〉 and the mean square value 〈x2〉 by generating 106 sample
paths using Algorithm 1. The ensemble average of the first and the second
moments were measured after stationarity of the process is reached, after which
time the moments were measured every 0.2 units of time for another 5 × 103

units of time to perform an additional temporal averaging.
The simulation results are visualised in Fig. 7, where we show the squared

mean 〈x〉2 (Fig. 7, top left), the mean square 〈x2〉 (Fig. 7, top right), and the
CV2 (Fig. 7, centre left) as functions of the critical concentration K. We use
(decimal) logarithmic scale for both axes in all panels; any power-law relation-
ship then appears as a straight line with slope which is equal to the power-law’s
exponent. Using simple linear regression, we estimate the power-law exponents
(Fig. 7, bottom, shown as triangular and square markers) and compare the
estimates to the asymptotic predictions (40)–(42) (Fig. 7, bottom, black lines).

While the simulation-based exponent estimates in Fig. 7 are in a general
agreement with the asymptotic results for 〈x〉 in (40) and 〈x2〉 in (41), some
discrepancies are observed around the critical values of ε (which are ε = 0.2 for
〈x〉2 and ε = 0.1 for 〈x2〉). We attribute these errors to logarithmic correction
terms which appear in the leading-order asymptotic approximations for the
moments at critical values (see Appendix B).

The exponent for the CV2 is given by the difference of the exponents for 〈x2〉
and that for 〈x〉2. The simulation-based estimate of the exponent for the CV2

incorporates the errors incurred in estimating the exponents for both 〈x2〉 and
that for 〈x〉2: the resulting error can be quite large relative to the absolute value
of the exponent itself. Additionally, the constant term −1, which we neglected
as higher-order in the asymptotic approximations (42b) and (42c), can never-
theless be relatively important if the absolute value of the exponent is low; this
adds yet another source of error in the estimate of the exponent. Despite these
inaccuracies, the simulation-based results for the CV2 are in qualitative agree-
ment with the leading-order asymptotic predictions: the CV2 remains bounded
if ε < 0.1 and exhibits the fastest grow-up for ε = 0.2.

7 Comparison with previous results

In our present model for feedback in burst size, the concentration of protein
immediately before a burst occurs determines the expected size of the burst.
The distribution of burst sizes is exponential, whose defining property is its
memorylessness: at any stage of the growth of a burst, the amount of protein
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yet to be produced is independent of how much has already been produced.
Such lack of self-control on a single-burst level implies that our model implicitly
includes a delaying step, which newly produced molecules have to undergo before
they can take part in the self-regulation. In order that our model be applicable,
the delay must be neither too short nor too long: on one hand, it needs to last
long enough to carry over the duration of a single burst; on the other hand,
it must be short enough so that all protein produced in the current burst will
have maturated by the time of the next burst. Biologically, such delays can
easily be accounted by the time it takes to complete the synthesis of a gene
product. As a specific example, translational bursts in prokaryotes occur when
a short-lived mRNA is transcribed from a gene and repeatedly translated before
it is degraded (McAdams and Arkin, 1997). Each translation begins when the
mRNA is bound by a ribosome and continues by the ribosome sliding down
the mRNA molecule. As it moves along the mRNA, the ribosome forms an
elongating chain of amino acids, which is to become a protein after the ribosome
reaches the end of the mRNA code. Since the binding of new ribosome molecules
occurs while the previous ones are still elongating, the proteins whose translation
initiated earlier cannot inhibit those initiated later within a single burst.

In an alternative version of our model for feedback in burst size, which
was analysed in a previous paper (Bokes and Singh, 2016), the growth of a
burst depends on the current value of the protein concentration, including the
molecules already synthesised within the same burst, rather than on its pre-
burst level. Consequently, the distribution of burst sizes is not exponential and
harder to draw random variates from, which complicates the implementation of
a fast and exact simulation algorithm. On the other hand, the model in (Bokes
and Singh, 2016) is considerably easier to treat analytically: the master equation
of the undelayed model reads

∂p

∂t
+
∂J

∂x
= 0, J =

1

ε

∫ x

0

p(x′, t)e−
1
ε

∫ x
x′

dξ
θ(ξ) dx′ − xp, (43)

where θ(x) = (1 + (x/K)H)−1 is the Hill function. The integral term in the
probability flux J can be recognised as the variation-of-constants solution f(x)
to the differential equation df/dx+f/εθ = p subject to f(0) = 0. Applying the
differential operator d/dx+ 1/εθ on the steady state equation J = 0 transforms
this integral equation into an ordinary differential equation (Lin and Doering,
2016), solving which yields an explicit steady-state probability density function

p(x) = Cx
1
ε−1e

− 1
ε

(
xH+1

(H+1)KH
+x
)
,

where C is a normalisation constant. Steady-state protein moments can be eval-
uated by numerical integration of the density or by asymptotic approximation of
the integrals in the small-noise and strong feedback regimes (Bokes and Singh,
2016). In the small-noise limit, the results that follow are identical with (17)
obtained for the current model (Fig. 8, left and central panels, dashed lines).
The non-delayed model exhibits a monotonic decrease in the coefficient of vari-
ation for any combination of ε and H (Fig. 8, central panel, coloured lines).
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Figure 8: The relative CV2 of a protein produced in bursts subject to different
types of feedback in response to increasing feedback strength K−1. We fix
H = 5 and use a selection of values of ε which are given in the legend within
the central panel. Exact numerical/simulational results are compared to the
small-noise approximation (SNA).

The loss of control over protein noise, which occurs for supercritical noise loads
in the strong-feedback regime of our current model (Fig. 8, left panel, coloured
lines), can therefore be attributed to the delay which carries over the bursting
timescale.

While so far we have focused exclusively on feedback in burst size, more
attention has traditionally been paid in literature to feedback in burst frequency.
If one adheres to the fundamentals of the model of Section 2, but uses the Hill
function to reduce the burst frequency in the excess of protein, rather than
reducing the expected burst size, one arrives at a model for negative feedback
in burst frequency which was also analysed in (Bokes and Singh, 2016). The
master equation of the model reads

∂p

∂t
+
∂J

∂x
= 0, J =

1

ε

∫ x

0

p(x′, t)θ(x′)e−
x−x′
ε dx′ − xp, (44)

which admits an explicit steady-state solution, see (Lin and Doering, 2016; Bokes
and Singh, 2016; Friedman et al, 2006), given by

Ce−
x
ε x

1
ε−1(1 + (x/K)H)−

1
εH ,

where C is a normalisation constant. In the small-noise limit, the steady-state
mean converges to the fixed point x0 of the Hill function θ(x) = (1+(x/K)H)−1,
consult Bokes and Singh (2016) for details, which is the same value as was
obtained in (17) for feedback in burst size. The squared coefficient of variation,
on the other hand, was found in (Bokes and Singh, 2016) to be larger by a factor
of 1

x0
than the value (17) obtained for feedback in burst size. We should note,

however, that, even in the absence of any regulation, the squared coefficient of
variation is inversely proportional to the burst frequency (cf. Section 2). The
increase in the coefficient of variation in the small-noise limit can therefore be
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attributed to the a decrease in the overall (time-averaged) burst frequency from

the unregulated value of 1
ε to the regulated value of 〈x〉ε rather than to a loss of

control over protein noise by the regulation of burst frequency.
Adjusting for the decrease in the overall burst frequency, Bokes and Singh

(2016) defined the relative coefficient of variation as the ratio of the coefficient
of variation of the self-regulating protein and that of a constitutively expressed
protein with the same overall, time-averaged, frequency of bursts. While for
the feedback in burst size this definition trivially reduces to CV2

rel = CV2/ε,
for feedback in burst frequency, the relative coefficient of variation is given by
CV2

rel = 〈x〉CV2/ε. In the small-noise limit, both feedback types yield the
same approximation for the relative coefficient of variation, which decreases
monotonically with increasing feedback strength (Fig. 8, dashed lines). For
feedback in burst frequency, the relative coefficient of variation diverges for
K � 1 from the small-noise prediction, but in a manner which is qualitatively
different from the one which we identified in this paper to occur for feedback in
burst size (Fig. 8, left and right panels, coloured lines).

Consistently with the small-noise prediction, the relative coefficient of vari-
ation initially decreases from the value of one as feedback in burst frequency
strengthens, until the critical concentration K drops to O(ε) levels, at which
point the relative coefficient of variation begins to increase again, converging
back to one as K tends to zero (Fig. 8, right panel; consult Bokes and Singh
(2016) for asymptotics). Although at lower noise loads the turnaround occurs
at higher feedback strengths, a critical noise load below which the small-noise
approximation would be uniform does not exist, and an eventual loss of control
over noise is inevitable in the small-K limit (Fig. 8, right panel). On the other
hand, a protein which regulates its burst frequency is never noisier than a con-
stitutively expressed with the same average burst frequency, whereas a protein
with feedback in burst size will indeed be noisier if subjected to supercritical
noise loads. Bokes and Singh (2016) previously compared the noise-reduction
performance of feedback in burst frequency and (undelayed) feedback in burst
size, reporting that the latter always performs better. In light of the present
results, we conclude that depending on parametric conditions such as indicated
above, either (delayed) feedback in burst size or in burst frequency can be op-
timal in terms of minimising the noise.

8 Discussion

The synthesis of protein molecules has been shown to occur in bursts of rapid
production which alternate with periods of inactivity. In a minimalistic model
for burst-like protein expression, bursts are represented by randomly occurring,
randomly sized, discontinuous jumps in protein concentration; these are coun-
terbalanced by deterministic decay of the concentration due dilution by cell
growth and/or active degradation. We extended this minimalistic model by a
specific kind of negative feedback, making the expected burst size decrease with
increasing protein concentration. We investigated the ability of such kind of
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negative feedback to control stochastic variability in protein levels.
Three positive dimensionless parameters — the noise load ε, the cooper-

ativity coefficient H, and the critical protein concentration K — completely
determine the behaviour of the model at steady state. The noise load ε is equal
to the squared coefficient of variation the protein exhibits without any feedback.
Its reciprocal ε−1 is equal to the average number of bursts per protein lifetime.
The cooperativity coefficient H measures the steepness of decrease in the ex-
pected burst size in response to increasing protein concentration. Biologically,
a positive integer value of H means that H protein molecules interact to form
a complex which interferes with the transcription or translation machinery to
reduce the burst size. The critical concentration K, measured in the units of
the protein concentration mean in the absence of regulation, gives the threshold
value which is required to reduce the expected burst size by half. We use the pa-
rameter K as an inverse measure of feedback strength: the lower the threshold
for efficient self-repression, the stronger the feedback.

The central result of the paper lies in characterising the response of the
steady-state protein statistics — the coefficient of variation in particular — to
the strengthening of feedback, i.e. to decreasing K, while keeping the noise
load ε and the cooperativity coefficient H constant. We found dramatically
different responses depending on whether the noise load is less than or greater
than a critical value εc = 1

2H . For subcritical noise loads, the coefficient of
variation remains bounded with increasing feedback strength. Contrastingly,
for supercritical noise loads, the coefficient of variation diverges to infinity as a
power of K with a negative exponent.

The identification of the critical noise load is one important consequence of
a bi-scale behaviour of the protein probability density function p(x) = p(x;K)
as K → 0 characterised in Section 6. In addition to the outer x = O(1) scale
of large uncontrolled bursts, there is also an inner x = O(KH/(1+H)) scale of
small controlled bursts, on which the density tends to two distinguished limits,
the outer and the inner solutions. The small-K behaviour of the moments 〈xn〉
is decided in the overlap region KH/(1+H) � x � 1, in which the density is
proportional to the power x−

1
εH−1. The integrability of xn−

1
εH−1 as x→∞ (if

n < 1
εH ) or as x→ 0 (if n > 1

εH ) decides whether the dominant contribution to
the n-th moment comes from the inner or the outer region. If the inner region
is dominant, the n-th moment tends to zero as KnH/(1+H); if the outer region
dominates, the convergence of the n-th moment is still polynomial but slower.
The critical exponent εc = 1

2H thus gives the value of noise value at which the
second moment ceases to be determined in the inner region of controlled bursts
and begins to be driven by the outer region of uncontrolled bursts. The small-K
behaviour of the second moment, and to a lesser extend that of the first mo-
ment (the mean), determine whether the coefficient of variation converges or
diverges, as well as the rate of the divergence, as K tends to zero. We antic-
ipate a potential criticism that our emphasis on the coefficient of variation is
arbitrary and obscures the effect of the noise load and cooperativity coefficient
on the polynomial decay of the density in the overlap region. Nevertheless, the
coefficient of variation has widely been used both in experimental and theo-
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retical analyses of stochastic gene expression. By focusing on the well-known
measure of noise, we make our asymptotic analysis relatable to previous work
and potentially interesting to a wider audience.

Our results have implications for the role of high cooperativity in nega-
tive feedback systems. Using a standard small-noise (ε � 1) approximation
approach, we have shown that feedback in burst size can reduce the squared
coefficient of variation by a factor of H + 1, thus confirming previous reports
that cooperativity leads to improved attenuation of noise (Singh and Hespanha,
2009). This observation is not specific to feedback in burst size but also holds for
feedback in burst frequency (Bokes and Singh, 2016) provided that one compen-
sates for the drop in the overall burst frequency, which is larger for cooperative
feedbacks. Contrastingly, using an alternative strong-feedback (K � 1) approx-
imation approach, we have identified, specifically for feedback in burst size, an
adverse effect of cooperativity on protein noise: high cooperativity can lead to
a significant amplification of protein noise in response to increasing feedback
strength even if the underlying noise load is relatively low (ε > εc = 1

2H ). It
is well known that high-cooperativity feedbacks are prone to instability if they
operate with a sufficiently large delay (Murray, 2003). Interestingly, the loss
of control over noise in our present model can also be attributed to a delay,
albeit an infinitesimally small one: it has been introduced into the model by
assuming that the mean burst size is determined by the protein concentration
immediately before the burst starts. We expect that the interesting interplay
between bursting noise, cooperativity, and delay, which we have illustrated here
within a minimalistic modelling framework, will have implications in other, more
complex, systems also.

Appendix A. Estimating protein moments from
simulations

We can estimate the n-th steady-state moment by the time average 1
T

∫ T
0
xn(t)dt,

where T � 1, of a sample trajectory x(t) generated by Algorithm 1 and raised
to the power of n. Since x(t) is piecewise exponential, we have

1

T

∫ T

0

xn(t)dt =
1

T

N−1∑
i=0

∫ τi

0

xni e−ntdt =
1

nT

N−1∑
i=0

xni (1− e−τin), (A1)

where xi, i ≥ 1, is the protein concentration immediately after the i-th burst,
x0 is the initial protein concentration, τi, i ≥ 1, is the waiting time from the i-th
burst until the (i+ 1)-th burst, τ0 is the waiting time from the initial time until

the first burst, and T =
∑N−1
i=0 τi, where N is a large integer. By Algorithm 1,

the values of xi and τi are obtained by

xi+1 = xie
−τi − εlnũi

1 + (xie−τi/K)H
, x0 = 0, τi = −εlnui, i = 0, 1, . . . ,

(A2)
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where ui and ũi, i = 0, 1, . . ., are random variates drawn independently of each
other from the uniform distribution in the unit interval.

Inserting T ≈ εN , which holds by the law of large numbers, into (A1), and
shifting the time frame to reduce the effect of the transient behaviour, we arrive
at an estimate

〈̂xn〉 =
1

εnN

N+M−1∑
i=M

xni (1− e−τin), (A3)

where xi and τi are given by (A2). We used (A3) with N = 109 and M = 107 to
estimate the theoretical value of 〈xn〉 in Figures 3–5 and Fig. 8. In the strong
feedback limit (Figures 6 and 7), ensemble averaging across a large number
of sample paths was needed for more precise measurements of the power-law
exponents.

Appendix B. Strong-feedback asymptotics in crit-
ical cases

The dominant contribution to the n-th moment of a solution p(x) to (20) comes
exclusively from the inner O(KH/(H+1)) concentration scale if n < 1

εH or from
the outer O(1) concentration scale if n > 1

εH . In the borderline case of n = 1
εH ,

which we explore in this Appendix, the inner and outer regions both contribute
to the leading-order behaviour of the n-th moment. The individual contributions
can be identified by splitting the range of integration (Hinch, 1991),

mn =

∫ ∞
0

p(x)xndx =

∫ δ

0

p(x)xndx+

∫ ∞
δ

p(x)xndx, (B1)

where δ is a value taken from an intermediate scale (KH/(H+1) � δ � 1).
In the first integral on the right-hand side of (B1), we substitute x =

KH/(H+1)y and replace the integrand by the inner approximation,

∫ δ

0

p(x)xndx ∼ K
(n+1)H
H+1

∫ K
− H
H+1 δ

0

P0(y)yndy. (B2)

Since δ � KH/(H+1), the upper integration limit of the integral on the right-
hand side of (B2) tends to infinity as K becomes increasingly small. The integral
itself then diverges to infinity, since by (30)–(31) and van Dyke’s matching rule
an asymptotic expansion

P0(y)yn ∼ ηy−1, y � 1, (B3)

holds for the integrand. Extricating the divergent part from the integral in (B2),
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we obtain an asymptotic approximation

∫ K
− H
H+1 δ

0

P0(y)yndy

=

∫ K
− H
H+1 δ

0

(
P0(y)yn − η

y + 1

)
dy + η

∫ K
− H
H+1 δ

0

dy

y + 1

∼
∫ ∞
0

(
P0(y)yn − η

y + 1

)
dy − ηHlnK

H + 1
+ ηlnδ. (B4)

In the second integral on the right-hand side of (B1), we replace the integrand
by the outer approximation (30), obtaining∫ ∞

δ

p(x)xndx ∼
∫ ∞
δ

p0(x)xndx = ηK
(n+1)H
H+1

∫ ∞
δ

e−
x
ε

x
dx

= ηK
(n+1)H
H+1 E1

(
δ

ε

)
∼ ηK

(n+1)H
H+1 (−lnδ + lnε− γ), (B5)

where E1(t) is the exponential integral and γ = 0.577 . . . is the Euler–Mascheroni
constant.

Collecting (B2), (B4), and (B5), we find that the n-the moment can be
expanded into

mn ∼ K
(n+1)H
H+1

(∫ ∞
0

(
P0(y)yn − η

y + 1

)
dy − ηH

H + 1
lnK + η(lnε− γ)

)
.

(B6)
Although the logarithmic term in (B6) asymptotically dominates, as K tends
to zero, the neighbouring constant terms, in practice the magnitudes of the
logarithm and the constant terms are similar so the latter cannot be neglected.

As a particular application of the expansion (B6), we evaluate the small-K
behaviour of the protein coefficient of variation subject to a critical noise load
ε = 1/2H. The leading-order approximations to m0 and m1 involve contribu-
tions from the inner scale only and are given by (36)–(37). On the other hand,
the leading-order approximation to m2 combines contributions from either scale
and is given by (B6). For the coefficient of variation we obtain

CV2 =
m2m0

m2
1

− 1 ∼ ν0
ν21

(∫ ∞
0

(
P0(y)y2 − 1

2H2(y + 1)

)
dy

− lnK

2H(1 +H)
− ln2 + lnH + γ

2H2

)
− 1.

In the Main Text, we showed that the coefficient of variation remains bounded as
K goes to zero if ε < 1/2H and increases polynomially if ε > 1/2H. The above
result implies that in the critical case ε = 1/2H exhibits a slow logarithmic
increase as K tends to zero.
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