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2 

ABSTRACT 30 

With advances in transcript profiling, the presence of transcriptional activities in intergenic 31 

regions has been well established in multiple model systems. However, whether intergenic 32 

expression reflects transcriptional noise or the activity of novel genes remains unclear. We 33 

identified intergenic transcribed regions (ITRs) in 15 diverse flowering plant species and found 34 

that the amount of intergenic expression correlates with genome size, a pattern that could be 35 

expected if intergenic expression is largely non-functional. To further assess the functionality of 36 

ITRs, we first built machine learning classifiers using Arabidopsis thaliana as a model that can 37 

accurately distinguish functional sequences (phenotype genes) and non-functional ones 38 

(pseudogenes and random unexpressed intergenic regions) by integrating 93 biochemical, 39 

evolutionary, and sequence-structure features. Next, by applying the models to ITRs, we found 40 

that 2,453 (21%) had features significantly similar to phenotype genes and thus were likely parts 41 

of functional genes, while an additional 17% resembled benchmark RNA genes. However, ~60% 42 

of ITRs were more similar to nonfunctional sequences and should be considered transcriptional 43 

noise unless falsified with experiments. The predictive framework establish here provides not 44 

only a comprehensive look at how functional, genic sequences are distinct from likely non-45 

functional ones, but also a new way to differentiate novel genes from genomic regions with noisy 46 

transcriptional activities. 47 

  48 
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INTRODUCTION 49 

Advances in sequencing technology have helped to identify pervasive transcription in intergenic 50 

regions with no annotated genes. These intergenic transcripts have been found in metazoa and 51 

fungi, including Homo sapiens (human; ENCODE Project Consortium 2012), Drosophila 52 

melanogaster (Brown et al. 2014), Caenorhabditis elegans (Boeck et al. 2016), and 53 

Saccharomyces cerevisiae (Nagalakshmi et al. 2008). In plants, ~7,000 and ~15,000 intergenic 54 

transcripts have also been reported in Arabidopsis thaliana (Yamada et al. 2003; Stolc et al. 55 

2005; Moghe et al. 2013; Krishnakumar et al. 2015) and Oryza sativa (Nobuta et al. 2007), 56 

respectively. The presence of intergenic transcripts indicates that there may be additional genes 57 

in genomes that have escaped gene finding efforts thus far. Considering that knowledge of the 58 

complete suite of functional elements present in a genome is an important goal for large-scale 59 

functional genomics efforts and the quest to connect genotype to phenotype, identifying 60 

functional intergenic transcribed regions (ITRs) represents a fundamental task that is critical to 61 

our understanding of the gene space in a genome. 62 

Loss-of-function phenotyping analysis represents the gold standard by which the 63 

functional significance of genomic regions, including ITRs, can be confirmed (Niu and Jiang 64 

2013). In Mus musculus (mouse), at least 25 ITRs with loss-of-function mutant phenotypes have 65 

been identified (Sauvageau et al. 2013; Lai et al. 2015), indicating that they are bona fide genes. 66 

In addition, loss-of-function mutants have been used to confirm ITR functionality in mouse 67 

embryonic stem cell proliferation (Ivanova et al. 2006; Guttman et al. 2009) and male 68 

reproductive development (Heinen et al. 2009), as well as brain and eye development in Danio 69 

rario (Ulitsky et al. 2011). In human, 162 long intergenic non-coding RNAs (lincRNAs) harbor 70 

phenotype-associated SNPs, suggesting that these expressed intergenic regions may be 71 

functional (Ning et al. 2013). In addition to intergenic expression, most model organisms feature 72 

an abundance of annotated non-coding RNA (ncRNA) sequences (Zhao et al. 2016), which are 73 

mostly identified through the presence of expression occurring outside of annotated genes. Thus, 74 

the only difference between ITRs and most ncRNA sequences is whether or not they have been 75 

annotated. Similar to the ITR examples above, a small number of ncRNAs have been confirmed 76 

as functional through loss-of-function experimental characterization, including Xist in mouse 77 

(Penny et al. 1996; Marahrens et al. 1997), Malat1 in human (Bernard et al. 2010), bereft in D. 78 

melanogaster (Hardiman et al. 2002), and At4 in A. thaliana (Shin et al. 2006). However, despite 79 
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the presence of a few notable examples, the number of ITRs and ncRNAs with well-established 80 

functions is dwarfed by those with no known function. 81 

While some ITRs and ncRNAs are likely novel genes, intergenic transcription can also be 82 

the byproduct of noisy expression that can occur due to nonspecific landing of RNA Polymerase 83 

II (RNA Pol II) or spurious regulatory signals that drive expression in random genomic regions 84 

(Struhl 2007). Thus, whether an intergenic transcript is functional cannot be depend on solely the 85 

fact that it is expressed. In addition to the biochemical activity, the genomic region with the 86 

activity must be under selection. This line of logic has revived the classical idea on how function 87 

can be defined based on “causal role” or “selected effect” functionality (Doolittle et al. 2014). A 88 

“causal role” definition requires a definable activity to consider a genomic region as functional 89 

(Cummins 1975; Amundson and Lauder 1994), which is adopted by the ENCODE Consortium 90 

(2012) to classify ~80% of the human genome as having biochemical functions. This finding has 91 

been used as evidence disproving the presence of junk DNA that are not under natural selection 92 

(see Eddy 2013). This has drawn considerable critique because biochemical activity itself is not 93 

an indication of selection (Graur et al., 2013; Niu and Jiang, 2013). Instead, if we are interested 94 

in if a genomic region with discernible activity is under selection, selected effect functionality is 95 

advocated to be a more suitable definition for function (Amundson and Lauder 1994; Graur et 96 

al., 2013; Doolittle et al. 2014). Under the selected effect functionality definition, ITRs and most 97 

annotated ncRNA genes remain functionally ambiguous. 98 

If an ITR is functional, it would represent a genic sequence that is not identified with 99 

conventional gene finding programs. Gene finding programs incorporate sequence 100 

characteristics, transcriptional evidence, and conservation information to define genic regions 101 

that are expected to be functional. Thus, genes that lack the features typically associated with 102 

genic regions will remain unidentified. Due to the debate on the definitions of function post 103 

ENCODE, Kellis et al. (2014) has suggested that evolutionary, biochemical, and genetic 104 

evidences provide complementary information to define functional genomic regions. Integrating 105 

chromatin accessibility, transcriptome, and conservation evidence was shown to be successful in 106 

identifying regions in the human genome that are under selection (Gulko et al. 2014). Moreover, 107 

a comprehensive integration of biochemical, evolutionary, and genetic evidence resulted in 108 

highly-accurate identification of human disease genes and pseudogenes (Tsai et al. 2017).  109 

However, it is not known if such predictions are possible outside of animal systems or if the 110 
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features that define functional genomic regions in animals are applicable in other biological 111 

kingdoms. In plant species, despite the fact that many biochemical signatures are known to be 112 

associated with genic regions, these signatures have not been incorporated to assist in identifying 113 

the functional genomic regions. 114 

 To investigate the prevalence of intergenic transcription across species with a wide range 115 

of genome sizes, we identified ITRs in 15 flowering plant species with 17-fold genome size 116 

differences. To assess the functionality of plant intergenic transcripts, we first determined 117 

whether 93 evolutionary, biochemical, and sequence-structure features could distinguish 118 

functional sequences (phenotype genes) and non-functional ones (pseudogenes and random 119 

unexpressed intergenic regions) using A. thaliana as a model. Next, we jointly considered all 120 

features to establish functional gene prediction models using machine learning methods. Finally, 121 

we applied the models to ITRs and putative ncRNAs to determine whether these functionally 122 

ambiguous sequences are more similar to known functional or likely non-functional sequences.  123 

RESULTS & DISCUSSION 124 

Relationship between genome size and intergenic expression indicates that intergenic 125 

transcripts may generally be non-functional 126 

Transcription of unannotated, intergenic regions can be due to either activities of novel genes or 127 

non-functional transcriptional noise. If noisy transcription occurs due to random landing of RNA 128 

Pol II or spurious regulatory signals, a naïve expectation is that, as genome size increases, the 129 

amount of intergenic expression would increase accordingly. By contrast, we expect that the 130 

extent of genic sequence expression will not be significantly correlated with genome sizes 131 

because larger plant genomes do not necessarily have more genes (r
2
=0.01; p=0.56). Thus, to 132 

gauge if intergenic transcribed regions (ITRs) generally behave more like what we expect of 133 

noisy or genic transcription, we assessed the correlation between genome size and the amount of 134 

intergenic expression occurring within a species. 135 

 We first identified genic and intergenic transcribed regions using leaf transcriptome data 136 

from 15 flowering plant species with 17-fold differences in genome size (Supplemental Table 1). 137 

Identical numbers of RNA-sequencing (RNA-seq) reads (30 million) and the same mapping 138 

procedures were used in all species to facilitate cross-species comparisons (see Methods). 139 

Transcribed regions were considered as ITRs if they did not overlap with any protein-coding or 140 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/127282doi: bioRxiv preprint 

https://doi.org/10.1101/127282


6 

RNA gene annotation and had no significant translated sequence similarity to plant protein 141 

sequences (see Methods). As expected, the amount of expression originating from annotated 142 

genic regions has no significant correlation with genomes size (r
2
=0.03; p=0.53; Fig. 1A). In 143 

contrast, the amount of intergenic expression occurring is significantly and positively correlated 144 

(r
2
=0.30; p=0.04; Fig. 1B). Because more intergenic expression is occurring in species with 145 

more genome space, this is consistent with the interpretation that a significant proportion of 146 

intergenic expression represents transcriptional noise. However, the correlation between genome 147 

size and intergenic expression explained ~30% of the variation, suggesting that other factors also 148 

affect ITR content, including the possibility that some ITRs are truly functional, novel genes. To 149 

further evaluate the functionality of intergenic transcripts, we next identified the biochemical and 150 

evolutionary features of functional genic regions and tested whether intergenic transcripts in A. 151 

thaliana were more similar to functional or non-functional sequences. 152 

Expression, conservation, and epigenetic features are significantly distinct between 153 

benchmark functional and non-functional genomic sequences 154 

To determine whether intergenic transcripts resemble functional sequences, we first asked what 155 

features may allow benchmark functional and non-functional genomic regions to be 156 

distinguished. For benchmark functional sequences, we used genes with visible loss-of-function 157 

phenotypes when mutated (referred to as phenotype genes, n=1,876; see Methods). These 158 

phenotype genes were considered functional based on the selected effect functionality criterion 159 

(Neander 1991) because their mutations have significant growth and/or developmental impact 160 

and likely contributes to reduced fitness. For benchmark non-functional genomic regions, we 161 

utilized pseudogene sequences (n=761; see Methods). These pseudogenes exhibit sequence 162 

similarity to known genes, but harbor disabling mutations including frame shifts and/or in-frame 163 

stop codons, that result in the production of presumably non-functional protein products. 164 

Considering that only 2% of pseudogenes are maintained over 90 million years of divergence 165 

between human and mouse (Svensson et al. 2006), it is expected that the majority of 166 

pseudogenes are no longer under selection (Li et al. 1981).  167 

 We evaluated 93 gene or gene product features for their ability to distinguish between 168 

phenotype genes and pseudogenes. These features were grouped into seven categories, including 169 

chromatin accessibility, DNA methylation, histone 3 (H3) marks, sequence conservation, 170 
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sequence-structure characteristics, transcription factor (TF) binding, and transcription activity. 171 

Feature values (Supplemental Table 2) were calculated for a randomly-selected 500 base pair 172 

(bp) window inside a phenotype gene or pseudogene. We used Area Under the Curve - Receiver 173 

Operating Characteristic (AUC-ROC) as a metric to measure how well a feature distinguishes 174 

between phenotype genes and pseudogenes. AUC-ROC values range between 0.5 (random 175 

guessing) and 1 (perfect separation of functional and non-functional sequences), with AUC-ROC 176 

values of 0.7, 0.8, and 0.9 considered fair, good, and excellent performance, respectively. Among 177 

the seven feature categories, transcription activity features were highly informative (median 178 

AUC-ROC=0.88;  Fig. 2A). Sequence conservation, DNA methylation, TF binding, and H3 179 

mark features were also fairly distinct between phenotype genes and pseudogenes (median AUC-180 

ROC ~ 0.7 for each category; Fig. 2B-E). By contrast, chromatin accessibility and sequence-181 

structure features were largely uninformative (median AUC-ROC=0.51 and 0.55, respectively; 182 

Fig. 2F-G). The poor performance of chromatin accessibility features is likely because the 183 

DNase I hypersensitivity (HS) datasets are sparse, as only 2-6% of phenotype gene and 184 

pseudogene sequences overlap a DNase I HS site. Further, median nucleosome occupancy 185 

nucleosome occupancy of phenotype genes (median normalized nucleosome occupancy = 1.22) 186 

is only slightly higher than that of pseudogenes (median = 1.31; Mann Whitney U test, p < 2e-4). 187 

For sequence-structure features based on dinucleotide structures (see Methods), we found that 188 

poor performance was likely due to phenotype genes and pseudogenes sharing similar 189 

dinucleotide sequence compositions (Supplemental Fig. 1).  190 

Error rates for functional region predictions are high when only single features are 191 

considered 192 

Within each feature category, there is often a wide range of performance between features (Fig. 193 

2, Supplemental Table 3). There are often clear biological or technical explanations for features 194 

that perform poorly. For the transcription activity category, 17 features have an AUC-ROC 195 

performance >0.8, including the best-performing feature, expression breadth (AUC-ROC=0.95; 196 

Fig. 2A). However, five transcription activity-related features perform poorly, including the 197 

presence of expression (transcript) evidence (AUC-ROC=0.58; Fig. 2A). This is because 80% of 198 

pseudogenes are considered expressed in ≥1 of 51 RNA-seq datasets, demonstrating that 199 

presence of transcripts should not be used by itself as evidence of functionality. For the sequence 200 
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conservation category, maximum and average phastCons conservation scores were highly 201 

distinct between phenotype genes and pseudogenes (AUC-ROC=0.83 and 0.82, respectively; 202 

Fig. 2B). On the other hand, identity to best matching nucleotide sequences found in the 203 

Brassicaceae and algal species were not informative (AUC-ROC=0.55 and 0.51, respectively; 204 

Fig. 2B). This is because 99.8% and 95% of phenotype genes and pseudogenes, respectively, had 205 

a potentially homologous sequence within the Brassicaceae family compared to only 3% and 206 

1%, respectively, in algal species. Thus Brassicaceae genomes were too similar and algal 207 

genomes were too dissimilar to A. thaliana to provide meaningful information. H3 mark features 208 

also display high variability. The most informative H3 mark features are based on the number 209 

and coverage of activation-related marks (AUC-ROC=0.87 and 0.85, respectively; Fig. 2E), 210 

consistent with the notion that histone marks are often jointly associated with active genomic 211 

sequences to potentially provide a robust regulatory signal (Schreiber and Bernstein 2002; Wang 212 

et al. 2008). By comparison, the coverage and intensity of H3 lysine 27 trimethylation 213 

(H3K27me3) and H3 threonine 3 phosphorylation (H3T3ph) are largely indistinct between 214 

phenotype genes and pseudogenes (AUC-ROC range: 0.55-0.59; Fig. 2E).  215 

Despite this high variability in performance, some features and feature categories have 216 

high AUC-ROCs suggesting that these features may individually provide sufficient information 217 

for distinguishing between functional and non-functional genomic regions. To assess this 218 

possibility, we next evaluated the error rates of functional predictions based on single features. 219 

We first considered expression breadth of a sequence, the best predicting feature of functionality. 220 

Despite high AUC-ROC (0.95), the false positive rate (FPR; % of pseudogenes predicted as 221 

phenotype genes) is 21% when only expression breadth is used, while the false negative rate 222 

(FNR; % of phenotype genes predicted as pseudogenes) is 4%. Similarly, the best-performing 223 

H3 mark- and sequence conservation-related features have FPRs of 26% and 32%, respectively, 224 

while also incorrectly classifying at least 10% of phenotype genes as pseudogenes. Thus, even 225 

when considering well-performing single features, error rates remain high indicating the need to 226 

jointly consider multiple features for distinguishing phenotype genes and pseudogenes. 227 

Consideration of multiple features in combination produces accurate predictions of 228 

functional genomic regions 229 
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To consider multiple features in combination, we first conducted principle component (PC) 230 

analysis to investigate how well phenotype genes and pseudogenes could be separated. Between 231 

the first two PCs, which jointly explain 40% of the variance in the feature dataset, phenotype 232 

genes (Fig. 3A) and pseudogenes (Fig. 3B) are distributed in largely distinct space. However, 233 

there remains substantial overlap, indicating that standard parametric approaches are not well 234 

suited to distinguishing between benchmark functional and non-functional sequences. Thus, we 235 

instead considered all 93 features in combination using random forest (see Methods), which 236 

generated a binary classifier that can be used to predict whether a sequence resembled phenotype 237 

genes or pseudogenes. This classifier is referred to as the full model. The phenotype gene and 238 

pseudogene sequences and associated conservation, biochemical, and sequence-structure features 239 

were separated into distinct training and testing sets such that the full model was generated and 240 

validated using independent data subsets (cross-validation). The resulting full prediction model 241 

provided much more accurate predictions (AUC-ROC=0.98; FNR=4%; FPR=10%; Fig. 3C) 242 

compared to any individual feature (Fig. 2). An additional measure of performance based on the 243 

precision (proportion of predicted functional sequences that are truly functional) and recall 244 

(proportion of functional sequences predicted as functional) values among predictions generated 245 

by the full model (Fig. 3D) also indicate that the model is performing well. When compared to 246 

the best-performing single feature (expression breadth), the full model has a similar FNR but 247 

only half the FPR (10% compared to 21%). Thus, the full model is more capable of 248 

distinguishing between phenotype genes and pseudogenes. 249 

 We next determined what the relative contributions of different feature categories were in 250 

predicting phenotype genes and pseudogenes and whether models based on a subset of features 251 

would perform similarly as the full model. Seven prediction models were established, each using 252 

only the subset of features from a single category (Fig. 2). Although none of these category-253 

specific models had performance as high as the full model, the models based on transcription 254 

activity, sequence conservation, and H3 mark features scored highly (AUC-ROC=0.97, 0.92, and 255 

0.91, respectively; Fig. 3C). Particularly, the transcription activity feature category model 256 

performed almost as well as the full model (FNR=6%, FPR=12%). We should emphasize that, 257 

instead of the presence of expression evidence, other transcription activity-related features are 258 

significantly distinct between functional and non-functional regions that produce useful 259 

predictions. 260 
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 Considering that investigating the functionality of ITRs is a primary goal of this study 261 

and that ITRs are defined based on the presence of expression evidence, we also built a model 262 

did not consider any transcription activity features (full w/o TX, Fig. 3C-D). We found that the 263 

model excluding transcription activity features performed almost as well as the full model and 264 

similarly to the transcription activity-feature-only model although with an increased FPR (AUC-265 

ROC=0.96; FNR=3%; FPR=20%). This indicates that predictions of functional regions are not 266 

reliant solely on transcription data, but instead a diverse array of features can be considered to 267 

make highly accurate predictions of the functionality of a genomic sequence. Meanwhile, our 268 

finding of the high performance of the transcription activity-only model highlights the possibility 269 

of establishing an accurate model for distinguishing functional genic and non-functional genomic 270 

sequences in plant species with only a modest amount of transcriptome data. 271 

Functional likelihood allows the prediction of functional and non-functional genomic 272 

regions 273 

To provide a measure of the potential functionality of any sequence, including ITRs and 274 

ncRNAs, in the A. thaliana genome, we utilized the confidence score from the full model as a 275 

“functional likelihood” value (Tsai et al. 2017; see Methods). The functional likelihood score 276 

ranges between 0 and 1, with high values indicating that a sequence is more similar to phenotype 277 

genes (functional) and low values indicating a sequence more closely resemble pseudogenes 278 

(non-functional). Functional likelihood values for all genomic regions examined in this study are 279 

available in Supplemental Table 4. As expected, phenotype genes have high functional 280 

likelihood values (median=0.97; Fig. 4A) and pseudogenes have low values (median=0.01; Fig. 281 

4B). To call sequences as functional or not, we defined a threshold functional likelihood value of 282 

0.35 (see Methods). Using this threshold, 96% of phenotype genes (Fig. 4A) and 90% of 283 

pseudogenes (Fig. 4B) are correctly classified as functional and non-functional, respectively, 284 

demonstrating that the full model is highly capable of distinguishing functional and non-285 

functional sequences.  286 

We next applied our model to predict the functionality of annotated protein-coding genes, 287 

transposable elements, and random unexpressed intergenic regions. Most annotated protein-288 

coding genes not included in the phenotype gene dataset have high functional likelihood scores 289 

(median=0.86; Fig. 4C) and 80% are predicted as functional. Of the 20% of protein-coding 290 
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genes that were predicted as non-functional, we expect that at least 4% represent false negatives 291 

based on the FNR of the full model. The actual FNR among protein-coding genes may be higher, 292 

however, as phenotype genes represent a highly active and well conserved subset of all genes. 293 

However, a subset of the low-scoring protein-coding genes may also represent gene sequences 294 

undergoing functional decay and en route to pseudogene status. To assess this possibility, we 295 

examined 1,940 A. thaliana "decaying” genes that may be experiencing pseudogenization due to 296 

promoter disablement (Yang et al. 2011) and found that while they represent only 7% of all A. 297 

thaliana annotated protein-coding genes, they make up 45% of protein-coding genes predicted as 298 

non-functional (Fisher’s Exact Test (FET), p < 1E-11). In addition to protein-coding genes, we 299 

evaluated the functional likelihoods of transposable elements (TEs) and randomly-selected, 300 

unexpressed intergenic regions that are most likely non-functional. As expected, the functional 301 

likelihoods were low for both TEs (median=0.03, Fig. 4D) and unexpressed intergenic regions 302 

(median=0.07; Fig. 4E), and 99% of TEs and all unexpressed intergenic sequences were 303 

predicted as non-functional, further demonstrating the utility of the function prediction model. 304 

Overall, the functional likelihood measure provides a useful metric to distinguish between 305 

phenotype genes and pseudogenes. In addition, the functional likelihoods of annotated protein-306 

coding genes, TEs, and unexpressed intergenic sequences agree with a priori expectations 307 

regarding the functionality of these sequences.  308 

Exclusion of features from multiple tissues increases prediction performance for narrowly-309 

expressed sequences 310 

Although the full model performs exceedingly well, there remain false predictions. There are 76 311 

phenotype genes (4%) predicted as non-functional (referred to as low-FL phenotype genes).  We 312 

assessed why these phenotype genes were not correctly identified by first asking what category 313 

of features were particularly distinct between low-FL and the remaining phenotype genes. We 314 

found that the major category that led to the misclassification of phenotype genes was 315 

transcription activity, as only 7% of low-scoring phenotype genes were predicted as functional in 316 

the transcription activity-only model, compared to 98% of high FL phenotype genes (Fig. 5A). 317 

By contrast, >65% of low-FL phenotype genes were predicted as functional when sequence 318 

conservation, H3 mark, or DNA methylation features were used. This could suggest that the full 319 

model is less effective in predicting functional sequences that are weakly or narrowly expressed. 320 
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While sequence conservation features are distinct between functional and non-functional 321 

sequences when considered in combination, a significantly higher proportion of low-FL 322 

phenotype genes were specific to the Brassicaceae family, with only 33% present in 323 

dicotyledonous species outside of the Brassicaceae, compared to 78% of high-scoring phenotype 324 

genes (FET, p < 4e-12), thus our model likely has reduced power in detecting lineage-specific 325 

genes.  326 

Given the association between transcription activity features and functional predictions, 327 

we next investigated how functional predictions performed for conditionally-functional and 328 

narrowly-expressed sequences. We found that genes with conditional phenotypes (see Methods) 329 

had no significant differences in functional likelihoods (median=0.96) as those with phenotypes 330 

under standard growth conditions (median=0.97; U test, p=0.38), indicating that our model can 331 

capture conditionally functional sequences. Next, we evaluated functional likelihood 332 

distributions among sequences with different breadths of gene expression. For this comparison, 333 

we focused on non-stress, single-tissue expression datasets (Supplemental Table 5), which was 334 

distinct from the expression breadth feature in the prediction model that considered all datasets. 335 

While phenotype genes are better predicted than pseudogenes among sequences with the same 336 

number of tissues with expression evidence (U tests, all p < 1.7E-06; Supplemental Fig. 2A), 337 

65% of the 62 phenotype genes expressed in ≤3 tissues are predicted as non-functional. Further, 338 

there is a significant correlation between the number of tissues with expression evidence and 339 

functional likelihood values of all sequences in our analysis (r
2
=0.77; p < 2E-16). Thus, the 340 

functional prediction model is biased against narrowly-expressed phenotype genes.  341 

We also found that 80 pseudogenes (10%) were defined as functional (high-FL 342 

pseudogenes). Consistent with misclassifications among phenotype genes, a key difference 343 

between high-FL pseudogenes and those that were correctly predicted as non-functional was that 344 

high-FL pseudogenes tend to be highly and broadly expressed (Fig. 5A). A significantly higher 345 

proportion of high-FL pseudogenes come from existing genome annotation as 19% of annotated 346 

pseudogenes were classified as functional, compared to 4% of pseudogenes identified through a 347 

computational pipeline (Zou et al 2009) (FET, p < 1.5E-10). We found that high-FL pseudogenes 348 

might be more recently pseudogenized and thus have not yet lost many genic signatures, as the 349 

mean number of disabling mutations (premature stop or frameshift) per kb in high-scoring 350 

pseudogenes (1.9) was significantly lower than that of low-scoring pseudogenes (4.0; U test, p < 351 
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0.02). Lastly, we cannot rule out the possibility that a small subset of high-scoring pseudogenes 352 

represent truly functional sequences, rather than false positives (e.g. Karreth et al. 2015; Poliseno 353 

et al. 2010). Overall, the misclassification of both narrowly-expressed phenotype genes and 354 

broadly-expressed pseudogenes highlights the need for an updated prediction model that is less 355 

influenced by expression breadth. 356 

To tailor functional predictions to narrowly-expressed sequences, we generated a “tissue-357 

agnostic” model that attempts to minimize the contribution of biochemical activities occurring in 358 

many tissues by excluding expression breadth and features that were available across multiple 359 

tissues (see Methods). The tissue-agnostic model performed similarly to the full model (AUC-360 

ROC=0.97; FNR=4%; FPR=15%; Supplemental Fig. 3; Supplemental Table 4). Importantly, the 361 

proportion of phenotype genes expressed in ≤3 tissues predicted as functional increased by 23% 362 

(35% in the full model to 58% in the tissue-agnostic model, Supplemental Fig. 2B), indicating 363 

that the tissue-agnostic model is more suitable for predicting the functionality of narrowly-364 

expressed sequences than the full model, although there is an increase in FPR (from 10% to 365 

15%). We next sought to evaluate the functional likelihood of ITR and annotated ncRNA 366 

sequences utilizing both the full model and the tissue-agnostic model, in case that these 367 

sequences are narrowly-expressed.  368 

Intergenic transcribed regions and annotated ncRNAs are mostly predicted as non-369 

functional 370 

ITRs and ncRNAs represent functionally ambiguous sequences, as they are usually identified by 371 

the presence of expression evidence and few have been functionally characterized. Nevertheless, 372 

a subset of ITRs likely represent novel genes and may also represent unannotated exon 373 

extensions of known genes (Johnson et al. 2005). To evaluate the functionality of ITRs and 374 

ncRNAs, we next applied both the full and tissue-agnostic models to these sequences. 375 

Additionally, we investigated whether likely-functional ITRs and ncRNAs are close to annotated 376 

genes, and if so, if they may be extensions of the gene neighbors. We assessed functional 377 

likelihood values for 895 ITRs from three sources: Araport 11 annotation, Moghe et al. (2013), 378 

and an additional set identified in this study from 206 RNA-seq datasets. We also analyzed the 379 

functional likelihood of TAIR ncRNAs (n=136), and Araport long ncRNAs (referred to as 380 

Araport ncRNAs, n=252) TAIR and Araport ncRNAs are collectively referred to as annotated 381 
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ncRNAs. The functional likelihoods based on the full model were low (median=0.09) for both 382 

ITRs (Fig. 4F) and Araport ncRNAs (Fig. 4G), and only 15% and 9% of these sequences are 383 

predicted as functional, respectively. By contrast, TAIR ncRNAs have higher functional 384 

likelihood values (median=0.53; Fig. 4H) and 68% are predicted as functional. We next asked 385 

what features were distinct among TAIR ncRNAs compared to ITRs and Araport ncRNAs that 386 

led to a greater proportion of these sequences predicted as functional and found that transcription 387 

activity features of TAIR ncRNAs are more similar to phenotype genes when compared to ITRs 388 

and Araport ncRNAs (Fig. 5B). By contrast, only 40% of TAIR ncRNAs are predicted as 389 

functional if sequence conservation features are considered, potentially because RNA genes 390 

experience less selective constraint at the primary sequence level compared to protein-coding 391 

genes (Pang et al. 2006). When looking at the performance of single-category predictions, we 392 

also find that a greater proportion of ITRs and Araport ncRNAs are predicted as functional when 393 

considering only DNA methylation or H3 mark features (Fig. 5B). However, these two category-394 

specific models are also marked by increased false positive rates and predict a substantial 395 

proportion of unexpressed intergenic sequences as functional (Fig. 5B). Notably, 88% of 396 

unexpressed intergenic sequences are predicted as functional based on the DNA methylation-397 

only model. Thus, while single-category models are useful for determining features that are 398 

similar or dissimilar across sequences types, they may not be useful as a basis for predicting 399 

sequences as functional or non-functional. 400 

As ITRs and annotated ncRNAs are generally narrowly-expressed, it is likely that we are 401 

underestimating the proportion that is functional. We next applied the tissue-agnostic model to 402 

ITRs and annotated ncRNAs, as this model is less biased against narrowly-expressed sequences 403 

(Supplemental Fig. 2B). Compared to the full model, twice as many ITRs (30% compared to 404 

15% in the full model; FET, p < 4E-15) and Araport ncRNAs (19% compared to 9%; FET, p < 405 

0.003) are predicted as functional. A similar proportion of TAIR ncRNAs are predicted as 406 

functional (67% compared to 68%; FET, p=0.80), which is likely a result of TAIR ncRNAs 407 

being more broadly expressed than ITRs and Araport ncRNAs (Supplemental Fig. 4A). 408 

Considering both the full and tissue-agnostic models, we predict a total of 268 ITRs (32%), 57 409 

Araport ncRNAs (23%), and 105 TAIR ncRNAs (77%) as functional. 410 

Intergenic transcripts can represent evidence for unannotated extensions or alternative 411 

splicing variants of known genes (Johnson et al. 2005). Thus, we next evaluated whether ITRs 412 
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and annotated ncRNAs that are predicted as functional are close to annotated genes and if these 413 

sequences share features with neighboring genes. We found that ITRs and annotated ncRNAs 414 

closer to annotated genes tend to be predicted as functional (Supplemental Fig. 5A). Using the 415 

95
th

 percentile of intron lengths for all genes as a threshold to call ITRs and annotated ncRNAs 416 

as proximal or distant to neighboring genes, 57% of functional ITRs and annotated ncRNAs are 417 

considered proximal, compared to 35% for non-functional ITRs and annotated ncRNAs (FET, p 418 

< 2E-09), suggesting that a subset these likely-functional sequences may be unannotated exons 419 

of known genes. If ITRs and annotated ncRNAs represent unannotated extensions of known 420 

genes, they may share features with their gene neighbors. However, functional ITRs/ncRNAs 421 

have features that bear little similarity to neighboring genes, regardless of if they are proximal or 422 

distant to neighboring genes (Supplemental Fig. 5B-C). In contrast, genes are generally more 423 

similar to their neighbors, regardless of proximity, than ITRs or annotated ncRNAs are to their 424 

nearest neighbor (Supplemental Fig. 5B-C). This is also true compared to random gene pairs 425 

(Supplemental Fig. 5D). Thus, despite their proximity to annotated genes, we expect that few 426 

ITRs or annotated ncRNAs represent unannotated exon extensions of known genes. For proximal 427 

functional ITRs/annotated ncRNAs, we cannot rule out the possibility that they represent false-428 

positive functional predictions due to the accessible and active chromatin states of nearby genes 429 

that serve as a confounding factor. For the 116 functional ITRs and annotated ncRNAs that are 430 

distal, they may represent fragments of novel genes.  431 

Overall, we find that ITRs and annotated ncRNAs are generally predicted as non-432 

functional. Furthermore, tissue-specific or conditional functionality does not fully explain these 433 

non-functional predictions and few predicted-functional ITRs and ncRNAs are likely 434 

unannotated extensions of neighboring genes. In addition to the ITRs and ncRNAs investigated 435 

thus far, there are 12,344 ITR and ncRNA sequences that are shorter than 500 bp and were 436 

unable to be investigated by the full model. We next evaluated methods to assess the 437 

functionality of these shorter sequences.   438 

Short RNA genes have mixed predictions based on a binary classification model 439 

The functional predictions performed thus far require 500 bp of sequence. However, there are an 440 

additional 10,938 ITRs and 1,406 annotated ncRNAs (12,344 in total) that are shorter than 500 441 

bp. To evaluate the functionality of short ITRs and ncRNAs, we generated a new binary 442 
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classification model using features calculated from a randomly-selected 100 bp sequence within 443 

a gene or pseudogene body (for features, see Supplemental Table 6). ITRs and annotated 444 

ncRNAs tend to be more narrowly expressed than phenotype genes (U tests, all p < 6e-15; 445 

Supplemental Fig. 4B) and the tissue-agnostic model was shown to improve false negative rates 446 

among low-FL phenotype genes. Therefore, we generated this model while excluding expression 447 

breadth and tissue-specific features (referred to as 100 bp tissue-agnostic model). The 100bp 448 

tissue-agnostic model performed similarly to the full 500 bp model in distinguishing between 449 

phenotype genes and pseudogenes (AUC-ROC=0.97; FNR=13%; FPR=5%; Supplemental Fig. 450 

6). Most importantly, focusing on entries <500 bp in length, this 100 bp model led to the 451 

prediction of an additional 366 ITRs (11%), 109 Araport ncRNAs (8%), and 10 TAIR ncRNAs 452 

(44%) as functional (Supplemental Fig. 6F-H). 453 

In addition to allowing the evaluation of 12,344 short ITRs and annotated ncRNAs, the 454 

100 bp tissue-agnostic model can be applied to annotated short RNA genes. Thus, we next 455 

sought to evaluate functional likelihood scores for Pol II-transcribed RNA genes that have been 456 

annotated in TAIR10, including the primary transcripts of microRNAs (miRNAs; n=151), small 457 

nucleolar RNAs (snoRNAs; n=15), and small nuclear RNAs (snRNAs; n=6). We found that 15% 458 

of miRNAs (Supplemental Fig. 6I), 73% of snoRNAs (Supplemental Fig. 5J), and 50% of 459 

snRNAs (Supplemental Fig. 6K) were predicted as functional. Because most TAIR10 annotated 460 

RNA genes are computationally predicted and have not been experimentally validated, it is 461 

possible that some may represent false positive gene annotations, particularly among miRNA 462 

entries. Meanwhile, we cannot rule of the possibility that the 100bp tissue-agnostic model 463 

performs sub-optimally for RNA genes. To further assess these possibilities, we identified six 464 

RNA genes (four miRNAs, one lncRNA, and one trans-acting small interfering RNA) with loss-465 

of-function mutant phenotypes (referred to as RNA phenotype genes; Supplemental Table 7). Of 466 

these six genes, we correctly identify three as functional (Supplemental Fig. 6L). Although this is 467 

significantly higher than the proportion of pseudogenes (FET, p < 0.004) and miRNAs (p = 0.05) 468 

predicted as functional, this finding suggests that the 100 bp tissue-agnostic model has a 469 

substantial false negative rate for detecting functional RNA genes. One immediate question is 470 

whether the suboptimal prediction is because RNA genes belong to a class of their own. To 471 

further evaluate functional predictions of RNA gene sequences, TAIR ncRNAs, Araport 472 
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ncRNAs, and ITRs, we next built multi-class functional prediction models for distinguishing 473 

RNA genes from other types of functional and non-functional sequences. 474 

Intergenic transcribed regions and annotated ncRNAs do not resemble benchmark RNA 475 

genes 476 

To build a model that considers genomic sequences that are likely functional at the RNA level as 477 

a distinct class, we generated a four-class function prediction model aimed at distinguishing four 478 

classes of sequences: benchmark RNA genes, phenotype protein-coding genes (same as 479 

phenotype genes from previous sections), pseudogenes, and randomly-selected, unexpressed 480 

intergenic regions. Here, unexpressed intergenic sequences were included to provide another set 481 

of likely non-functional sequences distinct from pseudogenes. The benchmark RNA gene 482 

training set was composed of six RNA phenotype genes discussed in the previous section and 40 483 

high-confidence primary miRNA sequences from miRBase (Kozomara and Griffiths-Jones 484 

2014). The model provides four scores, one for each sequence class (for scores, see 485 

Supplemental Table 4), and the maximum score was used to classify sequences. We excluded 486 

expression breadth and tissue-specific features when generating the four-class model.  487 

Based on predictions from the four-class model, the RNA gene training set was well-488 

classified, with 87% predicted as either RNA gene-like (65%) or phenotype protein-coding gene-489 

like (22%; Fig. 6A). Notably, all six RNA phenotype genes were predicted as functional (four 490 

and two predicted as RNA genes and phenotype protein-coding genes, respectively). To assess 491 

whether sequences predicted as RNA gene-like had evidence of translation, we identified 492 

genomic regions with translation evidence based on two shotgun proteomics datasets 493 

(Baerenfaller et al. 2008; Castellana et al. 2008). We find that phenotype protein-coding genes 494 

and other protein-coding genes predicted as benchmark RNA gene-like are less likely to have 495 

evidence of translation compared to those predicted as phenotype protein-coding gene-like (FET, 496 

both p<6e-5, Supplemental Fig. 7). Taken together with the predictions of benchmark RNA 497 

genes, these results suggest that the benchmark RNA gene prediction score allows sequences that 498 

function at the RNA level to be distinguished from other sequence types. For the remaining three 499 

classes in the four-class model, 95% of phenotype genes were predicted as either phenotype 500 

protein-coding gene-like or benchmark RNA gene-like (Fig. 6B), while 70% of pseudogenes 501 

(Fig. 6C) and 100% of unexpressed intergenic regions (Fig. 6D) resembled either pseudogenes 502 
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or unexpressed intergenic sequences. Importantly, among phenotype genes expressed in ≤3 503 

tissues, 80% were correctly predicted as phenotype protein-coding or benchmark RNA gene-like 504 

in the four-class model, an increase of 22% over the 500 bp tissue-agnostic model.  505 

Since the four-class model was generally able to distinguish benchmark RNA genes from 506 

other sequence classes, regardless of breadth of expression, we next evaluated whether ITRs and 507 

annotated ncRNAs resemble benchmark RNA genes. We find that 20%, 19%, and 15% of ITRs, 508 

Araport ncRNAs, and TAIR ncRNAs, respectively, are predicted as RNA genes (Fig. 6E-G). We 509 

also considered that ITRs and annotated ncRNAs that were predicted as phenotype protein-510 

coding gene-like may also be functioning at the RNA level. Consistent with this notion, fewer 511 

than 5% of phenotype protein-coding gene-like ITRs and annotated ncRNAs have evidence of 512 

translation, compared to 37% of phenotype genes and 27% of protein-coding genes 513 

(Supplemental Fig. 7). This suggests that the majority of ITRs and annotated ncRNAs predicted 514 

as benchmark RNA gene-like or phenotype protein-coding gene-like are likely functional RNA 515 

genes.  516 

To provide an overall estimate the proportion of likely-functional ITRs and annotated 517 

ncRNAs, we considered the outcome of all four models presented in this study (full 500 bp, 500 518 

bp and 100 bp tissue-agnostic, and four-class models) in combination. We classify 2,453 ITRs 519 

(21%) and 506 annotated ncRNAs (28%) as functional, as they resemble phenotype protein-520 

coding genes in at least one of the four models. An additional 1,984 ITRs (17%) and 290 521 

ncRNAs (16%) resemble benchmark RNA genes and therefore could be functional at the RNA 522 

level. Ultimately, we find that the majority of ITRs (62%) and annotated ncRNAs (56%) are 523 

predicted as non-functional, suggesting that these sequences do not primarily represent novel 524 

protein-coding or RNA genes. Moreover, at least a third of ITRs (Fig. 6E) and Araport ncRNAs 525 

(Fig. 6F) are most similar to unexpressed intergenic regions. Given that these sequences have not 526 

been functionally characterized, it is possible that many represent regions of noisy transcription 527 

and, in the cases of annotated ncRNAs, false positive gene annotations. 528 

CONCLUSION  529 

We identify a collection of evolutionary, biochemical, and sequence-structure signatures that 530 

represent defining features of functional genic regions in a plant genome. Considering these 531 

features jointly via machine learning methods produces highly accurate predictions that can 532 
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distinguish between functional and non-functional genomic regions with low false positive and 533 

false negative rates. Expression evidence is particularly distinct between phenotype genes and 534 

pseudogenes. However, it is the level and breadth of expression that is important for predictions 535 

as most pseudogenes have evidence of expression. In addition, predictions performed without 536 

expression evidence also performed well, indicating that functional regions are not defined solely 537 

by expression features. We also identified ITRs occurring across 15 diverse land plant species 538 

with a wide range of genome sizes and find that the amount of intergenic expression occurring in 539 

a species increases with genome size while the amount of genic expression does not. Considering 540 

that noisy expression should be expected to increase with additional genome space, this hints that 541 

much of the intergenic transcription occurring in a species may be non-functional. 542 

Among the 11,833 ITRs analyzed in this study, we predict 2,453 (21%) are likely 543 

functional as they exhibit the biochemical, evolutionary, and sequence-structure characteristics 544 

of known functional genomic regions. For annotated ncRNA regions, we classify 506 of 1,794 545 

(28%) as likely-functional. An additional 1,984 ITRs (17%) and 290 ncRNAs (16%) resemble 546 

benchmark RNA genes and therefore could be functional at the RNA level. However, the false 547 

positive rate among RNA gene predictions could be quite high, as 15% of pseudogenes were 548 

predicted as RNA genes. More robust and reliable predictions would be possible if additional 549 

benchmark RNA genes with loss-of-function phenotype information were available. Ultimately, 550 

the ITRs and annotated ncRNAs that are predicted as functional are likely-genic regions that 551 

could be responsible for biological novelties and represent an important component of the 552 

functional gene set in A. thaliana. Therefore, they should be considered high priority targets in 553 

future experimental studies. However, the remaining 7,396 ITRs (63%) and 998 annotated 554 

ncRNAs (56%) are most similar to pseudogenes or unexpressed intergenic sequences, suggesting 555 

these sequences are likely non-functional and byproducts of transcriptional noise. Given that the 556 

majority of ITRs and annotated ncRNAs are predicted as non-functional, we recommend that the 557 

null hypothesis for the functionality of expressed intergenic sequences is that they represent 558 

transcriptional noise. We do not suggest that all novel intergenic transcription represents non-559 

functional activity, but instead that ITRs should be generally regarded as non-functional until 560 

convincing experimental evidence is provided that a transcribed genomic region is functional. 561 

METHODS 562 
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Identification of leaf intergenic transcribed regions 563 

RNA-sequencing (RNA-seq) datasets were retrieved from the Sequence Read Archive (SRA) at 564 

the National Center for Biotechnology Information (NCBI) for 15 flowering plant species 565 

(Supplemental Table 1). All datasets were generated from leaf tissue and sequenced on Illumina 566 

HiSeq 2000 or 2500 platforms. Genome sequences and gene annotation files were downloaded 567 

from Phytozome v11 (www.phytozome.net; Goodstein et al. 2011) or Oropetium Base v01 568 

(www.sviridis.org; VanBuren et al. 2015). Genome sequences were repeat masked using 569 

RepeatMasker v4.0.5 (www.repeatmasker.org) if a repeat-masked version of a genome assembly 570 

was not available. Only one end from paired-end read datasets were utilized in downstream 571 

processing. Reads were trimmed of low scoring ends and residual adaptor sequences using 572 

Trimmomatic v0.33 (Bolger et al. 2014) and mapped to associated genome sequences using 573 

Tophat v2.0.13 (Kim et al. 2013). Reads ≥20 nucleotides in length that mapped uniquely within a 574 

genome at our mapping threshold were used in further analysis. Thirty million mapped reads 575 

were randomly selected from among all datasets for a species and assembled into transcript 576 

fragments using Cufflinks v2.2.1 (Trapnell et al. 2010). The expected mean fragment length for 577 

assembled transcript fragments in Cufflinks was set to 150 from the default of 200 so that 578 

expression levels in short fragments would not be overvalued. The 1
st
 and 99

th
 percentile of 579 

intron lengths in a given gene annotation set were used as the minimum and maximum intron 580 

lengths, respectively, for both the TopHat2 and Cufflinks steps. Intergenic transcribed regions 581 

(ITRs) were defined by transcript fragments that did not overlap existing gene annotation and did 582 

not have significant six-frame translated sequence similarity to annotated plant proteins in 583 

Phytozome v10 (BLASTX E-value < 1E-05). To determine the relationship between genome 584 

size and number of annotated genes, we calculated the correlation between assembled genome 585 

size and gene counts from the first 50 published plant genomes as described by Michael and 586 

Jackson (2013). 587 

Arabidopsis thaliana genome annotation 588 

Arabidopsis thaliana protein-coding gene, miRNA gene, snoRNA gene, snRNA gene, ncRNA 589 

region, pseudogene, and transposable element annotations were retrieved from The Arabidopsis 590 

Information Resource v10 (TAIR10; www.arabidopsis.org; Berardini et al. 2015). Additional 591 

miRNA gene and lncRNA region annotations were retrieved from Araport v11 592 
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(www.araport.org; Krishnakumar et al. 2015). A pseudogene-finding pipeline similar to that 593 

described by Chen et al. (Zou et al. 2009) was used to identify additional putative pseudogene 594 

fragments and count the number of disabling mutations (early stop or frameshift mutations) 595 

present in these sequences. To avoid potential confounding effects from overlapping gene 596 

annotation, protein-coding and RNA gene annotation that overlapped other gene or pseudogene 597 

annotation were excluded from further analysis, except for lncRNA annotation that overlapped 598 

with other lncRNAs, which were merged. Pseudogenes and transposable elements that 599 

overlapped genic regions were also removed. When pseudogenes from TAIR10 and the 600 

pseudogene-finding pipeline overlapped, the longer pseudogene annotation was retained. 601 

ITRs were defined by Moghe et al. (2013; “Set 2” ITRs; coordinates provided by the 602 

authors) and Araport v11 (described as “novel transcribed regions”). Overlapping ITR 603 

annotations from Araport were merged. Additional ITRs were identified from 206 RNA-seq 604 

datasets generated using wild-type, Columbia-0 tissue on Illumina sequencing platforms 605 

(Supplemental Table 5). Datasets were identified by querying NCBI-SRA for datasets from A. 606 

thaliana with RNA as the source. Reads were trimmed, mapped, and assembled into transcript 607 

fragments using the steps described in the previous section, except that reads from multiple 608 

datasets were not merged and subsampled. Instead, overlapping assembled transcript fragments 609 

from across datasets were merged. ITRs were identified by transcribed fragments that did not 610 

overlap with any annotated feature from TAIR10 or Araport11 or any pseudogenes defined by 611 

the pseudogene-finding pipeline. Overlaps among ITR annotations were resolved using a priority 612 

system: Araport11 > Moghe et al. > ITRs identified in this study. 613 

For each gene, ncRNA, pseudogene, transposable element, and intergenic transcribed 614 

sequence, a randomly-selected 100 and 500 base pair (bp) window was chosen for feature 615 

calculation (Supplemental Table 2; Supplemental Table 6; see below for feature descriptions). 616 

Sequences that were not at least 100 or 500 bp in length were excluded. This controlled for 617 

effects of sequence length and simplified gene structure considerations (e.g. exon/intron 618 

boundaries). In addition, random 100 bp (n=4,000) and 500 bp (n=3,716) regions of intergenic 619 

space (genome regions outside of gene, pseudogene, or transposable element annotation) that did 620 

not overlap with any genic or intergenic transcript fragments were also selected for feature 621 

calculation. These 100 and 500 bp windows in gene, ncRNA, pseudogene, transposable element, 622 
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and ITR annotation and unexpressed intergenic space are referred to as “feature regions” 623 

throughout the Methods section. 624 

Single-feature prediction performance 625 

The ability for single features to distinguish between functional and non-functional regions was 626 

tested using Area Under the Curve - Receiver Operating Characteristic (AUC-ROC) values 627 

calculated using the scikit-learn package in Python. AUC-ROC values range between 0.5 628 

(equivalent to random guessing) and 1 (perfect predictions) and values above 0.7, 0.8, and 0.9 629 

are considered to be fair, good, and excellent, respectively. Thresholds to predict sequences as 630 

functional or non-functional using a single feature were defined by the feature value that 631 

produced the highest F-measure (harmonic mean of precision and recall), which gives 632 

consideration to both false positives and false negatives at a given threshold. False positive rates 633 

(FPR) were calculated as the percentage of negative cases with values above or equal to the 634 

threshold and false negative rates (FNR) were calculated was the percentage of positive cases 635 

with values below the threshold. 636 

Phenotype data sources 637 

Mutant phenotype data for Arabidopsis thaliana protein-coding genes was collected from a 638 

published dataset (Lloyd and Meinke 2012), the Chloroplast 2010 database (Ajjawi et al. 2010; 639 

Savage et al. 2013), and the RIKEN Phenome database (Kuromori et al. 2006) as described by 640 

Lloyd et al. (2015). Phenotype genes used in our analyses were those whose disruption resulted 641 

in lethal or visible defects under standard laboratory growth conditions (i.e. non-stress 642 

conditions). Genes with documented mutant phenotypes under standard conditions were 643 

considered as a distinct and non-overlapping category from other annotated protein-coding 644 

genes. We identified six RNA genes with documented loss-of-function phenotypes through 645 

literature searches: At4 (AT5G03545; Shin et al. 2006), MIR164A and MIR164D (AT2G47585 646 

and AT5G01747, respectively; Guo et al. 2005), MIR168A (AT4G19395; Li et al. 2012b), and 647 

MIR828A and TAS4 (AT4G27765 and AT3G25795, respectively; Hsieh et al. 2009). An 648 

additional 23 RNA genes with documented overexpression mutant phenotypes were identified 649 

from the literature links at miRBase. Conditional phenotype genes were those belonging to the 650 

“Conditional” phenotype class as described by Lloyd and Meinke (2012). These genes had no 651 
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obvious mutant phenotype under standard growth conditions, but did exhibit a loss-of-function 652 

phenotype under stress conditions. These were compared with phenotype genes belonging to the 653 

“Morphological” phenotype class from the same study, which have visible growth defects under 654 

standard growth conditions. 655 

Sequence conservation and structure features 656 

Nucleotide diversity and Tajima’s D were calculated among 81 A. thaliana accessions (Cao et al. 657 

2011) for each feature region using custom Python scripts. The genome matrix file for the Cao et 658 

al. study was retrieved from the 1,001 genomes database (www.1001genomes.org) and analyzed 659 

with Python scripts available through GitHub (github.com/panchyni/GenomeMatrixProcessing). 660 

The genomic regions that align between A. thaliana and six other plant species were retrieved 661 

from Li et al. (2012a). The coverage of each feature region with these aligned blocks was 662 

calculated. In addition, phastCons conservation scores were available for each nucleotide within 663 

an aligned block. The maximum and average of phastCons scores were calculated for each 664 

feature region. Nucleotides in a feature region that did not overlap with an aligned block were 665 

assigned a phastCons score of 0. BLASTN searches were performed between feature region 666 

nucleotide sequences and Phytozome v10 genome sequences. Five plant lineages were 667 

considered: Brassicaceae (nspecies=7), other dicotyledonous plants (n=22), monocots (n=7), other 668 

embryophyte plants (n=3), and algae (n=5). The percent identity to the most significant match by 669 

E-value (maximum E-value: 1E-05) within a lineage group for each feature region was used as 670 

the feature in functional predictions. DNA sequence-structure features consisted of the first five 671 

principal components of the 125 conformational and thermodynamic dinucleotide properties 672 

collected from DiProDB database (Friedel et al. 2009). The first five principal components (83% 673 

of variation) correspond primarily to DNA major groove geometry, free energy, twist and roll, 674 

DNA minor groove geometry, and tilt and rise, respectively (Tsai et al. 2015). Sequence-675 

structure values corresponding to principal components were calculated in dinucleotide windows 676 

and averaged across the length of a feature region. 677 

Transcription activity features 678 

From the 206 A. thaliana RNA-seq datasets described above, we removed datasets with fewer 679 

than 20 million reads (n=134) or abnormally high RPKM distributions among resulting transcript 680 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/127282doi: bioRxiv preprint 

https://paperpile.com/c/Bc7fGJ/ecBs
https://paperpile.com/c/Bc7fGJ/ecBs
https://paperpile.com/c/Bc7fGJ/ywz0
https://paperpile.com/c/Bc7fGJ/APKa
https://paperpile.com/c/Bc7fGJ/hdjM
https://doi.org/10.1101/127282


24 

fragments (n=21; median of median RPKM values among retained and removed datasets=10.2 681 

and 4065.2, respectively; Supplemental Table 5), which indicated technical issues during the 682 

read cleaning, read mapping, or transcript assembly processes. Transcript fragments assembled 683 

from the remaining 51 RNA-seq datasets were used to calculate expression breadth across 684 

datasets, 95
th

 percentile RPKM expression levels, maximum transcription coverage in a single 685 

dataset, and presence or absence of expression evidence. Ten datasets from diverse tissues and 686 

conditions with a high number of reads were chosen to calculate max RPKM expression levels 687 

and transcription coverage as single-dataset features. The tissues and conditions included: pollen 688 

(SRR847501), light- and dark-grown seedlings (SRR1020621 and SRR974751, respectively), 689 

leaf tissue under standard, drought, and fungal-infection conditions (SRR953400, SRR921316, 690 

and SRR391052, respectively), root (SRR578947), inflorescence (SRR953399), flower 691 

(SRR505745), and silique (SRR953401). RNA-seq datasets generated from a single tissue and in 692 

standard growth conditions were used for tissue-specific expression analysis. The seven tissues 693 

were pollen, seedling, leaf, root, inflorescence, flower, and silique (Supplemental Table 5). Two 694 

additional datasets generated by sequencing RNA molecules associated with ribosomes 695 

(SRR966480 and SRR966484) were retrieved from NCBI-SRA and processed using the same 696 

steps as those used on other RNA-seq datasets. 697 

Histone 3 mark features 698 

Chromatin immunoprecipitation sequencing (ChIP-seq) datasets for four activation-associated 699 

(H3K4me1: SRR2001269, H3K4me3: SRR1964977, H3K9ac: SRR1964985, and H3K23ac: 700 

SRR1005405) and four repression-associated (H3K9me1: SRR1005422, H3K9me2: 701 

SRR493052, H3K27me3: SRR3087685, and H3T3ph: SRR2001289) histone 3 (H3) marks were 702 

retrieved from NCBI-SRA. Datasets were chosen due to high number of reads and presence of 703 

histone 3 or total protein controls. Reads were trimmed with Trimmomatic v0.33 (Bolger et al. 704 

2014) and mapped to the TAIR10 genome sequence with Bowtie v2.2.5 (Langmead et al. 2009). 705 

H3 mark peaks were identified with the Spatial Clustering for Identification of ChIP-Enriched 706 

Regions (SICER) software v1.1 (Xu et al. 2014). SICER requires an effective genome size input, 707 

which was calculated according to Koehler et al. (2011). The maximum H3 mark peak intensity 708 

and the coverage with each H3 mark peak were calculated for each feature region. The count and 709 

coverage of all activating or repressing marks in a feature region were also calculated. 710 
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DNA methylation features 711 

Bisulfite-sequencing (BS-seq) datasets from seven tissues (pollen: SRR516176, embryo: 712 

SRR1039895, endosperm: SRR1039896, seedling: SRR520367, leaf: SRR1264996, root: 713 

SRR1188584, and inflorescence: SRR2155684) were retrieved from NCBI-SRA. BS-seq reads 714 

were trimmed with Trimmomatic v0.33 (Bolger et al. 2014) and processed with Bismark v3 715 

(Krueger and Andrews 2011). A cytosine was considered to be methylated if at least five reads 716 

mapped to the position and >50% of the reads indicated the position was methylated. For each 717 

feature region, the percentage of methylated cytosines in CpG, CHG, and CHH contexts were 718 

calculated if the feature region had ≥5 cytosines with ≥5 reads mapping to the position. To test 719 

the false positive rate of DNA methylation calls, we evaluated the proportion of cytosines in the 720 

chloroplast genome that are called as methylated, as the chloroplast genome is known to have 721 

few DNA methylation events (Ngernprasirtsiri et al. 1988; Zhang et al. 2006). In any nucleotide 722 

context for any BS-seq dataset, 0-1.5% (median=0) of cytosines in the chloroplast genome were 723 

defined as methylated and only 0.1-2.4% of reads suggested that a cytosine position was 724 

methylated. This indicated that the false positive rates for DNA methylation calls were low. 725 

Chromatin accessibility and transcription factor binding features 726 

Chromatin accessibility features consisted of DNase I hypersensitive peaks and micrococcal 727 

nuclease sequencing (MNase-seq)-derived nucleosome occupancy. DNase I peaks from five 728 

tissues (seed coat, seedling, root, unopened flowers, and opened flowers) were available from the 729 

Gene Expression Omnibus (experiment identifiers: GSE53322 and GSE53324; Sullivan et al. 730 

2014). The max DNase I peak intensity and coverage with DNase I peaks were calculated for 731 

each feature region. MNase-seq nucleosome occupancy was produced by Liu et al. (2015). The 732 

authors provided the normalized nucleosome occupancy for each nucleotide in the TAIR10 733 

genome sequence. The average of nucleosome occupancy values across a feature region was 734 

calculated. Transcription factor (TF) binding sites were identified from in vitro DNA affinity 735 

purification sequencing data of 529 TFs (O’Malley et al. 2016). The total number of TF binding 736 

sites and the number of distinct TFs bound were calculated for each feature region. 737 

Machine learning approach 738 
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For two-class models using 500 bp sequences (positive class: phenotype genes, n=1,876; 739 

negative class: pseudogenes, n=763), the random forest (RF) implementation in the Waikato 740 

Environment for Knowledge Analysis software (WEKA; Hall et al. 2009) was utilized. We 741 

generated 100 datasets with an equal proportion of phenotype genes and pseudogenes by 742 

randomly selecting 763 phenotype genes and pairing them with all 763 pseudogene examples. 743 

For each of these 100 datasets, 10-fold stratified cross-validation was utilized during model 744 

building and testing. Therefore, training and testing of each model was performed on 745 

independent datasets. The median score from the 100 prediction models was used as the final 746 

functional prediction score (“functional likelihood”). Five hundred trees using 2, 4, 6, 9, 15, 20, 747 

and 25 randomly-selected features were built using the RF algorithm. Fifteen features provided 748 

the highest performance, as determined by AUC-ROC (calculated and visualized using the 749 

ROCR package; Sing et al. 2005). The same methods were used to test two-class RF models 750 

using 100 bp sequences (phenotype genes, n=1,882; pseudogenes, n=3,916), except that 100 751 

datasets with equal proportions of phenotype genes and pseudogenes were generated by 752 

randomly-selecting 1,882 pseudogenes to pair with all 1,882 phenotype gene examples. In 753 

single-category predictions, fewer features were considered in parameter searches. For the H3 754 

mark, DNA methylation, and transcription activity categories 2, 4, 7, and 10 features were tested. 755 

For the chromatin accessibility and sequence conservation categories 2, 4, and 6 features were 756 

tested. For the sequence-structure category 2, 3, and 4 features were tested. For the transcription 757 

factor binding category 1 and 2 features were tested. A tissue-agnostic model was generated by 758 

excluding the expression breadth feature and all features from tissue-specific RNA-seq, BS-seq, 759 

and DNase I hypersensitivity datasets. Tissue-specific features were replaced with the maximum 760 

FPKM and coverage from RNA-seq datasets, minimum DNA methylation proportion from any 761 

one tissue in CpG, CHG, and CHH contexts, and maximum intensity and coverage with DNaseI 762 

peaks in a single tissue.  763 

The functional likelihood of a genomic sequence was calculated as the proportion of the 764 

500 random forest trees that predicted a sequence as similar to a phenotype gene (Supplemental 765 

Table 4). The functional likelihood threshold to predict a sequence as functional or non-766 

functional was defined based on the functional likelihood value that produced the maximum F-767 

measure among all possible thresholds. F-measure is the harmonic mean of precision (proportion 768 

of predicted positive regions that are truly positive) and recall (proportion of truly positive 769 
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regions that are predicted as positive), which gives consideration to both false positives and false 770 

negatives. FPR was calculated as the percentage of pseudogenes with functional likelihood 771 

values above or equal to the functional threshold, while FNR was calculated as the percentage of 772 

phenotype genes with functional likelihood values below the threshold. Functional prediction 773 

models were also built using the Sequential Minimal Optimization - Support Vector Machine 774 

(SMO-SVM) implementation in WEKA while considering a series of complexity constant 775 

parameters: 0.01, 0.1, 0.5 (best by AUC-ROC), 1, 1.5, and 2.0. The results of SMO-SVM models 776 

were highly similar to the RF results: PCC between RF and SMO-SVM=0.97; AUC-ROC of 777 

SMO-SVM=0.97; FPR=12%; FNR=3%.  778 

For the four-class model, phenotype gene, pseudogene, random unexpressed intergenic 779 

sequences, and RNA training genes were used as training classes. RNA training genes consisted 780 

of six RNA genes with documented loss-of-function phenotypes and high-confidence miRNA 781 

genes from miRBase (www.mirbase.org; Kozomara and Griffiths-Jones 2014) Random-sampling 782 

of the more populated classes in training cases was used to produce 250 datasets with equal 783 

proportions of phenotype genes, pseudogenes, intergenic sequences, and RNA training genes. 784 

Two-fold stratified cross-validation was utilized due to the low number of RNA training gene 785 

examples. The features described from the tissue-agnostic model above were also used for the 786 

four-class model. The random forest implementation in the party package of R with conditional 787 

inference trees method utilized was used to build the random forest classifiers. The four-class 788 

predictions provide prediction scores for each sequence type: a phenotype gene, pseudogene, 789 

unexpressed intergenic, and RNA gene score (Supplemental Table 4). The scores indicate the 790 

proportion of random forest trees that predict a given sequence as a phenotype gene, pseudogene, 791 

unexpressed intergenic, or RNA gene sequence. The median prediction score from across 100 792 

equal-proportion runs was used as the final prediction scores, which were then scaled to sum to 793 

1. The maximum prediction score was used to classify a sequence as phenotype gene, 794 

pseudogene, unexpressed intergenic, or RNA gene. 795 

FIGURE LEGENDS 796 

Figure 1. Relationship between genome size and extent of expression in 15 plant species. (A) 797 

Amount of expression from annotated gene regions plotted against the size of assembled genome 798 
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for 15 diverse flowering plant species. The dotted gray line indicates the line of best fit. (B) 799 

Amount of expression from intergenic regions plotted against the size of assembled genome. 800 

Figure 2. Single feature predictions of functional and non-functional sequences. Area Under the 801 

Curve - Receiver Operating Characteristic (AUC-ROC) prediction performances using single 802 

features in the categories of transcription activity (A), sequence conservation (B), DNA 803 

methylation (C), transcription factor binding (D), histone 3 (H3) marks (E), sequence structure 804 

(F), and chromatin accessibility (G). AUC-ROC ranges in value from 0.5 (equivalent to random 805 

guessing) to 1 (perfect predictions), with values greater than 0.7, 0.8, and 0.9 being considered 806 

fair, good, and excellent, respectively. Dotted gray lines indicate the median AUC-ROC within a 807 

feature category. 808 

Figure 3. Multi-feature predictions of functional and non-functional sequences. Smoothed 809 

scatterplots of the first two principle components (PCs) of phenotype gene (A) and pseudogene 810 

(B) features. The percentages on the axes in (A) indicate the amount of total variation present in 811 

the associated PC. (C) Receiver operating characteristic curves of machine learning integration 812 

of all features (Full model), all non-transcription activity-related features (Full w/o TX), and 813 

when using all features from a single feature category. Single categories are transcription activity 814 

(TX), sequence conservation (CV), histone 3 marks (HM), DNA methylation (ME), transcription 815 

factor binding (TF), chromatin accessibility (CA), and sequence structure (ST). (C) Precision-816 

recall curves of the models from (B).  817 

Figure 4. Functional likelihood scores from the full, binary model. Functional likelihood 818 

distributions for (A) phenotype genes, (B) pseudogenes, (C) protein-coding genes, (D) 819 

transposable elements, (E) random unexpressed intergenic sequences, (F) intergenic transcribed 820 

regions, (G) ncRNAs from Araport11, and (H) ncRNAs from TAIR10 from models built using 821 

features calculated from 500 bp of sequence. Higher functional likelihood values indicate greater 822 

similarity to phenotype genes while lower values indicate similarity to pseudogenes. Vertical 823 

dashed lines display the threshold to predict a sequence as functional or non-functional. The 824 

numbers to the left and right of the dashed line show the percentage of sequences predicted as 825 

functional or non-functional, respectively. 826 
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Figure 5. Functional predictions from single-category predictions. (A) Percentages of phenotype 827 

gene and pseudogene sequences predicted as functional (high FL) or non-functional (low FL) in 828 

the full model (Full) that are predicted as functional in models based on a subset of features from 829 

a single feature category. Single feature categories are transcription activity (TX), sequence 830 

conservation (CV), histone 3 marks (HM), DNA methylation (ME), transcription factor binding 831 

(TF), chromatin accessibility (CA), and sequence structure (ST). The single category models are 832 

sorted from right to left on descending AUC-ROC and separated into informative (all AUC-ROC 833 

≥ 0.87) and uninformative (all AUC-ROC ≤ 0.70) groups. (B) Percentages of sequence classes 834 

predicted as functional based on the same models in (A). ITR indicates intergenic transcribed 835 

regions. 836 

Figure 6. Phenotype gene, pseudogene, unexpressed intergenic, and RNA gene score 837 

distributions from four-class predictions. Stacked bar plots indicate the phenotype protein-coding 838 

gene (dark blue), RNA gene (light blue), pseudogene (red), intergenic (yellow) score for each (A) 839 

RNA training set gene, (B) phenotype gene, (C) pseudogene, (D) random unexpressed intergenic 840 

region, (E) intergenic transcribed region, (F) ncRNA from Araport11, and (G) ncRNA from 841 

TAIR10. Black vertical lines indicate boundaries of classification regions, with sequences 842 

classified according to highest prediction score. Numbers within or pointing toward a 843 

classification regions within a chart indicate the percentage of sequences predicted as, in order 844 

phenotype gene, RNA gene, pseudogene, or intergenic. The color bars at the bottom of the chart 845 

indicate whether a region of the chart is considered phenotype protein-coding gene-like (dark 846 

blue), RNA gene-like (light blue), pseudogene-like (red), or intergenic-like (yellow). 847 

SUPPLEMENTAL FIGURE LEGENDS 848 

Supplemental Figure 1. Relationship between dinucleotide frequencies in phenotype gene and 849 

pseudogene sequences. Percentages of all 16 dinucleotides in phenotype genes (X-axis) and 850 

pseudogenes (Y-axis). Gray dotted line indicates the line of best fit. 851 

Supplemental Figure 2. Functional likelihood scores by expression breadth. Distributions of 852 

functional likelihood scores for phenotype genes (blue) and pseudogenes (red) for sequences 853 

expressed in one-to-seven tissues for (A) the full model and (B) a tissue-agnostic model 854 
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generated while excluding the expression breadth feature and merging tissue-specific features. 855 

The tissue-agnostic model performs better for among narrowly-expressed phenotype genes. 856 

Supplemental Figure 3. Functional likelihood scores from the 500 bp tissue-agnostic model. 857 

Functional likelihood distributions for (A) phenotype genes, (B) pseudogenes, (C) protein-coding 858 

genes, (D) transposable elements, (E) random unexpressed intergenic sequences, (F) intergenic 859 

transcribed regions, (G) ncRNAs from Araport11, and (H) ncRNAs from TAIR10 from the 860 

tissue-agnostic model built while excluding the expression breadth and tissue-specific features. 861 

Features were calculated from a random 500 bp region from within the sequence body. Higher 862 

functional likelihood values indicate greater similarity to phenotype genes while lower values 863 

indicate similarity to pseudogenes. Vertical dashed lines display the threshold to predict a 864 

sequence as functional or non-functional. The numbers to the left and right of the dashed line 865 

show the percentage of sequences predicted as functional or non-functional, respectively. 866 

Supplemental Figure 4. Expression breadth of sequence types. Expression breadth distributions 867 

for sequence types from (A) 500 bp feature regions and (B) 100 bp feature regions. 868 

Supplemental Figure 5. ITR and annotated ncRNA distance to and feature similarity with 869 

neighboring genes. (A) Distance from intergenic transcribed regions (ITRs) and annotated 870 

ncRNAs that are predicted as functional (F) or non-functional (NF) to the closest neighboring 871 

gene. (B,C,D) Feature similarity based on Pearson’s Correlation Coefficients between (A) 872 

proximal neighbors (within 95th percentile of intron lengths; distance=456), (B) distal neighbors 873 

(greater than 95th percentile of intron lengths), and (C) random pairs of ITRs, ncRNAs from 874 

Araport11, and ncRNAs from TAIR10 and annotated genes, as well as pairs of annotated genes. 875 

Pairs involving ITRs and annotated ncRNAs were further divided by whether the ITR or ncRNA 876 

sequence was predicted as functional (F) or non-functional (NF). Features were quantile 877 

normalized prior to calculating correlations. 878 

Supplemental Figure 6. Functional likelihood scores from the 100 bp tissue-agnostic model. 879 

Functional likelihood distributions for (A) phenotype genes, (B) pseudogenes, (C) protein-coding 880 

genes, (D) transposable elements, (E) random unexpressed intergenic sequences, (F) intergenic 881 

transcribed regions (ITR), (G) ncRNAs from Araport11, (H) ncRNAs from TAIR10, (I) 882 

microRNAs, (J) small nucleolar RNAs, (K) small nuclear RNAs, and (L) RNA genes with 883 
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documented loss-of-function phenotypes from the tissue-agnostic model built while excluding 884 

the expression breadth and tissue-specific features. Features were calculated from a random 100 885 

bp region from within the sequence body. Higher functional likelihood values indicate greater 886 

similarity to phenotype genes while lower values indicate similarity to pseudogenes. Vertical 887 

dashed lines display the threshold to predict a sequence as functional or non-functional. The 888 

numbers to the left and right of the dashed line show the percentage of sequences predicted as 889 

functional or non-functional, respectively. 890 

Supplemental Figure 7. Translation evidence for sequences predicted as phenotype protein-891 

coding gene-like and RNA gene-like. Translation evidence was based on sequence overlap in 892 

two shotgun proteomics datasets. 893 

SUPPLEMENTAL TABLES 894 

Supplemental Table 1. Leaf tissue RNA-sequencing datasets for 15 flowering plant species 895 

 896 

Supplemental Table 2. Conservation, biochemical, and sequence-structure features 897 

calculated from 500 bp sequences. 898 

 899 

Supplemental Table 3. False positive and false negative rates for single feature 900 

classifications. 901 

 902 

Supplemental Table 4. Predictions for the full, tissue-agnostic, 100 bp, and four-class 903 

models. 904 

 905 

Supplemental Table 5. RNA-sequencing datasets for identifying intergenic transcribed 906 

regions, calculating transcription activity features, and assessing tissue-specific predictions. 907 

 908 

Supplemental Table 6. Conservation, biochemical, and sequence-structure features 909 

calculated from 100 bp sequences. 910 

 911 

Supplemental Table 7. RNA genes with documented loss-of-function phenotypes. 912 

 913 
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FIGURES 1161 

Figure 1. 1162 
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Figure 2. 1166 
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Figure 3. 1168 
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Figure 4.  1171 
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Figure 5. 1174 
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Figure 6. 1177 
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SUPPLEMENTAL FIGURES 1179 

Supplemental Figure 1. 1180 
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Supplemental Figure 2. 1183 
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Supplemental Figure 3. 1186 
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Supplemental Figure 4. 1190 

 1191 

 1192 

  1193 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/127282doi: bioRxiv preprint 

https://doi.org/10.1101/127282


52 

Supplemental Figure 5. 1194 
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Supplemental Figure 6. 1198 
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Supplemental Figure 7. 1202 
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