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Abstract

At the core of our immunological system lies a group of proteins named Major
Histocompatibility Complex (MHC), to which epitopes (also proteins sometimes named
antigenic determinants), bind to eliciting a response. These responses are extremely
varied and of widely different nature. For instance, Killer and Helper T cells are
responsible for, respectively, counteracting viral pathogens and tumorous cells. Many
other types exist, but their underlying structure can be very similar due to the fact that
they all are proteins and bind to the MHC receptor in a similar fashion. With this
framework in mind, being able to predict with precision the structure of a protein that
will elicit a specific response in the human body represents a novel computational
approach to drug discovery. Although many machine learning approaches have been
used, no attempt to solve this problem using Recurrent Neural Networks (RNNs) exist.
We extend the current efforts in the field by applying a variety of network architectures
based on RNNs and word embeddings (WE). The code is freely available and under
current development at https://github.com/carlomazzaferro/mhcPreds

Introduction 1

The modeling of protein-protein interactions has seen recently a tremendous influx of 2

computational approaches mainly due to its reduced cost as compared to in vitro 3

testing [8] [4]. The ability to quickly model an interaction and its effect on the human 4

body without running an entire experiment will result in reduced human labor as well 5

as saved time for the results to come out. This is currently an unmet need in the field 6

and could have long-lasting effects in this field of research. These methods could not 7

have come without the increased data availability that has marked the past few decades 8

and the increased computational power marked by a concurrent decrease in its cost. A 9

remarkable effort has been made by organization such as IEDB [13] to curate and 10

distribute data sets containing high-quality samples. The trend has been of continuous 11

increase in data quality and size, which further solidifies the potential for the 12

application of computational approaches to this field. In this paper, we introduce a 13

command-line based python API for generating such predictions with accuracy 14

comparable to state-of-the-art methods. At the time of this writing and to the best of 15

our knowledge, no published peer-reviewed article exists describing an open source 16

python framework for such task. The existing frameworks, especially the most widely 17

used and accepted, are based on REST APIs or standalone programs where the source 18
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code is not accessible to the general public (see, for instance, 19

http://www.cbs.dtu.dk/services/NetMHCcons/) [7]. The intent of providing a 20

transparent and modifiable API serves the purpose of prompting others to engage in the 21

effort of producing better algorithms and enabling collaborative efforts with 22

standardized, cutting edge data analysis methods. 23

Problem Overview 24

The main function of MHC molecules is to bind to antigens derived from pathogens and 25

display them on the cell surface for recognition by the appropriate T-cells. The 26

availability of the sequence data of HLA-binding peptides in the early 1990s [10] led to a 27

search for commonalities among these sequences — that is, allele-specific motifs that 28

convey binding. It quickly became clear that the interaction between HLA and peptides 29

is rather complex, and thus more involved pattern-recognition methods were developed. 30

The data that this paper is concerned consists of a list of peptide strings with a IC50 31

(i.e., the half maximal inhibitory concentration, a measure of the effectiveness of a 32

substance in inhibiting a specific biological or biochemical function). These values range 33

from a maximum of 50,000 nM (indicating low binding affinity) to close to zero, 34

indicating very high binding affinity (minimum value is 0.788 nM). A successful 35

predictive model to be applied to the data set in question should be able to regress, 36

given a sample of peptide-IC50 scores, to an accurate prediction of the resulting IC50 37

score for novel peptide sequences. 38

Past and Current Efforts 39

Supervised learning methods have been applied to this problem extensively. Initial 40

efforts include position-specific scoring matrices (PSSM) [4], which represent a tool for 41

modeling the probability of a sequence being biologically active, Support Vector 42

Machines, Hidden Marakov Models, and more recently artificial neural networks 43

(ANN) [10]. The evolution in the methods has seen a shift from linear models (PSSM) 44

to highly non-linear ones such as neural nets. This trend is typical of many other fields 45

that have seen an increase in data availability and compute power to develop more 46

complex models. In this paper, we focus on extending the results obtained by applying 47

ANN to this field by implementing a novel neural network architecture that learns 48

deeper relationships between the positional information of amino acids (AAs) in a 49

peptide sequence. 50

Recurrent Networks 51

RNNs [11] are a family of neural networks for processing sequential data. Much as a 52

convolutional networks is a neural network that is specialized for processing a grid of 53

values such as an image, a recurrent neural network is a neural network that is 54

specialized for processing a sequence of values x1 . . . , xτ . A key factor that determines 55

the effectiveness of RNNs when dealing with sequences is parameter sharing [12]. A 56

traditional fully connected feed-forward network would have separate parameters for 57

each input feature, so it would need to learn all of the rules of the language separately 58

at each position in the sentence. By comparison, a recurrent neural network shares the 59

same weights across several time steps [3]. A particular subclass of RNNs are the so 60

called Long-Short-Term Memory (LSTM) [5] networks. Unlike traditional RNNs, an 61

LSTM network is well-suited to learn from experience to classify, process and predict 62

time series when there are time lags of unknown size and bound between important 63

events. Relative insensitivity to gap length gives an advantage to LSTM over alternative 64
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RNNs and other sequence learning methods in numerous applications. In this paper, we 65

explore the effectiveness of LSTMs in identifying higher order interactions between 66

amino acids and their positional information within a peptide string. 67

Embedding Networks 68

Another approach that was be taken is the development of a network architecture based 69

on WE. Simply put, this set of techniques are generally characterized by the mapping 70

from a set of words or phrases from the vocabulary to vectors of real numbers. The 71

reason for including this approach is the interest in contrasting and comparing different, 72

although related methods. In particular, RNNs main strength is the ability to learn 73

representations from sequentially related inputs. Word embeddings, on the other hand, 74

code these relationship in the data itself. More specifically, using word embeddings 75

results in the extraction a meaningful representation from a sequence of letters by 76

finding a transformation from a sparse representation to a a denser one. In particular, 77

word embeddings aim at coding for more meaning positional information about a 78

sequence. Word2Vec [9] represents one of such efforts applied to natural language 79

processing (NLP). A particularly key insight drawn from the this paper is that the 80

vocabulary by which our language (which can mapped to the set of peptides to be 81

analyzed, for our present problem) are encoded as discrete entities that appear 82

sequentially. The key aspect of Word2Vec, however, is transforming such mapping into 83

a continuous space. This allows to use continuous metric of similarity to evaluate the 84

semantic quality of our embedding. The end goal is to, by using a continuous 85

representation, mapping similar words (amino acids) to similar regions (peptides). This 86

mapping is done through what in most deep learning APIs is called an embedding layer. 87

The Data 88

Data was gathered from IEDB’s website [8]. It contains MHC-peptide binding affinity 89

measures for a variety of different species and alleles. It must be noted that the 90

affinities are very much dependent on the structure of the MHC itself, whose structure 91

varies widely depending on the allele and the species in question. In particular, we are 92

interested in the subset of human alleles for which the number or samples is large enough 93

to build a robust model. The total number of samples in the data set is of 176,161, out 94

of which most are from human alleles. However, since there are a grand total of 118 95

known alleles in the data set, building a robust model can be challenging due to the 96

limited samples per allele. On average, for the human samples, there are a total 900 97

samples. We selected the alleles for which most data samples are collected. A set of 6 98

alleles (HLA-A0201, HLA-A0101, HLA-A0301, HLA-A0203, HLA-A1101, HLA-A0206) 99

was used to train the models and determine optimal parameters, although any allele can 100

be trained and predicted on. In order to extract maximal information from the peptide 101

sequences, two approaches were taken: ’one hot encoding’ each peptide as a x by 20 102

binary matrix, where x is the length of the peptide, and 20 is the number of possible 103

AAs. Using this method, the matrix will contain as many ones as AAs, where each one 104

denotes the positional information of the AA within the peptide string. For example, 105

the peptide ”STAA” would be encoded as (the transpose of) the following matrix: 106

∣∣∣∣∣∣∣∣
0 0 ... 1 0 0 0 0
0 0 ... 0 1 0 0 0
0 0 ... 0 0 0 0 0
1 1 ... 0 0 0 0 0

∣∣∣∣∣∣∣∣
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This representation however, is remarkable for its highly sparse nature. Out of the 107

180 entries, only four are non-zero. Despite the known difficulty of training deep 108

learning models in data of this kind [2], this representation was chosen due to the 109

interest in using RNNs and to test its effectiveness and robustness for the task of 110

learning higher dimensional representations of peptide sequences, and in particular the 111

positional interaction between them. Another encoding method used was the sparse 112

k-mer encoding method, based on the previously described WE. This methods simply 113

assigns an index value to each amino acid in a peptide according to a predefined 114

dictionary of amino acids. For instance, the peptide ”STAA” would be represented as: 115

[
16 15 1 1

]
Another step taken was to normalize the input sequences to a single fixed length. 116

For the purpose of this experiment, the peptide length was restricted to 9 AAs. 117

Peptides of varying length were processed and extended/reduced in size by slicing them 118

into sub strings of fixed length and applying either the index or one encoding to these 119

sub strings. If a string was longer than the desired length, then it was reduced to the 120

desired length by deleting characters at all possible positions. 121

Methods 122

Two sets of experiments were performed. The first one was based on the application of 123

kmer embedding on a simple two-layer neural network in order to create a performance 124

baseline and validate the approach. The second experiment, which was based on the 125

application of a variety of different RNN architectures, was design to extend and 126

improve currently existing methods. Tensorflow [1] was used, alongside with a 127

Tensorflow-based higher level API for rapid prototyping named tflearn. An AWS 128

instance running Tensorflow 1.0 on a NVIDIA K520 GPU was used for most 129

computations. Tensorboard was used to monitor progress at early stages to ensure 130

learning was consistent through the epochs, and later used as well to generate the 131

visualizations of the network such as the one seen in Figure 1. In both experiments, the 132

IC50 targets were mapped to the range {0, 1}, so that the output from a sigmoid 133

activation function would be meaningfully comparable to the targets of the problem. 134

Hyperparameter Search 135

Tuning parameters for a specific architecture may be a daunting task. The number of 136

hyper parameters is exceedingly large, and in order to develop a computationally 137

feasible approach, some limitations had to be taken. In particular, the optimizers used 138

for the architectures, as well as the loss function, batch normalization rounds, and 139

number of epochs were kept constant. This heuristic was determined as efficient solely 140

after multiple rounds of training and evaluation performance. It was noted that these 141

set of parameters lead to the most robust architectures, and were thus kept consistent 142

through the experiment. Note that the general user can tune and modify them as 143

desired through command-line inputs. For the remaining hyperparameters, a brute-force 144

approach was taken. Namely, a set of 3-5 values for each of learning rate, batch sizes, 145

and number of deep layers (for the RNN), embedding output size (for the WE network) 146

were swept through iteratively and their accuracy calculated for each combination of 147

hyper parameter. Incidentally, the size of the data sets was small enough to permit a 148

thorough evaluation of each metric. A key point to be made is that the models were 149

trained on subsets of the whole data set corresponding to each of the specific alleles 150

previously mentioned, meaning that each hyperparameter search was performed a total 151
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Figure 1. Deep LSTM Neural Network

of six times for each of networks. The results were written to a specific folder were a csv 152

file with the predictions was stored alongside with a text file containing details about 153

the run and the parameters used. A bash script was used to perform this steps without 154

the need of the user’s supervision. A total of 360 runs was performed for the RNN, and 155

120 for the WE network. A variety of accessory scripts and classes were implemented to 156

efficiently extract the meaningful data generated from these runs. 157

1 Results 158

Performance evaluation was done by plotting the calculating the area under the ROC 159

curve [6] for the predictions. Adopting the same method as Nielsen et. al, [10], we 160

determined the number of alleles having strong binding activity (IC50 below 500 nM) 161

and calculated the number of true and positives false positives of our predictions for 162

each class (either below or above 500 nM). Figure 2 shows the plots constructed from 163

the predictions coming from each architecture on the six specified alleles using the 164

optimal parameters found through the previously described brute-force search. 165

Remarkably, both networks performed very similarly on the task. The network based on 166

WE was initially set up as a standard neural network with two hidden layers and 100 167

hidden units, later increased to 150. The RNN instead achieved its best performance 168

with a lower learning rate than the WE network and with two added deep LSTM layers. 169

Despite the remarkable difference in how the input data was fed into the systems and 170
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Table 1. Hyperparameters for nest run on allele A0203. AUCs were 0.9667 and 0.9543

Parameters Best: RNN Best: WE Net

Learning Rate 0.001 0.01
Batch Size 70 80
Deep Layers 2 NA
Embedding Size NA 32

how peptides were encoded into it, both architectures were able to learn much of the 171

relationships between peptides and their positions exceedingly well. Something that 172

should be noted, however, is the fact that the AUC values were heavily dependent on 173

sample size. This result clearly shows that although a deeper net may be able to learn 174

more complex representation given less data, sample size will always be amongst the 175

most important performance-determining factors. 176

Figure 2. ROC Curves for the top predictors for from each network architecture on
the six selected alleles

2 Discussion 177

We here presented a framework for the development of computational studies targeting 178

novel drug-discovery using a novel approach to protein-protein representation, 179

interaction, and modeling. It is designed to be extensible, hackable, and flexible enough 180

to allow researchers to both use it a tool for generating new predictions from their own 181

sequences, as well as deep learning enthusiasts interested in novel, unexplored 182

applications of such techniques. State-of-art performance was achieved in a subset of 183

the data using a novel architecture which still has plenty of room for improvement. 184

Future efforts will be targeted towards integrating different representations of the data 185

with architectures that leverage such representations. In particular, the inclusion of 186

other biologically relevant data, such as protein 3D structure, as well as larger data sets 187

to enable robust training, will indubitably mark the advancement of this field enabling 188

cheaper, more specialized therapeutic and medical solutions. 189
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