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Abstract

Cancer aggressiveness and its effect on patient survival depends on mutations in the tumor genome. Epistatic
interactions between the mutated genes may guide the choice of anticancer therapy and set predictive fac-
tors of its success. Inhibitors targeting synthetic lethal partners of genes mutated in tumors are already
utilized for efficient and specific treatment in the clinic. The space of possible epistatic interactions, how-
ever, is overwhelming, and computational methods are needed to limit the experimental effort of validating
the interactions for therapy and characterizing their biomarkers. Here, we introduce SurvLRT, a statistical
likelihood ratio test for identifying epistatic gene pairs and triplets from cancer patient genomic and survival
data. Compared to established approaches, SurvLRT performed favorable in predicting known, experimen-
tally verified synthetic lethal partners of PARPI from TCGA data. Our approach is the first to test for
epistasis between triplets of genes to identify biomarkers of synthetic lethality-based therapy. SurvLRT
proved successful in identifying the known gene TP53BP1 as the biomarker of success of the therapy tar-
geting PARP in BRCA1 deficient tumors. Search for other biomarkers for the same interaction revealed
a region whose deletion was a more significant biomarker than deletion of TP53BP1. With the ability to
detect not only pairwise but twelve different types of triple epistasis, applicability of SurvLRT goes beyond
cancer therapy, to the level of characterization of shapes of fitness landscapes.

Author Summary

Genomic alterations in tumors affect the fitness of tumor cells, controlling how well they replicate and survive
compared to other cells. The landscape of tumor fitness is shaped by epistasis. Epistasis occurs when the
contribution of gene alterations to the total fitness is non-linear. The type of epistatic genetic interactions
with great potential for cancer therapy is synthetic lethality. Inhibitors targeting synthetic lethal partners
of genes mutated in tumors can selectively kill tumor and not normal cells. Therapy based on synthetic
lethality is, however, context dependent, and it is crucial to identify its biomarkers. Unfortunately, the space
of possible interactions and their biomarkers is overwhelming for experimental validation. Computational
pre-selection methods are required to limit the experimental effort. Here, we introduce a statistical approach
called SurvLRT, for the identification of epistatic gene pairs and triplets based on patient genomic and
survival data. First, we show that using SurvLRT, we can deliver synthetic lethal interactions of pairs of
genes that are specific to cancer. Second, we demonstrate the applicability of SurvLRT to identify biomarkers
for synthetic lethality, such as mutational status of other genes that can alleviate the synthetic effect.

Introduction

Fitness is a measure of replicative and survival success of an individual, relative to competitors in the same
population. In this work, we consider the fitness of cells in tumors of cancer patients. Tumors of different
patients, also those diagnosed with the same cancer type, display large genomic heterogeneity. Such diverse
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genotypes of tumor cells result in different tumor fitness, and consequently, different disease aggressiveness
and patient survival.

Epistasis is an interaction between genes, and in general refers to departure from independence of effects
that their genomic alterations have on a phenotype of interest (I2). Bateson (3) first introduced epistasis
as a phenomenon of masking of mutation effects. Fisher (I6]) used the term epistacy for any deviation from
additivity in contributions of mutations to the phenotype, where additivity is expected assuming a linear
model of genetic alterations as predictors for the phenotype. Beerenwinkel et al. (4) considered epistatic
interactions not only among pairs, but also among larger numbers of genes in their contributions to the
fitness phenotype. In most general terms, epistasis can be viewed as a property of a mapping from genotypes
to their fitness values, called fitness landscape. By estimating epistatic interactions from available data, we
can approximate the shapes of fitness landcapes (4)).

We now first explain how epistatic interactions are harnessed for the design of efficient anticancer therapy.
Second, we propose how the notion of epistasis between triplets of genes relates to therapeutic biomarkers.
Modern cancer treatment combines surgery, radiation, chemo-, and also targeted therapy. The advantage
of targeted therapy is that it acts against the patient-specific alterations in the tumor. The current state
of the art therapies, however, have limited efficacy due to toxicity (I8) and rapid development of drug
resistance (I4] [31]). Recently, therapies exploiting synthetic lethal interactions between genes were proposed
to overcome these difficulties (2, 8, 20] 23] 32, B3]). Synthetic lethality is a negative interaction, where the
co-inactivation of two genes results in cellular death, while inactivation of each individual gene is viable. The
mechanism behind the success of synthetic lethality-based therapy in cancer is that one gene inactivation
already occurs via the endogenous mutation in the tumor cells, and not in the normal cells of the body.
Thus, applying a drug that targets the synthetic lethal partner of that gene will selectively kill cancer cells,
leaving the rest viable (Fig B). A famous example of clinically exploited synthetic lethal interaction occurs
between BRCA! and PARP1. BRCA1 mutations disturb error-free homologous recombinational (HR) repair
of double strand breaks and the cells become acute sensitive to the lack of single strand DNA break repair,
performed by the PARP protein. Thus, in BRCA1 deficient cells, treatment with a PARP inhibitor is
expected to result in high genomic instability and cell death. Indeed, breast and ovarian cancers that harbor
BRCA1 mutations can be treated with drugs targeting PARP1, such as Olaparib (17, 21 29)).

Synthetic lethality is, however, context dependent. For example, BRCA1 deficient cell lines were 57 to 133
times more sensitive to PARP1 inhibition, respectively, than normal cells (I5). Compared to this dramatic
effect, the efficacy of Olaparib therapy on patients was low, since a positive response was observed in less
than 50% of BRCA-mutated breast and ovarian cancers (9)). This raises the crucial issue of identification
of therapeutic biomarkers. For BRCA1 and PARPI, mutation of TP58BP1 in addition to BRCA1 was
observed to largely restore the function of the HR pathway, and alleviate the synthetic lethal effect (I, ).
Thus, in TP53BP1 defficient tumors, administrating Olaparib is not justified, and unaltered TP53BP1 is
one of the biomarkers of succes of this therapy. Exactly such dependence of pairwise interaction on the
mutational status of a third gene, illustrated in Fig [T[CD, is formally represented by so called conditional
epistasis, one of the types of triple epistatic interactions studied by Beerenwinkel et al. (4)).

Experimental approaches to identification of synthetic lethality in human cancer are overwhelmed by the
number of possible interactions (&), which assuming there are 20K genes in the human genome, amounts to
c.a. 200 million pairs, and raises to 1.33 x 10'? if triplets were considered. High-throughput studies, utilizing
short interfering RNA (siRNA) or CRISPR-based screens in human cells, limit the tested pairs to only a
subset of all possible (5, 241 26, 28, B34, 36}, 39, 40). The effort and money required for conducting these
experiments calls for a pre-selection of synthetic lethal partners for validation based on the computational
analysis of existing data. Initial computational approaches were based on the concept of evolutionary con-
servation and on the knowledge of yeast genetic interactions (11} 13| 27, 41)). In our work (37) we aimed
at deciphering synthetic sick or lethal interactions from somatic alteration, expression and survival data
of cancer patients. To this end, we identified such gene pairs whose aberrations or expression levels were
mutually exclusive, i.e., their simultaneous occurrence was under-represented in the tumor cells, given their
individual prevalence. Additionally, we checked whether their simultaneous inactivation coincides with in-
creased patient survival. Jerby-Arnon et al. (22) combined different predictors of synthetic lethality, two of
which, referred to survival of the fittest (SoF) and coexpression, were most successful. Following the mutual
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Figure 1: Synthetic lethality and its biomarkers in cancer. A B Synthetic lethal partners can be exploited
for cancer therapy. In cancer cells (A), one partner, here gene B, is already mutated, while in the normal cells (B)
it is not. Targeting gene A with a drug selectively kills cancer, and not the normal cells. C,D Mutations in a third
gene can serve as therapeutic biomarkers. C In the case when the third gene, here C, is not mutated, the therapy
targeting gene A in B-mutated cells is successful. D Mutation in gene C alleviates the synthetic lethal effect. E-G
Survival functions for patients grouped by the four possible genotypes for E the pairwise interaction between BRCA1,
PARPI1, F the triple epistasis type a between BRCA1, PARP1, conditional on TP53BP1 not altered, and G for the
triple epistasis type b between BRCA1, PARP1, conditional on TP53BP1 alteration. Synthetic lethality is visible in
E and F, but not in G.

exclusivity principle, SoF identifies synthetic lethal gene pairs when their co-inactivation occurs significantly
less frequently than expected. Coexpressed genes usually participate in closely related biological processes,
which should be the case for synthetic lethal partners.

Here, we introduce SurvLRT, an approach for identification of epistatic gene pairs and triplets in human
cancer. We propose a statistical model based on Lehman alternatives (25)), which allows to estimate fitness
of tumors with a given genotype from survival of carrier patients. We assume that a decrease of fitness
of tumors due to a particular genotype is exhibited by a proportional increase of survival of the patients.
Accordingly, for synthetic lethal genes, such as BRCA1 and PARP1 (Fig ), the survival of patients with
the double mutation should be longer than expected from survival of patients with only single mutations and
of patients without mutations of those genes. Based on these assumptions, we introduce a likelihood ratio
test for the significance of a given pairwise or triple epistatic interaction. In the test, the null model assumes
that there is no epistasis and the gene alterations are independent, while the alternative assumes otherwise.
The approach can detect both positive and negative interactions. Compared to our previous method (37),
SurvLRT offers a more natural interpretation of the notion of fitness, as well as a direct statistical test for the
significance of epistasis. We provide the theory for a total of 13 different epistasis types on pairs and triplets
of genes defined by Beerenwinkel et al. (4), and illustrate testing and interpretations for three of them on
patient data. First, we analyze the sensitivity and power of SurvLRT for all considered epistasis types in a
controlled setting of simulated data. Next, we show that, compared to SoF and coexpression, our method
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Type Condition Description
pairwise Aot - Ao # Aogo - A1z -

Ao10 - A1oo # Aooo - A110  conditional
Ao11 - A1o1 7# Apo1 - A111 conditional
Aoo1 - A100 # Aooo - A101 conditional
Ao11 - A110 # Aoio - A111 conditional
Aoo1 - Ao1o # Aooo - Ao11 conditional
Aq01 - A110 # A1oo - A111 conditional
Ao11 - A1oo # Aooo - A111 marginal
Ao1o - A1o1 # Aogor - A9 marginal
Ao1o - A1o1 # Aooo - A111 marginal
Ao11 - A1oo # Aoor - A110  marginal
Aoo1 - A11o # Aogoo - A111 marginal
Aop11 - A1go 7# Ao1o - A1or  marginal

N S O S 0 Q0 o

Table 1: Conditions for the considered types of pairwise and triple epistatic interactions.

performs favorably in predicting known pairwise synthetic lethal interactions. Finally, we apply SurvLRT to
detect therapeutic biomarkers, first by recapitulating TP53BP1, the known biomarker for therapies based
on the BRCA1, PARPI interaction (Fig G), and second by identifying a genomic region deleted in tumors
as a new and even more significant biomarker than TP53BP1.

Materials and methods

Types of epistatic interactions

Given n genes, their genotype is a tuple g € {0,1}". Here, we assume that g(i) = 1 if and only if gene
i acquired a somatic deletion in the tumor genome. For a pair of genes, their possible genotypes are,
in lexicographical order, 00,01,10,11. Denote the fitness of genotype g by A, and its logarithm by d,.
Assuming no interaction between a pair of genes, we expect no deviation from additivity in log fitness,
ie., that § = dp9 — dp1 — 10 + 011 = 0 (4). Equivalently, epistasis between a pair of genes occurs when
Ag1 - A1g # Ago - A1 (Tab . In the following, we call the deviation ¢ the epistatic effect size. § > 0
indicates a positive, while § < 0 indicates a negative epistatic interaction. The above epistasis definition
can be extended from pairs of genes to triplets. Beerenwinkel et al. (4) list twenty types of possible three
gene interactions, denoted a — ¢. Conditional epistasis (a — f) occurs among a pair of genes, conditioned on
the fact that another gene is fixed (Tab . For example, conditional epistasis a is an interaction between
the first and the second gene in the triple, given that the third gene is not mutated. Conditional epistasis
of type b is defined analogously, but conditioning on the fact that the third gene is mutated. The epistasis
types g — | are called marginal epistases (Tab . For example, marginal epistasis k corresponds to the
synthetic lethal effect between one mutation in the third gene in the triplet, and two mutations: in the first
and in the second gene. In summary, the epistasis types discussed here (listed in Tab [1|) are defined by four
genotypes go < g1 < g2 < g3 (in lexicographical order), which satisfy the equation go — g1 — g2 + g3 = 0
(the zero vector), and by the epistasis condition Ay, - Ay, # Ay - Ay,. In this work, we ignore the epistasis
types m — t, as their defining expressions can be derived as sums over expressions for the types a — [, e.g.,
m:=—(a+k) (.

SurvLRT

We now introduce a survival model of tumor fitness, based on the concept of Lehman’s alternatives (25). We
assume we are given survival times of patients and we record the genomic alterations of genes in their tumors.
Let T be a random variable indicating survival time of a single patient. We assume that the distribution of
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T for healthy individuals has cdf F' and survival function G(¢) =1 — F(t) = P(T > t). Our model assumes
that the survival function for patients with tumor genotype g reads

GQ (t) = G(t)Agu

where Ay > 0 corresponds to the fitness of the tumor cells for that patient. Note, that since G4(t) € [0,1],
the larger the exponent A, the lower the G,(t) becomes. This is in agreement with the assumption that with
increased tumor fitness, the disease becomes more aggressive, and patient survival decreases accordingly, as
compared to the reference survival. Importantly, accumulation of mutations of independent (not interacting)
genes, should correspond to raising the initial survival function G(t) to consecutive exponents. For example,

. . . A A L
for a pair of such not interacting genes, we expect that (G(t)AQOO) = (G(t)Aan) 910 " which is of course
equivalent to Agy - A1g = Agp - A11. In general, the condition for an epistatic interaction of any type (Tab
with given genotypes go < g1 < g2 < g3 is satisfied when

(G(t)Ago)Ags 7& (G(t)Agl)Agz .

The model presented above allows us to develop a surprisingly simple method, which we call SurvLRT, for
evaluating epistasis directly from cancer patient data. Indeed, suppose that ¢, s, ..., are survival times for
patients with genotypes g1, g, . . . §p, respectively. Let t1,%a, .. .1, be times of last contact with patients with
genotypes §J1, Jo, - - - §r, respectively. This part of data is censored and we do not know the exact survival
time of the j*" patient - we only know that it is longer than fj. In the following, to simplify the notation,
we use A; to shortly denote Ay,. To test for a selected epistasis type, either pairwise, or one of the triple
epistasis types over genotypes go < g1 < g2 < g3, we follow two steps. First, we compute the likelihood
ratio for the null hypothesis Ag - Az = Aj - Ag and the alternative Ag - Az # Aj - As. Next, we obtain the
maximum likelihood estimators of Ag, A1, Ag, As, determining whether the interaction is positive (§ > 0)
or negative (6 < 0). The likelihood ratio equals

o (1T g ACGE) T, 5,y GO
szo (Hz Fi=0k ARG (t;) 2+ I1;. G5 =0k G(EJ)A’“)

where Akc denote the parameters of the null model, which are constrained to satisfy A§ - A§ = A¢ - AY
(Appendix). Under the technical assumption that F' has a density, the maximum likelihood estimators are
given by the formula

AAL L)

Ay =2k (1)

where Sy = #{i: gi = ge} and Hy =3, ;. logG(t:) +32;. 5 _, log G(t;) (Appendix). The constrained
parameters in the null model Akc are given by the following formulae for Sy = So — S5, S1 = S; + S3 and
SQ =S5 + .53:

o _ AFAT

A Hy Sy —Sy+ HAY o
3 = AOC a7

Hy S+ H,AS

1.
, Ag:ﬁ(&*SﬁHlA?), Af =
2

where A{ is a solution of the quadratic equation
Hi(H\Hy — HoH3)(A$)? + (HyHo(2S) + So) + HoHs(Sy — S1)AY) + HyS? + Hy 5,5 = 0.

This equation, in combination with the formulae for A§, AY and A, may return two solutions for parameter
values, and we chose the one in (0, 00)*. If both do, we choose the one for which the value of the log likelihood
is greater (Appendix).

In the case when the data contains only uncensored cases, by the Wilks’ theorem, we can safely assume that,
asymptotically,

3
Ay
—2log A = QZ[Sk logF + Hy (A — AY)] ~ X3
k=0 k
Addition of censored cases does not cause large deviations from this assumption (Fig S1). This allows
computing p-values and confidence intervals for the tested epistatic interactions.
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Data processing

The data for 9899 patients of 32 cancer types generated by the Cancer Genome Atlas (TCGA) (38) was
downloaded using the cgdsr R package from the cBioPortal (7). The data were organized into a patient per
gene binary matrix, where the patient acquired value 1 for the gene if the gene was deleted in that patient’s
tumor, and 0 otherwise. Deletion was called for a gene for which GISTIC (30)) returned value -1 or -2,
and its mRNA level was concordant with its alteration, i.e., the median mRNA expression of that gene was
smaller for patients with deletion than in the whole population, as assessed with a Wilcoxon test (lower tail
p-value< 0.05). After filtering out patients and genes with excess of missing values, we analyzed a dataset
covering 9484 patients of 27 cancer types (Tab S1). A smaller cohort of 2942 breast cancer patients (Tab S2)
was used to validate SurvLRT predictions against a set of ground truth interactions tested experimentally in
breast-cancer cell lines (Tab S3). In all analyses below, we approximate the reference survival function G(t)
using Kaplan Meier estimate of the survival function for a cohort of 582105 patients that died of other reasons
than cancer, collected by the Surveillance, Epidemiology, and End Results Program (35) (Tab S4).

Controlling false positive rate

When applied to make new epistasis predictions, SurvLRT needs to test all possible interactions between all
possible pairs or all possible triplets of genes in question, which raises the problem of multiple hypothesis
testing. Moreover, the patient genotypes are defined based on copy number alterations, and several genes
may be deleted together within one genomic region. Thus, false positive interactions for genes that happen
to be within the same genomic region as the truly interacting gene may be identified. Finally, false positives
may occur in the case when the epistasis interaction is tested for a cohort of mutliple cancer types. Each
cancer type has its characteristic surivial times, and a cancer type bias for our test may occurr when a
cancer type with particularily long or short survival dominates any of the patient groups corresponding to
the four genotypes gg, g1, 92 and g3 considered in the test, since the test statistic may artificially be drawn
towards signifficant values. Thus, to control for the false positive rate we take three measures. First, we
apply Benjamini-Hochberg correction to the SurvLRT p-values for each tested gene interaction. Second, we
group the interactions with the same p-values together so that they are defined per region, containing several
genes commonly deleted in patients, and not per individual genes. Third, we control for the cancer type bias.
Specifically, denote wq, w1, ws, w3 the proportions of the respective genotype carriers to the patient total,
with Zq wy =1, and vy, v, ..., vy, the proportions of cancer types to the patient total, where ) v, = 1 and
m is the number of cancer types. Under the assumption that the cancers are distributed evenly across the
genotypes, we expect the proportion g, of patients with genotype g and cancer type c to satisfy g4 = wq - ve
for each g € {0,1,2,3} and g € {1,...,m}. To check whether the cancer types in our cohort are evenly
distributed across the genotype carriers, we compare the expected proportions g, to the proportions gg.
observed in the data. This cancer bias test is conveniently visualized with the expected and the observed
proportions on the plot coordinates, and the respective points following the y = x line if the bias is avoided
and the distribution of cancer types across the genotypes is even.

Results

Simulations

To evaluate the performance of SurvLRT in a controlled setting, we simulated survival data and fitness values
for all types of epistasis among triplets of genes. We first assessed the accuracy of parameter estimation
(Fig ) for different sample sizes s € {3,10, 50,100,300, 1K,3K,10K} and for two different fractions of
censored cases in the data (33% or 66%; the second percentage is more realistic: in the TCGA pan-cancer
data there are 63.75% censored cases, and 56.5% in the breast cancer cohort). Here, we investigated whether
the parameters obtained using formula agree with the values fixed in the simulations. It was thus enough
to simulate one group of patients of a given sample size s, assuming they share the same genotype. To this
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end, we generated s observations of survival times T at random from the distribution G(¢)®, where A = 1.
Next, the censoring times Y were sampled from a truncated (up to 40 years) exponential distribution,
Y ~ Exp(c), where the parameter ¢ was set so that the mean percentage of censored observations was either
33% or 66%. In the case when Y < T, the last time of follow up for that patient was fixed to Y, and the
patient was flagged as censored. Otherwise, the patient was flagged as dead, and the time to death was fixed
to T.
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Figure 2: SurvLRT performance on simulated data.A Box plots showing 25th, 50th and 75th percentiles
(horizontal bars), and 1.5 interquartile ranges (vertical line ends) of log true to estimated fitness ratios (y-axis) as
a function of sample sizes (x-axis), in the case when 33% and 66% of patients are censored and removed from the
samples (first and second column, respectively) and when 33% and 66% are censored and kept (third and fourth
column). Gray lines at 0 mark the level where the estimated equal the true parameter values. B Box plots of
SurvLRT p-values as a function of epistatic effect size, for two different patient cohort sizes (rows). Gray lines mark
the p-value 0.05. Columns as in A.

One of the important aspects of survival data analysis is whether to take the censored data into account.
Removing the censored cases from the sample and ignoring them in our model lowers the sample size,
decreasing the power of the test, and introduces bias in parameter estimation. This bias is more profound,
when the percentage of censored cases is higher (Fig , first two columns). The removal of the censored
cases changes the distribution of the data: we obtain survival times not from the distribution of T itself,
but from the distribution of T conditioned on the event 7' < Y. Keeping the censored cases maintains
the power of the test, and allows accurate parameter estimation (Fig , last two columns). Regardless
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of the percentage of censored cases, when they are kept in the sample, the median log ratio of estimated
to simulated parameter values is 0. The variance of this log ratio decreases substantially as the size of the
sample increases, and while some of the parameter estimates from only three samples are unreliable, already
for 300 samples all estimates are very close to their true values.

Next, we analyzed SurvLRT p-values as a function of effect size, again for different percentages of censored
cases, and for two different total sizes of simulated patient cohorts (Fig ) In this analysis, for each
simulated triple epistasis type, we fixed the parameters Ay = 1,A; = %2, Ay = €23, and we set A3 such
that log(A3) = log(A1) + log(As) + 0, where § was the value of the tested effect size. For each gene in
the triple, we sampled k, the number of patients which had this gene mutated, according to the mutation
frequencies observed in the real cancer patient cohort. Next, we chose k patients at random to have this gene
mutated, fixing their value for this gene to 1, and for all remaining patients to 0. As a result, we obtained
patient genotypes for the simulated triple. For each patient with genotype g;, we sampled survival time T
from the distribution G(¢)2, together with a random variable Y ~ Exp(c), with ¢ fixed to obtain the wished
percentages of censored patients (33% or 66%). As above, the resulting observation for the patient was taken
as the min(7,Y"), and the patient was flagged as censored if Y < T, and as dead otherwise. The simulation
was repeated first assuming the total number of patients was 2942 (Fig first row), equal to the number of
patients in the breast cancer cohort analyzed below, and second for the total number of 9899 patients from
the TCGA (second row).

With removal of censored cases from the data it becomes increasingly difficult for SurvLRT to detect epistasis,
even for large effect sizes (Fig [2B first two columns). When the censored cases are kept, the power of the
test is greatly improved (Fig ast two columns). In this case, an increase in the percentage of censored
cases from one third to two thirds results in a slight decrease of the power, but by far less dramatically than
their complete removal. For the smaller number of around 3K patients, the power of the test is generally
low, and increases substantially when a larger patient cohort of around 10K is analyzed. In all scenarios,
regardless of the cohort size and share of censored cases, the test correctly returns the largest p-values and
does not call epistasis when the effect sizes are 0. In summary, the simulations indicate that the censored
cases should be taken into account in the SurvLRT model, to gain advantage of larger sample sizes and to
ensure correct parameter estimation. Moreover, for the currently available sizes of single cancer cohorts, like
the breast cancer, SurvLRT will return significant p-values only for large epistatic effects, and cohorts as
large as the pan-cancer are required to increase the power.

In this and later sections, the reference survival function G(t) is estimated from patient data (Methods). To
assess how this survival function affects the reported results, we estimated an alternative G(t) from survival
times sampled from the exponential distribution, keeping its mean equal to mean survival in the patient
data. Both the error of parameter estimates and the power of the tests do not depend on which of the
alternative forms of the survival function G(t) we used, with the only exeption that the spread of the outliers
was larger, when the survival times were sampled from the exponential distribution (Fig. S2).

SurvLRT predictions from patient data agree with experimental results on cell
lines

To demonstrate the predictive power of SurvLRT on an independent dataset, we tested its predictions from
patient data against a set of gene pairs, whose synthetic lethal interaction was previously investigated using
siRNA screens on cancer cell lines. The set comprised 963 pairs, consisting of PARPI and its partner
genes studied by either Lord et al. (26) or by Turner et al. (39), which we were able to map to a unique
official symbol, defined by the Human Genome Organisation (HUGO) Gene Nomenclature Committee (L19)
(Tab S3). The pairs were called synthetic lethal if a) the partner gene, such as BRACA1/2 or ATM, was
mentioned by (26) or (39) as previously reported synthetic lethal with PARPI, or b) when targeting the
partner gene with two or more different siRNAs sensitized to KU0058948, the PARP1 inhibitor utilized in
both studies. Otherwise, the gene pairs were flagged as noninteracting. Since the siRNA experiments were
conducted on breast cancer cell lines, we applied SurvLRT to the breast cancer cohort (Tab S2). If for a given
gene pair SurvLRT identified a negative interaction, we assigned the pair a score equal to the test statistic
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A. Otherwise, we assigned it a score —\, and we ranked the pairs in the decreasing order of their scores. In
this way, higher score indicated more evidence for synthetic lethality. For comparison, on the same dataset,
we ranked the genes by scores from three previous methods: 1) by the decreasing absolute coexpression of
genes in the pairs, 2) by the statistic of a Wilcoxon test used to assess whether the co-inactivation genes in
the pairs occurs significantly less frequently than expected (SoF; (22))), and 3) by the previously introduced
S-scores, tailored for predicting such siRNA-based experiments ((37); Appendix). The predictive power on
the experimentally verified gene pairs was assessed with the area under the receiver operating characteristic
curves (Fig ) The very simple predictor based on coexpression achieved surprisingly good results (AUC
0.63). Still, SurvLRT, with AUC of 0.695, outperformed the S-score (AUC 0.6), as well as coexpression
and SoF (AUC 0.59) in predicting synthetic lethality. We note, however, that although SurvLRT obtains
overall higher AUC, for false positive rate smaller than 0.25 coexpression or SoF give higher true positive rate
than SurvLRT. In addition, we also checked the performance of SurvLRT without the concordance check
of per gene deletion calls with gene expression data (Methods). Without the check the AUC for SurvLRT
decreased, but by less than 0.01. Although overall the compared AUCs are just moderate, reflecting the
limits in power of our and other approaches, these results indicate that there is detectable signal of synthetic
lethality in patient data.

A B C
. 1.00 4 z 1.00 7, \ genotype
€ 0.75- ® 0.75 - 00
o s
= 0.50 - 8 0.50- — |0
o (]
[o% = — 10
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Figure 3: SurvLRT results on patient data. A Predictive performance of SurvLRT (red), coexpression (green),
SoF (blue) and a random classifier (gray dashed) on experimentally verified synthetic lethal interactions. B, C
Survival functions for patients grouped by the four possible genotypes of the pair BRCA1, PARP1, and having the
newly identified biomarker region not altered (B), or having this region deleted (C). Synthetic lethality is visible in
B but not in C.

Using SurvLRT on triplets of genes for biomarker identification

Finally, we investigated whether biomarkers for synthetic lethal interactions can be identified from patient
survival data using SurvLRT. First, we applied SurvLRT to test the masking of synthetic lethality between
BRCA1 and PARPI1 by TP53BP1 alteration (1, [6). To this end, we tested conditional epistasis types a and
b for these three genes on the pan cancer cohort (Tab S1), where the sample size was large enough to obtain
a satisfactory power of the test. Recall that type a represents epistasis between the first two genes, here
BRCA1 and PARPI1, conditional on the lack of mutation in the third gene, here TP53BP1. As expected
in this case, when testing for type a, SurvLRT called significant (p-value 0.0003) and negative conditional
epistasis (Fig ) Additional check assured that the significance of the test is not due to a cancer type
bias (Fig. S3). Type b represents epistasis between the first two genes, but conditional on the presence of
mutation in the third gene. In the test for type b, SurvLRT correctly identified that the synthetic lethality
interaction is no longer present (Fig ) In fact, for these three genes, conditional epistasis of type b is
positive, although with an insignificant p-value of 0.97. This test showed, but only small, violations to
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even cancer type distribution (Fig. S3). Thus, SurvLRT in both tests returned results in accordance with
biological knowledge. It is worth noting that in this analysis we are unable to compare to any existing
approach, since there are no other methods that explicitly test for epitasis between triplets of genes.

Second, to make new predictions, we determined whether any of 1856 pan-cancer genes, significantly and
concordantly deleted in tumors (I0), could also play a role of biomarkers for the pair BRCA1, PARPI1. To
this end, for each gene G we applied SurvLRT to test the conditional epistases of type a and type b for
the triple BRCA1, PARPI1, G. As potential biomarkers we considered, as in the case of TP53BP1, such G
for which type a was significant negative and type b was insignificant, after correction for false discoveries
(Methods). This procedure identified not a single, but ten genes, CBFB, ZFHX3, MLKL, CSNK2A2,
CTCF, CDH1, FUK, TK2, PSKH1, WWOX, which are deleted together within one region, as the most
significant biomarker (negative conditional epistasis type a Benjamini-Hochberg adjusted p-value 6.35e-5,
lower compared to the adjusted 0.002 p-value when TP53BP1 was tested). The conditional epistasis type b
turned out to be positive, but with a high adjusted p-value of 0.87. Both tests for the epistasis types a and b
were clearly free of cancer type bias (Fig. S3). Thus, according to patient survival data, the deletion of the
region harboring these genes could be the determinant of the success of the therapy using PARP inhibitors
on BRCA1 deficient tumors. Indeed, patients with double BRCA1, PARP1 inactivation survive longer than
expected when this region is not altered (Fig ), and they do not when the region is deleted (Fig ) All
tested interactions with the p-value smaller than the p-value for TP53BP1 as the third partner, are listed in
Tab S5. The runtime of both the tests of two epistasis types for 1856 gene tiplets, described in this section,
as well as the tests for experimentally verified gene pairs, described in the previous section, was less than
3.5 minutes on a 8GB RAM laptop with a dual core processor.

Discussion and conclusions

This paper presents SurvLRT, a statistical approach to resolving epistasis from genomic and survival data
of cancer patients. SurvLRT has several important benefits. Modeling survival functions using Lehmann
alternatives allowed for a natural interpretation of the model parameters as tumor fitness values. Based
on this model, we introduced a likelihood ratio test for epistasis that directly tests the log linearity in log
fitness of gene mutations, expected when there is no interaction present. With a unified approach it can not
only test for epistasis between pairs, but also for interactions among triplets of genes. It detects whether
the interaction is positive or negative. Apart from direct estimation of tumor fitness values, it assesses
the epistatic effect size, and returns p-values for the significance of the tested epistatic interaction. The
advantage of our analysis of cancer patient data over studies performed on cell lines is that we gain access to
the more realistic context, where fitness of tumor genotypes depends on their real advantage gained in their
natural environment, and is expressed in patient survival.

For cancer, assessment of epistasis has crucial therapeutic implications. Pairwise synthetic lethal interactions
are already successfully exploited in the clinic, and our analysis showed the utility of SurvLRT in mining
survival data for evidence of synthetic lethality. In addition, we introduced the concept that biomarkers for
synthetic lethality-based therapy can formally be defined as conditional epistasis between triplets of genes,
and we showed that SurvLRT can correctly identify such epistasis in the data.

Markedly, the utility of SurvLRT does not limit exclusively to these two cancer applications. In its full
functionality, SurvLRT evaluates both pairwise and twelve different types of triple gene epistasis. Thus, in
general, our approach can be utilized to approximate the shapes of fitness landscapes, which are determined
by the epistatic interactions (4.

It is important to note, however, that by its nature survival data of patients does not provide evidence for all
existing epistatic interactions. In particular, if deletions of strictly synthetic lethal genes would co-occur in
cancer cells, these cells should disappear from the tumor. Therefore, the survival of patients with the double
mutant genotypes would not be available for assessment. Indeed, some of the known synthetic lethal pairs
could not be analyzed using SurvLRT, as the required genotypes were not present in the cohort. In general,
the fact that we can only access the data of surviving tumors implies, that we can only detect a relatively
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mild signal of whether the co-occurrence of mutations results in unexpectedly decreased or increased tumor
fitness. Thus, compared to the studies on cell lines, analysis of tumor data, although more realistic, may
allow less sensitive detection of negative epistasis. Still, on those gene pairs where the genotype data was
available, SurvLRT proved to correctly predict synthetic lethality. On top of that, the subtle signals in
survival data correspond to small epistatic effect sizes. Our simulations show, that statistically, such small
effects can better be picked up when the analyzed cohort is larger. Given the research activity in this area,
the collection of cohorts will continue to grow.

Taken together, this contribution makes an important step forward in computational prediction of epistatic
interactions. In our mind, predictions of SurvLRT and other approaches alike are meant to eventually guide
the experimental effort in browsing the immense space of possible interactions to validate. Our results show
that SurvLRT is able to find evidence for epistasis in cancer survival data and thus pinpoint the plausible
hypothesis to test.
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Appendix

Formulae for the likelihood ratio and parameter estimators.

Assume the settings from the Methods section in the main text. Recall that the random variable T denoting
a healthy individual’s lifetime has survival function G(t), and assume it has a density f. With the model
assumption that for patients with tumor genotype g the survival function is given by G, (t) = G(t)?s, the
corresponding distribution function Fj reads

F,=1—(1—F(t)".
Thus, the density is given by
fo=Dg(L=F()271f(t) = DG~ f(1).

The1r~efo1re7 the likelihood of the survival data L(A;#,t), for the uncensored and censored cases, denoted ¢
and t, respectively, is given by the formula

L@ia) =phia) = T (I ac@>r@) [T ci).
g€{0,1}3 i:gi=g J:gi=g
Its logarithm is equal to

L(A;E,1) =

S [sboe(a) 1 (A1) Y lwCE) 1A, 3 logG(B)| +3 log s

g€{0,1}3 i1 gi=g J: 3i=9
= Y [Sglog Ay + HyAg + " (log f(E:) —log G(:)) .
ge{0,1}3 i=1

where Sy = #{i: g = g}, and Hy =37, _ logG(t;) + ;. =g 108 G(t;). Clearly, the function £(A;t,1)
is differentiable in the whole parameter space (0,00)® and for each g € {0, 1} the limits

lim L£(A;t,1)
Ag—0

and

lim L(A;t,1)
Ag—00

are both equal to —oo. Therefore £(A;1,t) is maximized in a point where the partial derivatives %/L(A; t,t)
vanish. Fortunately
0 _ . S,
At t) = -2
0A, L(AE:1) A

+ H,
g

has unique zero at Aé” . —%, which gives the formulae for the maximum likelihood estimators.
g
Fix the genotypes go < g1 < g2 < g3 and consider the set
C={AeR®: Ay A, =A,A,}

For the clarity of notation, as in the main text, we will denote the parameters of the null model in the set C
as A, Recall that the likelihood ratio test statistic is of the form

MAET) = supacee L(AY; E’_Q
Y SupAe(Oyoo)s L(A, t, t)

—AC_ _ ~  AC
Supacec Hg€{0,1}3 (H’L gi=g AgG(tl)Ag lf(tl) Hg Ji=g G(tj)Ag )
SUPA€(0,00)8 HgE{O,1}3 (Hqi: Gi=g AgG(Ei)Ag_lf(fi) Hj: dj=9 G({j)Ag>
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Clearly, the denominator is maximized for A, = AM L For the nominator, notice that for fixed Ag, k=

0,1,2,3 the likelihood L(A®,%,) is maximal 1f the remaining Ag s are the maximum likelihood estimators.
It is therefore enough to maximize

I ( [T age@? s T1 o)
=009 i =g

C . . C AC _ C AC . s . . .
over Ays Satls'fymg AG .Ag? —.A DG, - Equwa.,lently we can maximize its logarithm, and of course w can
omit constants in our optimization problem, which becomes

3
argmax Z Sy, log Agk_ +H,, Ag. (2)

k=0
ACAS .
o= in leads to
0

2 ASAY
Y (Silog AY + H;AT) + S3(log AT +log A — log Af) + H ZCQ .
=0 0

Let us replace sub-indices g;, by k, as in the main text. Substituting A§ by

Let S; = S; + Ss3, Sy =S5+ S5 and Sp = Sy — S3. Our goal is to maximize the function

G A AY
D(AF, AT AS): = (Silog AY + H;AT) + Hj ZCQ
i=0 0

in Q: = (0,00)3. Notice that lima_,p0 D(A®) = —o0o and that D is differentiable on Q. Thus it is enough
to find zeros of its partial derivatives. Differentiating with respect to A{ we obtain

) o S AS
(9AC D(A ) AC+H1+H3AC.
Comparing it to 0 we infer that
; o ATAY
S1+ HiA7 = —Hj AC (3)
Similarly
~ AFAY
Sy + HyAS = —Hj IAOCQ (4)

Equations and have the same right hand sides, hence
1 - .
AF = —(5 — S + HiAY). (5)
H,

Applying the equality into leads to

H3 ' 5'1 —SQ—FHlAlC

AS = _
CHy 8+ HAY

On the other hand, differentiating with respect to A§ gives

0
OAC

So AFAY
A% = =L 4 Hy— Hy— =%
&) N

O:
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Multiplying by A§ and substituting A§ and AS by the expressions from equalities @ and (5) we ob-
tain

- H g, _ G H,AC
0 = 50+H0'<—3>-Sl~52+ SN
Sl+H1A1

1 /-~ = H. Sy + H AY 1
_HAC . 2 (G, _ o). (_Hz2) . R L S
H3AS i <51 SQ+H1A1) ( > 5

Hs — Sz + HlAIC A71
S HyHs Sl SQ + HlAl AC
= 0 — . -

H2 Sl +H1A

<§1 + H1A10> )

Multiplying by the denominators gives the following equivalent form
SoHa(S1 + HiAY) — HoHs(S1 — So + HIA)AY + Hy(Sy + HiA)? =
And after regrouping:
Hy(HyHy — HoHs)(AY)? + (HyHa (251 + So) + HoHs(S2 — 51)AY) + Ha S} + Hy508 = 0.

This equation, combined with equations ’ ), (6), and the condition AYAS = AT A, may have two solutions,
(A§,AY, AT AS) and (A§, AY, AT, AY), and we chose the one which lays in (0, 00)*. If both do, we choose

the one for which the value of the expressmn

3

i[SklogAkc+HkAkc}:log[H( H a1 ¢d Ac)}

k=0 i gi= J: qg 9k
is greater.

Finally, inserting the estimated maximizing parameters into the nominator of the likelihood ratio (1)), we
obtain

3

[T II aSca>—r@) [ c@ 1T II ac@> '@ I i)™,

k=0 \i: gi=gx J: 9i=gk 9¢{90,91,92,9s} \?* 9i=9 Ji9i=9
while inserting the estimated maximizing parameters into the denominator gives

3

I II aca)tr@) [[ cd@n” 11 II a6 e [[ 6d)»

k=0 \i: gi=gk J: gi=gk 9¢#{g0,91,92,93} \#: gi=9g Jjgi=g

Thus, in the ratio the expressions for g ¢ {g0,91,92,93}, as well as the terms Hi:o IL. gi=an F (&)
occur both in the nominator and in the denominator and cancel out. Multiplying both the nominator and
the denominator by Hk ol1i. 4i=g, G(t:), we obtain the likelihood ratio of the form presented in the main

text
— szo (Hl 9i=gk AgG(Ei)AkC Hj? 9=k G(fj)Ag)
[T (T gmg AeGE)A T, 5y, G

1 gi=
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