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candidate genes for epilepsy with potentially large effects, we selected genes exclusively overlapped 

by at least two microdeletions in epilepsy patients. We identified 10 candidate genes at seven loci. 

These autosomal microdeletions involved several genes previously implicated in epilepsy and 

neurodevelopmental disorders. Specifically, the genes encoding T-SNARE Domain Containing 1 

(TSNARE1) and protocadherin 7 (PCDH7) have been highlighted previously in our GGE microdeletion 

analysis[18] (1,366 patients and 5,234 controls) which was entirely integrated in the present study. 

Furthermore, with the analysis of other types of epilepsies we detected one RE patient with a partial 

NRXN1 microdeletion and one AFE patient with a complete PCDH7 deletion. These observations 

suggest their role as broader epilepsy risk factors rather than syndrome specific variants of high 

effect. Furthermore, our gene-centric (compared to microdeletion-centric) analysis could narrow 

down four large microdeletions to PCDH7, PACRG, LOC102723362 and LOC101928137 as the only 

remaining genes not deleted in controls respectively.  We acknowledge the limitations of this 

analysis since we do not have the power to assign a meaningful p-value to these detected genes. 

Expression and network analysis.  

In the expression analysis of candidate genes we did not observe significant brain tissue 

enrichment, probably because the number of included genes was small and not all of them 

may be involved in epilepsy. While global or individual-gene brain expression patterns 

would have been informative, the results are not conclusive and thus we cannot rule out 

candidates based on gene expression filtering. The network analysis resulted in significant 

interconnection only for the GGE syndrome. The likely reason for this is the difference in 

the number of regions between the syndromes rather than a difference in the underlying 

biology. These results are encouraging, considering that we use non cell-type specific 

networks and did not filter the network based on tissue-specific gene expression. The 
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enriched KEGG Long Term Depression (hsa04730) and Long Term Potentiation (hsa04720) 

networks represent plausible neuronal enriched networks in epilepsy patients.  

In summary, we show that the microdeletion enrichment in epilepsy patients is focused 

towards genes involved in neurodevelopmental processes. Patients with GGE syndrome 

exhibit the highest microdeletion frequency, especially at hotspot loci. Apart from these loci 

ultra-rare heterogeneous deletions contribute significantly to GGE whereas microdeletion 

frequency and distribution in AFE is indistinguishable from controls. The RE cohort is the 

smallest and therefore has the lowest statistical power for association discovery. However, 

the RE cohort shows nominal enrichment for hotspot loci microdeletions. There was some 

support for ultra-rare microdeletions as plausible epilepsy candidate genes. Our study 

demonstrates, that the contribution of microdeletions in common epilepsies is subtype 

specific. With increasing cohort sizes, the genetic architecture of the epilepsies and the 

contribution of microdeletions will become more evident. 

Despite these differences, candidate genes can be found commonly deleted in more than 

one epilepsy type. Thus, the present findings contribute to our understanding of the 

structural genetic architecture of epilepsies from an overall and sub-type specific 

perspective.  
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FIGURES 

Figure 1. Microdeletion burden analysis in common epilepsy types. For adult focal epilepsies (AFE, cyan), 

rolandic epilepsies (RE, green), genetic generalized epilepsies (GGE, red) datasets the burden analysis without 

genomic rearrangement hotspots loci consideration[14] is shown using the following microdeletion sets: All 

microdeletions; Overlapping at least one: CNV constrained gene, Neuro-Developmental gene[28], ASD-

Related gene[29], developmental disorders[30] genes and loss-of-function intolerant genes[31]. The effect 

size observed (OR), confidence interval (C.I., horizontal lines) and multiple testing corrected p value obtained 

is shown for each dataset. Triangles denote if the signal is nominally significant. C.I. above 9 are shown in 

numbers.   
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Figure 2. Tissue specific gene expression of epilepsy patient deleted genes. Tissue enrichment analysis using 

publicly available expression data from pilot phase of the Genotype-Tissue Expression project (GTEx), version 

3 (see Methods). Overall, 45 individual tissues were assayed and grouped in to nine categories by color (upper-

right box). Left panel: Results for genes identified to be deleted more than once in patients and not in controls 

(n = 12).  Right panel: Results for genes deleted more than once in controls and not in patients (n = 96). For 

both analysis the significance threshold is denoted by vertical red line (P=1.90 x 10-3). 
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Figure 3. Protein-protein interaction network of GGE exclusively deleted genes. Total interacting structures 

found in GGE exclusively deleted genes (not deleted in controls) are shown. Each gene (node) in the network 

is colored based on the significance of having more-than-expected edges (interactions) following the p-value 

legend provided at the upper-right corner. Significant cluster is enclosed within a circle.  
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