European admixture in Chinchorro DNA

Robert Smith

Abstract

It is widely held that, except for migrations from Beringia or Siberia, there was no contact between the Old World and the New World prior to the colonization of North America by the Norse in the late $10^{\text {th }}$ century AD. Analyses of 23 ancient American DNA samples reveal, however, the presence of European admixture in a sample taken from a Chinchorro mummy of northern Chile dated to 3972-3806 BC. This discovery implies a more complex history of the peopling of the Americas than previously accepted.

Introduction

Mainstream accounts of the peopling of the Americas stipulate that there was a large migration of people from Beringia during the late Pleistocene, and that modern Amerindians derive most of their ancestry from these migrants. It is commonly believed that these migrants were the originators of the Clovis material culture, and it was long asserted that the appearance of these migrants south of Beringia did not predate the earliest datings of Clovis artifacts, around 13,200 years ago. The accumulation of evidence for earlier American settlements has forced mainstream scholars to abandon the latter position, however. Mainstream accounts also acknowledge two later migrations from Siberia, responsible for bringing speakers of Na-Dene and Eskimo-Aleut languages to the Americas.

A small minority of researchers have advanced theories of other migrations to the Americas. Dennis Stanford and Bruce Bradley, observing the many similarities between Clovis technology and that of the Upper Paleolithic Solutrean culture of Western Europe, have theorized that the ancestors of the Clovis people came not from Siberia, but from Europe, by traversing the Atlantic Ocean during the Last Glacial Maximum [1, 2]. In his 1947 crossing of the Pacific on the balsa raft Kon-Tiki [3], and his 1970 crossing of the Atlantic on the reed boat Ra II [4], Thor Heyerdahl demonstrated the feasibility of early transoceanic contacts, and in his written works he produced an abundance of historical, archeological, and anthropological evidence that such contacts had indeed taken place [5, 6, 7].

Mainstream scholars have continually rejected these other proposed migrations to the Americas, in spite of the evidence from a multitude of scientific disciplines in support of them. Ancient DNA evidence, however, can prove incontrovertibly that these other migrations took place, and such evidence is presented here for the first time.

Methods

Data

The 23 ancient American genomes analyzed are those published in [8]. Genotype calls generated from aligned reads were intersected with a set of 110,817 transversion SNPs (set 1) for principal component analysis, and a set of 228,841 transversion SNPs (set 2) for qpAdm and ADMIXTURE analyses. The resultant numbers of SNPs for each of the ancient American samples are shown in Table 1.

qpAdm analysis

The program qpAdm [9] was used to estimate mixture coefficients for the ancient American samples, using the following populations:

- Target population: One of the 23 ancient American samples.
- Source population 1: A collection of populations shown to be purely Amerindian in admixture analyses: Mixe, Piapoco, Wichi, Chané, Karitiana, and Surui.
- Source population 2: One of 11 ancient or modern European, Middle Eastern, or South Asian populations.
- Outgroup populations: Mbuti Pygmies, Han Chinese, Nganasans, Eskimos, and Papuans.

Principal component analysis

Principal component analysis of the ancient American samples was performed using the smartpca program of EIGENSOFT [10], using default parameters and the lsqproject: YES and numoutlieriter: 0 options.

ADMIXTURE analysis

Model-based clustering analysis of the ancient American samples was performed with the ADMIXTURE program [11], with the number of assumed ancestral populations ranging from K $=4$ to $K=13$.

Results

qpAdm analysis

The results of the of the 253 qpAdm analyses are shown in Table 2, which gives the mean source population 2 mixture coefficient, and the coefficients plus or minus one standard error, for each analysis. The analyses are listed in decreasing order of the mixture coefficient lower bounds.

Principal component analysis

A plot of the results of a principal component analysis of ancient and modern American, European, and Middle Eastern samples is shown in Figure 1. Figure 2 is a plot of the results of a second principal component analysis, in which the Middle Eastern samples were excluded, leaving only the American and European samples.

ADMIXTURE analysis

Plots of the results of $K=4,5,6,7,9$, and 13 ADMIXTURE analyses of the ancient American samples, along with other ancient and modern samples, are shown in Figures 3 through 8.

Discussion

qpAdm analysis

In Table 2, the 11 analyses in which the Chinchorro mummy sample was the target population have the 11 largest European, Middle Eastern, or South Asian mixture coefficient lower bounds. The mean coefficients for the Chinchorro sample tend to be around 0.45 , with the lower bounds mostly around 0.30 .

Principal component analysis

In Figure 1, some of the Mayan, Bolivian, and Quechua samples, which ADMIXTURE analyses show to contain up to 17% European admixture, are shifted to the right of the more pure Amerindian samples, toward the European and Middle Eastern samples. To the right of them is a Mixtec sample which is 23.5% European, and to the right of that Mixtec sample is the 30-40\% European Chinchorro mummy sample, and also the Pericú sample BC23, which ADMIXTURE analyses also show to have a significant amount of European admixture. Note that in Figure 1 the Chinchorro mummy sample has a positive value of the second principal component, making it shifted in the direction of Europeans rather than Middle Easterners. In Figure 2 the positions of the Amerindian samples are similar, but BC23 is horizontally between the Mixtec sample and the Chinchorro mummy sample.

ADMIXTURE analysis

In Figures 3 through 8, for all of the different values of K, the Chinchorro mummy sample consistently shows between 30% and 40% non-Amerindian admixture, and the only other samples that show a pattern of non-Amerindian components similar to that seen in the Chinchorro sample are the European samples from before the Last Glacial Maximum (LGM):

- $K=4$: The Chinchorro sample is 31.66% non-Amerindian. It has a large amount of the blue component, and a small amount of the yellow component. The pre-LGM European
samples also have large amounts of the blue component, and smaller amounts of the yellow component.
- $\quad K=5$: The Chinchorro sample is 32.13% non-Amerindian. It has a large amount of the blue component, a very small amount of the yellow component, and some of the purple component. The pre-LGM European samples also have large amounts of the blue component, and smaller amounts of the yellow and purple components.
- $K=6$: The Chinchorro sample is 32.67% non-Amerindian. It has large amounts of the blue and green components, and small amounts of the yellow and purple components. The pre-LGM European samples also have large amounts of the blue component, and smaller amounts of the yellow and purple components, and some of them, particularly Kostenki 14 and the Gravettian sample Goyet Q53-1 from Belgium, have some of the green component.
- $K=7$: The Chinchorro sample is 34.30% non-Amerindian. It has significant amounts of the plain blue, light blue, and green components, and a small amount of the purple component. The pre-LGM European samples also have significant amounts of the plain blue, light blue, green, and purple components.
- $K=9$: The Chinchorro sample is 37.00% non-Amerindian. It has significant amounts of the plain blue, light blue, and plain green components. The pre-LGM European samples also have significant amounts of the plain blue, light blue, and plain green components. The pine green component is completely absent in the Chinchorro sample, and, with the exception of Kostenki 14, it is also completely absent in the pre-LGM European samples. The plain green component is absent in post-Magdalenian Europeans, and the pine green component is present in significant amounts in Europeans from the Copper Age on, which eliminates modern contamination as a possible source of the European admixture in the Chinchorro sample.
- $K=13$: The Chinchorro sample is 36.49% non-Amerindian. The Chinchorro sample has significant amounts of the dark blue, light blue, and plain green components, and a small amount of the plain yellow component. The pre-LGM European samples also have significant amounts of the dark blue, light blue, and plain green components, and small amounts of the plain yellow component. The medium blue component is completely absent in the Chinchorro sample, and since the Eastern European and Western Siberian hunter-gatherers are made up mostly of that component, they are excluded as sources of the European admixture in the Chinchorro sample.

Conclusions

The above qpAdm, principal component, and ADMIXTURE analyses of 23 ancient American
samples reveal that one of them, taken from a Chinchorro mummy of northern Chile dated to 3972-3806 BC, contains 30-40\% European admixture. That the non-Amerindian admixture present in the Chinchorro sample is more closely related to Europeans than to Middle Easterners is demonstrated by both the principal component and ADMIXTURE analyses. The ADMIXTURE analyses further shed light on exactly which European population the nonAmerindian admixture in the Chinchorro sample might be from: only the pre-LGM Europeans show a pattern of non-Amerindian components similar to that seen in the Chinchorro sample, which strongly suggests that the pre-LGM Aurignacians or Gravettians, or possibly the LGM Solutreans, were the source of the admixture. The Solutreans seem like a particularly likely source population, in light of the ample archeological evidence for their presence in the Americas. A complicating factor in identifying the exact source of the European admixture in the Chinchorro sample is the amount of divergent genetic drift that would have occurred between the arrival of the European source population in the Americas and the time of the Chinchorro individual analyzed. If the Solutreans were the source, and if they arrived in the Americas around 26,000 years ago, then around 20,000 years of divergent genetic drift would have accumulated in their American descendants by the time of the Chinchorro individual. This drift might account for the differences in the exact proportions of the non-Amerindian components in the Chinchorro and pre-LGM European samples, but it could also conceivably result in a somewhat later European population, such as the Magdalenians, not being correctly identified as the true source population. Regardless of the exact source of the European admixture in the Chinchorro sample, the fact that such admixture exists is the first ancient DNA proof of pre-Norse transatlantic contact.

References

1. Bradley, B. and Stanford, D. 2004. The North Atlantic ice-edge corridor: a possible Paleolithic route to the New World. World Archaeology, 36: 459-78.
2. Stanford, D. and Bradley, B. 2012. Across Atlantic Ice: The Origin of America's Clovis Culture. Berkeley, CA: University of California Press.
3. Heyerdahl, T. 1950. Kon-Tiki: Across the Pacific by Raft. Chicago, IL: Rand McNally.
4. Heyerdahl, T. 1971. The Ra Expeditions. Garden City, NY: Doubleday.
5. Heyerdahl, T. 1952. American Indians in the Pacific: The Theory behind the Kon-Tiki Expedition. London: George Allen \& Unwin.
6. Heyerdahl, T. 1971. Isolationist or Diffusionist? In The Quest for America (ed. Geoffrey Ashe). New York: Praeger Publishers, pp. 115-154.
7. Heyerdahl, T. 1971. The Bearded Gods Speak. In The Quest for America (ed. Geoffrey Ashe). New York: Praeger Publishers, pp. 199-238.
8. Raghavan, M., et al. 2015. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science, 349: aab3884.
9. Haak W., et al. 2015. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature, 522: 207-211.
10. Patterson N., Price A. L., and Reich D. 2006. Population structure and eigenanalysis. PLoS Genetics, 2: e190.
11. Alexander D. H., Novembre J., and Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19: 1655-1664.

Table 1. Description and numbers of SNPs used for 23 ancient American samples.

Sample	Tribe	Region	Age BP	SNP set 1	SNP set 2
939	Unknown	British Columbia	$6260-5890$	38,692	81,341
MARC1492	Micmac	New Brunswick	$516-258$	15,374	27,461
F9	Unknown	Northwestern Mexico	>500	684	1,320
MOM6	Unknown	Northwestern Mexico	>500	1,233	2,378
BC23	Pericú	Baja California Sur	$800-300$	1,068	2,100
BC25	Pericú	Baja California Sur	$800-300$	21,180	38,118
BC27	Pericú	Baja California Sur	$800-300$	1,216	2,195
BC28	Pericú	Baja California Sur	$800-300$	1,083	2,041
BC29	Pericú	Baja California Sur	$800-300$	5,634	10,770
BC30	Pericú	Baja California Sur	$800-300$	12,469	24,827
Enoque65	Unknown	Northeastern Brazil	$3635-3483$	7,433	15,098
Chinchorro	Unknown	Northern Chile	$5922-5756$	1,067	2,055
AM66	Alacaluf	Chilean Patagonia	132	3,167	5,899
AM71	Alacaluf	Chilean Patagonia	132	13,322	24,060
AM72	Alacaluf	Chilean Patagonia	132	502	918
AM73	Alacaluf	Chilean Patagonia	132	2,398	4,290
AM74	Alacaluf	Chilean Patagonia	132	46,680	87,680
MA572	Selknam	Tierra del Fuego	~ 200	1,242	2,268
MA575	Selknam	Tierra del Fuego	~ 200	369	732
MA577	Selknam	Tierra del Fuego	~ 200	93,774	181,308
890	Yaghan	Tierra del Fuego	~ 200	28,202	50,746
894	Yaghan	Tierra del Fuego	~ 200	66,852	121,408
895	Yaghan	Tierra del Fuego	~ 200	71,415	129,719

Table 2. Estimated source population 2 mixture coefficients produced by 253 qpAdm analyses.

Target population	Source population 2	$\mathbf{- 1 ~ S E}$	Mean	$\mathbf{+ 1}$ SE
Chinchorro mummy	Pit Grave CA	0.3526	0.5426	0.7326
Chinchorro mummy	Spanish	0.3141	0.4741	0.6341
Chinchorro mummy	Iran EN	0.3070	0.4770	0.6470
Chinchorro mummy	Mala	0.2927	0.4697	0.6467
Chinchorro mummy	NW Asia Minor EN	0.2868	0.4368	0.5868
Chinchorro mummy	Pre-LGM Euro	0.2849	0.4749	0.6649
Chinchorro mummy	West Euro HG	0.2841	0.4481	0.6121
Chinchorro mummy	Georgia HG	0.2634	0.4014	0.5394
Chinchorro mummy	Tamil	0.2595	0.4205	0.5815
Chinchorro mummy	East Euro HG	0.2280	0.5600	0.8920
Chinchorro mummy	Natufian	0.1447	0.3457	0.5467
Mex mummy F9	East Euro HG	0.1303	0.4593	0.7883
Mex mummy F9	Spanish	0.1033	0.2683	0.4333
Mex mummy F9	Pit Grave CA	0.0964	0.2944	0.4924
Mex mummy F9	Tamil	0.0954	0.2844	0.4734
Mex mummy F9	West Euro HG	0.0924	0.3034	0.5144
Mex mummy F9	NW Asia Minor EN	0.0896	0.2476	0.4056
Mex mummy F9	Georgia HG	0.0880	0.2470	0.4060
Mex mummy F9	Iran EN	0.0720	0.2570	0.4420
Patagonian AM73	Natufian	0.0668	0.1698	0.2728
Mex mummy F9	Pre-LGM Euro	0.0611	0.2161	0.3711
Micmac MARC1492	Georgia HG	0.0359	0.0749	0.1139
Micmac MARC1492	Pit Grave CA	0.0355	0.0785	0.1215
Micmac MARC1492	NW Asia Minor EN	0.0336	0.0686	0.1036
Brazilian Enoque65	Natufian	0.0335	0.1025	0.1715
Brazilian Enoque65	Mala	0.0334	0.0874	0.1414
Micmac MARC1492	Spanish	0.0326	0.0706	0.1086
Micmac MARC1492	Iran EN	0.0323	0.0673	0.1023
Pericú BC25	Spanish	0.0233	0.0563	0.0893
Brazilian Enoque65	Tamil	0.0792	0.1352	
Pericú BC25	0.0951			

Target population	Source population 2	$\mathbf{- 1} \mathbf{~ S E}$	Mean	$+\mathbf{1}$ SE
Pericú BC25	Georgia HG	0.0225	0.0565	0.0905
Pericú BC25	NW Asia Minor EN	0.0222	0.0532	0.0842
Pericú BC25	Pre-LGM Euro	0.0220	0.0550	0.0880
Pericú BC25	Tamil	0.0217	0.0577	0.0937
Micmac MARC1492	East Euro HG	0.0209	0.0779	0.1349
Pericú BC25	Pit Grave CA	0.0204	0.0604	0.1004
Micmac MARC1492	West Euro HG	0.0204	0.0624	0.1044
Pericú BC25	Mala	0.0186	0.0546	0.0906
Pericú BC25	Iran EN	0.0184	0.0504	0.0824
Mex mummy F9	Mala	0.0184	0.2364	0.4544
Micmac MARC1492	Natufian	0.0151	0.0581	0.1011
Micmac MARC1492	Pre-LGM Euro	0.0146	0.0516	0.0886
Brazilian Enoque65	Georgia HG	0.0133	0.0683	0.1233
Pericú BC25	Natufian	0.0128	0.0498	0.0868
Brazilian Enoque65	Iran EN	0.0079	0.0569	0.1059
Brazilian Enoque65	Pit Grave CA	0.0061	0.0661	0.1261
Brazilian Enoque65	NW Asia Minor EN	0.0041	0.0541	0.1041
Mex mummy MOM6	Natufian	0.0040	0.1150	0.2260
Brazilian Enoque65	Pre-LGM Euro	0.0036	0.0586	0.1136
Fuegian 894	Natufian	0.0023	0.0213	0.0403
Brazilian Enoque65	Spanish	0.0023	0.0553	0.1083
Fuegian 890	Natufian	0.0022	0.0302	0.0582
Micmac MARC1492	Tamil	0.0014	0.0414	0.0814
Brazilian Enoque65	West Euro HG	-0.0004	0.0576	0.1156
Fuegian MA577	Georgia HG	-0.0026	0.0158	0.0358
Fuegian MA577	West Euro HG	0.0161	0.0341	
Pericú BC25	East Euro HG	0.037	0.0374	
Fuegian MA577	Iran EN	-0.0029	0.0141	0.0311
Fuegian MA577	NW Asia Minor EN	-0.0034	0.0136	0.0306
Fuegian MA577	Pit Grave CA	0.0036	0.0184	0.0404
Fuegian MA577	Fuegian MA577	0.0338		
		0.0493	0.1013	

Target population	Source population 2	- 1 SE	Mean	+ 1 SE
Patagonian AM66	Natufian	-0.0045	0.0995	0.2035
Fuegian MA577	Pre-LGM Euro	-0.0056	0.0124	0.0304
Fuegian MA577	Mala	-0.0074	0.0136	0.0346
Micmac MARC1492	Mala	-0.0093	0.0327	0.0747
Fuegian MA577	East Euro HG	-0.0097	0.0173	0.0443
Fuegian MA577	Natufian	-0.0103	0.0087	0.0277
Fuegian 890	East Euro HG	-0.0125	0.0305	0.0735
Fuegian 894	NW Asia Minor EN	-0.0127	0.0053	0.0233
Fuegian 894	West Euro HG	-0.0138	0.0072	0.0282
Fuegian 894	Spanish	-0.0140	0.0060	0.0260
Fuegian 894	Iran EN	-0.0141	0.0049	0.0239
Fuegian 894	Georgia HG	-0.0144	0.0056	0.0256
Fuegian 894	Pit Grave CA	-0.0145	0.0085	0.0315
Fuegian 894	Pre-LGM Euro	-0.0153	0.0047	0.0247
Fuegian 890	West Euro HG	-0.0173	0.0137	0.0447
Fuegian 890	Georgia HG	-0.0175	0.0105	0.0385
Patagonian AM74	Natufian	-0.0176	0.0064	0.0304
Patagonian AM66	Pre-LGM Euro	-0.0181	0.0539	0.1259
Pericú BC28	Pre-LGM Euro	-0.0185	0.0945	0.2075
Fuegian 890	Pre-LGM Euro	-0.0189	0.0091	0.0371
Fuegian 890	Iran EN	-0.0194	0.0076	0.0346
Fuegian 894	East Euro HG	-0.0198	0.0102	0.0402
Fuegian 890	Spanish	-0.0199	0.0081	0.0361
Fuegian 890	NW Asia Minor EN	-0.0199	0.0071	0.0341
Fuegian 890	Mala	-0.0201	0.0119	0.0439
Fuegian 890	Pit Grave CA	-0.0202	0.0138	0.0478
Fuegian 890	Tamil	-0.0208	0.0102	0.0412
Patagonian AM66	West Euro HG	-0.0210	0.0540	0.1290
Patagonian AM66	Iran EN	-0.0212	0.0448	0.1108
Pericú BC23	Natufian	-0.0218	0.2042	0.4302
Fuegian 894	Tamil	-0.0219	0.0001	0.0221
Patagonian AM66	NW Asia Minor EN	-0.0224	0.0456	0.1136

Target population	Source population 2	$\mathbf{- 1 ~ S E}$	Mean	$\mathbf{+ 1}$ SE
Patagonian AM66	Spanish	-0.0235	0.0525	0.1285
Fuegian 894	Mala	-0.0244	-0.0014	0.0216
Patagonian AM74	NW Asia Minor EN	-0.0246	-0.0046	0.0154
Patagonian AM74	Iran EN	-0.0247	-0.0047	0.0153
Patagonian AM74	East Euro HG	-0.0248	0.0072	0.0392
Patagonian AM74	Spanish	-0.0253	-0.0043	0.0167
Patagonian AM66	Georgia HG	-0.0256	0.0524	0.1304
Patagonian AM74	Georgia HG	-0.0256	-0.0046	0.0164
Patagonian AM66	Pit Grave CA	-0.0276	0.0634	0.1544
Patagonian AM74	Pit Grave CA	-0.0276	-0.0026	0.0224
Patagonian AM74	West Euro HG	-0.0280	-0.0040	0.0200
Patagonian AM74	Pre-LGM Euro	-0.0288	-0.0068	0.0152
Mex mummy MOM6	Iran EN	-0.0305	0.0945	0.2195
Patagonian AM66	Mala	-0.0312	0.0488	0.1288
Patagonian AM74	Tamil	-0.0332	-0.0092	0.0148
Pericú BC29	Iran EN	-0.0340	0.0160	0.0660
Mex mummy MOM6	NW Asia Minor EN	-0.0352	0.0698	0.1748
Patagonian AM74	Mala	-0.0364	-0.0124	0.0116
Patagonian AM66	Tamil	-0.0366	0.0444	0.1254
Pericú BC29	Natufian	-0.0479	-0.0049	0.0381
Pericú BC29	NW Asia Minor EN	-0.0468	0.0172	0.0712
Pericú BC29	Spanish	-0.0396	0.0204	0.0804
Fuegian 895	Georgia HG	-0.0435	-0.0235	-0.0035
Pericú BC29	Natufian	-0.0438	0.0182	0.0802
Pericú BC29	West Euro HG	-0.0438	0.0172	0.0782
Pericú BC28	Tamil	-0.0441	0.0779	0.1999
Mex mummy MOM6	Georgia HG	-0.0447	0.0723	0.1893
Fuegian 895	Spanish	-0.0461	-0.0271	-0.0081
Pericú BC29	NW Asia Minor EN	-0.0468	0.0192	0.0852
Fuegian 895		-0.0469	-0.0279	-0.0089
Fuegian 895	Patagonian AM71	-0.0094		
	Grave CA	0.0737		

Target population	Source population 2	$\mathbf{- 1 ~ S E}$	Mean	$\mathbf{+ 1}$ SE
Fuegian 895	Spanish	-0.0481	-0.0281	-0.0081
Fuegian 895	Pre-LGM Euro	-0.0507	-0.0307	-0.0107
Pericú BC28	Spanish	-0.0507	0.0733	0.1973
Fuegian 895	West Euro HG	-0.0517	-0.0307	-0.0097
Pericú BC29	Mala	-0.0520	0.0090	0.0700
Patagonian AM66	East Euro HG	-0.0530	0.0480	0.1490
Brazilian Enoque65	East Euro HG	-0.0540	0.0210	0.0960
Pericú BC28	NW Asia Minor EN	-0.0545	0.0615	0.1775
Fuegian 895	Pit Grave CA	-0.0551	-0.0321	-0.0091
Pericú BC29	Pre-LGM Euro	-0.0553	0.0027	0.0607
Pericú BC28	West Euro HG	-0.0568	0.0822	0.2212
Mex mummy F9	Natufian	-0.0598	0.1282	0.3162
Fuegian 895	Tamil	-0.0601	-0.0381	-0.0161
Pericú BC28	Pit Grave CA	-0.0602	0.0798	0.2198
Mex mummy MOM6	Georgia HG	-0.0603	0.0877	0.2357
Pericú BC28	Mala	-0.0610	0.0850	0.2310
Pericú BC28	Iran EN	-0.0626	0.0634	0.1894
Fuegian 895	Mala	-0.0647	-0.0417	-0.0187
Pericú BC27	Natufian	-0.0650	0.0570	0.1790
Fuegian 895	East Euro HG	-0.0651	-0.0361	-0.0071
Pericú BC28	East Euro HG	-0.0678	0.1322	0.3322
Pericú BC28	Tamil	-0.0699	0.0641	0.1981
Pericú BC30		NW Asia Minor EN	-0.0710	-0.0320
Pericú BC30	Iran EN	0.0070		
Pericú BC30	Georgia HG	-0.0720	-0.0330	0.0060
Mex mummy MOM6	Pre-LGM Euro	-0.0722	-0.0312	0.0098
Mex mummy MOM6	West Euro HG	-0.0730	0.0480	0.1690
Pericú BC30	Spanish	-0.0736	0.0794	0.2324
Pericú BC29	-0.0741	-0.0331	0.0079	
Mex mummy MOM6	-0.0744	-0.0044	0.0656	
Pericú BC27	Pericú BC30	0.0783	0.0647	0.2077
	0.0066			

Target population	Source population 2	$\mathbf{- 1}$ SE	Mean	$\mathbf{+ 1}$ SE
Pericú BC23	Tamil	-0.0818	0.0732	0.2282
Pericú BC30	Pit Grave CA	-0.0831	-0.0361	0.0109
Pericú BC30	Natufian	-0.0856	-0.0376	0.0104
Patagonian AM72	Mala	-0.0864	0.1236	0.3336
Pericú BC27	NW Asia Minor EN	-0.0871	0.0229	0.1329
Patagonian AM72	NW Asia Minor EN	-0.0884	0.1086	0.3056
Pericú BC30	Tamil	-0.0900	-0.0450	0.0000
Pericú BC30	Pre-LGM Euro	-0.0904	-0.0464	-0.0024
Pericú BC23	Georgia HG	-0.0906	0.0554	0.2014
Pericú BC23	Iran EN	-0.0919	0.0571	0.2061
British Columbia 939	NW Asia Minor EN	-0.0923	-0.0673	-0.0423
Pericú BC29	East Euro HG	-0.0932	-0.0072	0.0788
Pericú BC23	Spanish	-0.0934	0.0546	0.2026
Pericú BC23	Pre-LGM Euro	-0.0934	0.0716	0.2366
Pericú BC23	NW Asia Minor EN	-0.0934	0.0536	0.2006
Pericú BC30	Mala	-0.0935	-0.0495	-0.0055
British Columbia 939	Iran EN	-0.0936	-0.0676	-0.0416
Pericú BC27	Spanish	-0.0949	0.0251	0.1451
Patagonian AM71	Iran EN	-0.0953	-0.0593	-0.0233
British Columbia 939	Georgia HG	-0.0962	-0.0692	-0.0422
Mex mummy MOM6	Tamil	-0.0966	0.0454	0.1874
Patagonian AM73	Iran EN	-0.0972	-0.0262	0.0448
British Columbia 939	Spanish	-0.0978	-0.0708	-0.0438
Patagonian AM73	NW Asia Minor EN	-0.0979	-0.0249	0.0481
Patagonian AM72	Georgia HG	-0.0984	0.1506	0.3996
Patagonian AM72	Iran EN	-0.0988	0.0842	0.2672
Patagonian AM72	Spanish	-0.1007	0.1043	0.3093
Patagonian AM71	NW Asia Minor EN	-0.1014	-0.0644	-0.0274
Patagonian AM73	Spanish	-0.0287	0.0463	
Pericú BC30	East Euro HG	0.1621		
Patagonian AM73	Pericú BC27	-0.1030	-0.0400	0.0230
	-0.023	-0.0253	0.0517	
		-0.037		

Target population	Source population 2	- 1 SE	Mean	+ 1 SE
Patagonian AM72	Tamil	-0.1059	0.1171	0.3401
Pericú BC27	Iran EN	-0.1060	0.0110	0.1280
Patagonian AM71	Georgia HG	-0.1064	-0.0664	-0.0264
Patagonian AM71	Spanish	-0.1072	-0.0682	-0.0292
Pericú BC23	West Euro HG	-0.1076	0.0534	0.2144
British Columbia 939	West Euro HG	-0.1083	-0.0783	-0.0483
Pericú BC27	West Euro HG	-0.1086	0.0214	0.1514
Pericú BC27	Pit Grave CA	-0.1096	0.0304	0.1704
Patagonian AM73	East Euro HG	-0.1097	0.0043	0.1183
Patagonian AM73	Pit Grave CA	-0.1099	-0.0199	0.0701
British Columbia 939	Pre-LGM Euro	-0.1116	-0.0846	-0.0576
Mex mummy MOM6	Mala	-0.1120	0.0360	0.1840
Patagonian AM71	Pre-LGM Euro	-0.1129	-0.0729	-0.0329
British Columbia 939	Pit Grave CA	-0.1152	-0.0832	-0.0512
Patagonian AM73	Pre-LGM Euro	-0.1152	-0.0372	0.0408
British Columbia 939	Tamil	-0.1164	-0.0874	-0.0584
Patagonian AM71	Tamil	-0.1170	-0.0770	-0.0370
Pericú BC27	Tamil	-0.1186	0.0064	0.1314
Patagonian AM72	Pre-LGM Euro	-0.1189	0.0861	0.2911
Patagonian AM71	Mala	-0.1191	-0.0801	-0.0411
Patagonian AM73	Mala	-0.1197	-0.0417	0.0363
British Columbia 939	Mala	-0.1216	-0.0916	-0.0616
Pericú BC27	Mala	-0.1221	-0.0031	0.1159
Patagonian AM73	Tamil	-0.1228	-0.0428	0.0372
Patagonian AM71	West Euro HG	-0.1231	-0.0801	-0.0371
Patagonian AM73	West Euro HG	-0.1241	-0.0371	0.0499
Pericú BC23	Mala	-0.1251	0.0379	0.2009
British Columbia 939	Natufian	-0.1271	-0.0971	-0.0671
Pericú BC23	Pit Grave CA	-0.1280	0.0460	0.2200
Patagonian AM72	Pit Grave CA	-0.1299	0.1241	0.3781
Patagonian AM71	Pit Grave CA	-0.1308	-0.0828	-0.0348
Patagonian AM71	East Euro HG	-0.1344	-0.0774	-0.0204

Target population	Source population 2	$\mathbf{- 1} \mathbf{~ S E}$	Mean	$\mathbf{+ 1}$ SE
British Columbia 939	East Euro HG	-0.1434	-0.1044	-0.0654
Patagonian AM72	West Euro HG	-0.1447	0.1213	0.3873
Mex mummy MOM6	East Euro HG	-0.1657	0.0323	0.2303
Pericú BC27	East Euro HG	-0.1731	0.0249	0.2229
Fuegian MA572	Georgia HG	-0.1806	-0.0816	0.0174
Fuegian MA572	NW Asia Minor EN	-0.1941	-0.0861	0.0219
Pericú BC23	East Euro HG	-0.1991	0.0389	0.2769
Fuegian MA572	Iran EN	-0.2024	-0.0924	0.0176
Fuegian MA572	West Euro HG	-0.2039	-0.0859	0.0321
Patagonian AM72	Natufian	-0.2101	0.2569	0.7239
Fuegian MA572	Pre-LGM Euro	-0.2137	-0.0997	0.0143
Fuegian MA572	Spanish	-0.2184	-0.1014	0.0156
Fuegian MA572	Mala	-0.2217	-0.1097	0.0023
Fuegian MA572	Tamil	-0.2228	-0.1018	0.0192
Fuegian MA572	East Euro HG	-0.2326	-0.0956	0.0414
Pericú BC28	Natufian	-0.2424	-0.1064	0.0296
Fuegian MA572	Pit Grave CA	-0.2532	-0.1122	0.0288
Fuegian MA572	Natufian	-0.2882	-0.1412	0.0058
Fuegian MA575	Pre-LGM Euro	-0.3196	-0.1466	0.0264
Fuegian MA575	Iran EN	-0.3350	-0.1380	0.0590
Fuegian MA575	Georgia HG	-0.3576	-0.1676	0.0224
Fuegian MA575	Spanish	-0.3629	-0.1779	0.0071
Fuegian MA575	NW Asia Minor EN	-0.3717	-0.1837	0.0043
Fuegian MA575	Mala	-0.3774	-0.1454	0.0866
Patagonian AM72	East Euro HG	-0.3854	0.0356	0.4566
Fuegian MA575	Natufian	-0.3864	-0.1784	0.0296
Fuegian MA575	Tamil	-0.3923	-0.1723	0.0477
Fuegian MA575	Pit Grave CA	-0.4451	-0.2371	-0.0291
Fuegian MA575	West Euro HG	-0.4688	-0.2238	0.0212
Fuegian MA575	East Euro HG	-0.2947	-0.0187	

Figure 1: PCA of Amerindians, Europeans, and Middle Easterners

Figure 2: PCA of Amerindians and Europeans

