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Abstract  
 

Single-cell sequencing experiments use short DNA barcode ‘tags’ to identify 
reads that originate from the same cell. In order to recover single-cell information from 
such experiments, reads must be grouped based on their barcode tag, a crucial processing 
step that precedes other computations. However, this step can be difficult due to high 
rates of mismatch and deletion errors that can afflict barcodes. Here we present an 
approach to identify and error-correct barcodes by traversing the de Bruijn graph of 
circularized barcode k-mers. This allows for assignment of reads to consensus 
fingerprints constructed from k-mers, and we show that for single-cell RNA-Seq this 
improves the recovery of accurate single-cell transcriptome estimates.  
 
Availability and implementation 
Freely available source code is available at Github: https://github.com/pachterlab/Sircel 
This Github repository also contains iPython notebooks to reproduce all analysis 
presented in this paper. 
 
Introduction 

Tagging of sequencing reads with short DNA barcodes is a common experimental 
practice that enables a pooled sequencing library to be separated into biologically 
meaningful partitions. This technique is in the cornerstone of many single-cell 
sequencing experiments, where reads originating from individual cells are tagged with 
cell-specific barcodes; as such, the first step in any single-cell sequencing experiment 
involves separating reads by barcode to recover single-cell profiles (Svensson et al., 
2017; Trapnell, 2015); (Klein et al., 2015). For example, in the Drop-Seq protocol, which 
is a popular microfluidic-based single-cell experimental platform, DNA barcodes are 
synthesized on a solid bead support, using split-and-pool DNA synthesis (Macosko et al., 
2015). Similar split-and-pool barcoding strategies are used in other single-cell sequencing 
assays such as Seq-Well (Gierahn et al., 2017) and Split-seq (Rosenberg et al., 2017). 
One consequence of this synthetic technique is that deletion errors are extremely 
prevalent; by some estimates 25% of all barcode sequences observed contain at least one 
deletion (Macosko et al., 2015). Ignoring such errors can therefore dramatically lower the 
number of usable reads in a dataset, while incorrectly grouping reads together can 
confound single cell analysis.  
 Current approach to “barcode calling”, the process of grouping reads together by 
barcode, use simple heuristics to first identify barcodes that are likely to be uncorrupted, 
and then “error correct” remaining barcodes to increase yields. However the complex 
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nature of errors, that unlike sequencing based error also include deletions, can lead to 
large number of discarded reads (reads that could not be assigned to a barcode) (Macosko 
et al., 2015). Additionally, some current approaches requires the approximate number of 
cells in the experiment be known beforehand, and in some experimental contexts such 
information is not easily obtained.  

The problem of identifying true barcodes from among many sequences corrupted 
by mismatch and deletion errors seemingly requires a multiple sequence alignment, from 
which errors can be detected and corrected (Zorita, Cuscó, & Filion, 2015). However 
unlike standard biological sequence alignment settings, the single-cell barcode 
identification problem requires analysis of millions, if not billions of different sequences. 
On the other hand, the problem is constrained in that the sequences are short (barcodes 
are typically 10-16 bp long) and the length of each barcode is the same and known. 

To circumvent the need for complete (and intractable) multiple sequence 
alignment, we rely on a k-mer based approach that is both fast and robust to error. Our 
method makes use of the idea of circularizing the sequences that are to be error corrected, 
and rather than pursuing a multiple sequence alignment approach, we instead borrow 
ideas from genome assembly. However unlike assembly methods developed for 
reconstructing circular genomes (Hunt, 2015)  our use of circularization is merely a 
method for adding robustness to the k-mer fingerprinting of barcodes.  

Our methods are implemented in software called SIRCEL whose input is a list of 
reads and which outputs the number and sequences of cell-barcodes from error-
containing datasets in an unbiased manner. Our implementation is robust to insertion, 
deletion, and mismatch errors, and requires a minimal number of user-inputted 
parameters. The output is compatible with downstream single-cell analysis tools such as 
kallisto. (N. L. Bray, Pimentel, Melsted, & Pachter, 2016; Ntranos, Kamath, Zhang, 
Pachter, & Tse, 2016) 
 
Methods and algorithms 
 K-mer counting is a fast and well-established technique that has previously been 
used to dramatically speed up the assignment of reads to transcripts for RNA-seq (N. L. 
Bray et al., 2016; Patro, Mount, & Kingsford, 2014) and metagenomics(Schaeffer, 
Pimentel, Bray, Mellsted, & Pachter, 2015) and as such might be applicable to barcode 
calling. We reasoned that by counting k-mers we could rapidly identify error-free 
subsequences within the context of a larger error-containing read. (Li, 2015; Skums et al., 
2012) The intuition behind our approach lies in the fact that while many copies of the 
same barcode may contain a different profile of errors, pairs of such barcodes may share 
some overlapping subsequence that is error free. However as the barcode errors are 
expected to be random, it is unlikely that several reads will share the exact same error 
pattern. As such, frequently occurring k-mers would arise from error-free regions of 
barcodes, while no overlap would be expected from error-prone k-mers. Similar 
reasoning has been previously used to rapidly detect and reject error-containing reads 
from RNA-seq and DNA assembly (Liu, Schroder, & Schmidt, 2013; Skums et al., 
2012). 
 One difficulty associated with error-correcting barcodes using this technique lies 
in the fact that barcodes are typically very short: for example Drop-Seq barcodes are 12 
base pairs long. Conversely in order for a k-mer counting approach to be feasible we 
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must pick a moderately large value for k, typically k = 9. As a result there are many 
positions on a barcode where a single error would ensure that none of its k-mers are 
shared with an error-free barcode. To circumvent this problem we circularize the barcode 
sequences before counting k-mers; this ensures that barcodes containing a single 
mismatch error still share k-mers with the error-free sequence, independent of where the 
error occurred within the barcode (Fig 1A). Furthermore this approach allows for 
addressing the possibility of insertion or deletion errors. When circularizing the barcode 
sequence, we can first either extend or truncate the sequence by one nucleotide. Doing 
this provides the same robustness to positional errors, but additionally allows for 
robustness to insertion or deletion errors. As every read contains unknown mutation 
type(s), we perform all three circularization operations before counting k-mers. Thus, we 
obtain a set of error-free subsequences that derive from the ‘true’ barcodes. This 
procedure guarantees that all reads with either zero or one error contribute some error-
free k-mers, while reads with two or more errors sometimes contribute error-free k-mers, 
depending on the spacing between the errors. 
 We use these k-mer counts to identify and error-correct complete barcodes. To do 
this we build and traverse a directed, weighted de Bruijn graph (Compeau, Pevzner, & 
Tesler, 2011). In this graph, nodes represent subsequences of length k - 1, and an edge 
represents two nodes that directly adjacent to each other in at least one k-mer. The weight 
of these edges relates to how many times each edge (k-mer) was observed in the entire 
dataset. Additionally as the barcode portions of these reads are stranded, these edges are 
directed by the order of their appearance in the read (5’ to 3’). In this graph, which 
originates from circularized barcode sequences, a cyclic path of length l represents a 
possible barcode sequence of the same length. We define the capacity of a path to be the 
weight of the lowest edge within that path. Thus, high-weight paths represent possible 
barcodes that contain frequently observed k-mers, while low-weight paths likely 
represent cycles that formed spuriously. This is depicted in Fig 1B and 1C. We 
emphasize here that we do not need any single read to contain all k-mers in a high-weight 
path / error-corrected barcode; it is the overlap of many k-mers that likely originate from 
a number of reads that gives rise to such a path. 

To rapidly identify cyclic paths from this graph we use a greedy depth-first 
recursive search (Algorithm 1). Briefly, this algorithm works by first (randomly) picking 
a node from the graph to initialize the search. Each of the outgoing edges that connect to 
this node is checked, in descending order of the edge weights. This step is repeated for 
each of the children nodes, for a fixed number of steps given by the length of the barcode 
(a user-suppled parameter). If at the end of these steps the procedure returns to the same 
node where it began, a cycle has been found. This is described in some more detail in 
Algorithm 1.  

This approach identifies several cyclic paths from the barcode de Bruijn graph, 
and the depth of this search is determined by user-supplied parameters. As only a subset 
of these paths represents a true error-corrected barcode sequence, we filter the paths 
based on their path weight. We hypothesized that paths representing a true error-
corrected barcodes would have a higher capacity than paths that contained errors, or paths 
formed by spurious k-mer overlap between [barcode-wise] unrelated sequences. To 
verify this hypothesis we plotted the cumulative distribution of path capacities, and 
observed a clear inflection point, corresponding to a subset of paths that had a 
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significantly higher capacity than the rest of the population. We computationally 
identified this inflection point as a local maximum in the first derivative of the 
cumulative distribution function. This was facilitated by first smoothing the CDF. 

Paths are then thresholded at this inflection point, and paths with capacities higher 
than the threshold value are deemed error-corrected barcodes, while the rest of the paths 
are rejected. We then assign each read in our dataset to one of the error-corrected 
barcodes based on k-mer compatibility. in other words, a read is assigned to the 
consensus barcode with which it shares the most k-mers. At this point we can vary the 
value of $k$. Preparing the barcode de Bruijn graph with a larger k than that used to 
assign reads enables us to call error-free barcodes with the higher stringency, while 
assigning a large number of reads (Algorithm 2).  
 Finally, to improve performance we make a small modification to the protocol 
outlined above. Rather than building a de Bruijn graph of the entire barcode dataset, we 
instead build a new subraph for each new node we initialize the search with. This 
subgraph contains all nodes that are indirectly connected (within a fixed number of steps) 
to the node at which we initialize the search. This substantially simplifies the search 
procedure while leaving performance unaffected. To rapidly build these subgraphs we 
prepare a k-mer index of the input dataset, which maps a k-mer to a list of reads that 
contains that k-mer. When performing a search from a random start node, we query the k-
mer index for the start node and prepare a de Bruijn graph from only the subset of reads 
returned by the query. 

As this index can be quite large (for Drop-seq, which uses 12mer barcodes, each 
read produces 36 circularized and truncated / extended k-mers to be indexed), which  
results in an extremely large index. We further simplify this protocol by preparing the 
index from a subset of the reads. This approximation also does not affect performance, as 
long as the subset is ‘representative’ of the entire dataset. The exact parameters for this 
depend on the sequencing depth, number of barcodes, error rate and likely other 
parameters; however in our tests simply indexing ~1m reads is sufficient (Table 1). 
 
Results 
 We validated our approach by attempting to identify and error-correct barcode 
sequences in both real and simulated datasets. We re-analyzed a previously published 
species-mixing Drop-Seq experiment published by Macosko et al. This experiment 
involved single-cell sequencing of a mixture of human and mouse cells, and as such it 
served as a useful control for barcode calling: if the calling performs well, cells should 
only contain human, or mouse reads but not both. We used our algorithm on this data and 
as expected found a clear inflection point in the cumulative distribution of barcode paths. 
We could readily identify this inflection by its smoothed first derivative, and thresholding 
the paths at this inflection point yielded 582 barcodes, each of which had accounted for 
approximately the same number of reads (Fig. 2A and 2B). These values were consistent 
with previously reported values from the same dataset. We then quantified single-cell 
expression profiles using combined human / mouse transcriptome, once again using an 
algorithm derived from k-mer counting [kallisto]. As seen in Fig. 2C, ‘cells’ that consist 
of reads clustered by similar barcode k-mers also exhibit distinct expression profiles. In 
nearly every case cells appear to consist of reads deriving entirely from one species (Fig. 
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2D). This result indicates that our k-mer counting approach can be used to group reads 
into single-cell datasets. 

To benchmark our algorithms’ performance and establish it’s performance limits, 
we performed a large number of simulations, under a wide variety of scenarios. We 
produced a fixed number of ‘true’ barcodes, and produced reads by adding a Poisson 
number of errors to each read. Error positions were selected uniformly at random, and 
separate datasets were produced for insertion, deletion, mismatch, and all errors. We also 
varied the barcode abundance distributions between normal, uniform and exponential. 
For each condition we produced 3 separate datasets and evaluated our algorithms’ 
performance on each. As shown in Fig S1, our algorithm is able to identify the error-free 
barcode sequences independent of the number of Poisson errors per read. However we do 
see a dependence on the specific error type: mismatch errors are better tolerated than 
insertion or deletion errors. Additionally we find that the barcode abundance distribution 
strongly affects our ability to detect and error correct barcodes, especially as the error rate 
increasese. 
 We also used our simulations to evaluate how well we could assign reads to error-
corrected barcodes. From each true positive barcode detected from our simulations, we 
computed the fraction of reads that were correctly assigned to its consensus barcode. The 
median value of this parameter is shown in Fig S2, as a function of Poisson error rate, 
and the distribution of this value over all cell barcodes is shown in Fig S3. Here we 
observe a similar trend: whether or not a read is correctly assigned depends on the error 
type, as well as barcode abundance distribution. Once again mismatch errors are better 
tolerated than either insertions or deletions, while exponentially distributed barcode 
abundances are tolerated worse than normally or uniformly distributed barcodes. 
 To evaluate the extent to which indexing a subset of reads affects the ability to 
call barcode clusters, we systematically subsampled the raw data from Macosko et al., 
and ran our software on these datasets. For each subsampled dataset we indexed either 
100,000 or 1,000,000 reads. As seen in Table 1, the number of cells detected is 
essentially independent of either the number of reads in the dataset, and the number of 
reads indexed, showing that indexing ~1m reads is sufficient to error-correct read 
barcodes. Furthermore we point out that with this indexing strategy the runtime to index a 
dataset and detect consensus barcodes is constant and independent of the number of reads 
in the dataset. The runtime to assign reads to consensus barcodes increases linearly with 
the number of reads (Table 1). 
 
Discussion 
 We have shown how a de Bruijn graph formulation of the barcode calling 
problem based on circularization of input sequences is a useful approach to identify and 
error-correct barcode sequences. Our approach simplifies the problem of sequence error 
correction by rephrasing it as a k-mer counting question, and as such is simple and 
relatively fast. Furthermore it does not rely heavily on user-supplied parameters or any 
prior knowledge about the exact nature of the sequencing errors; as such we expect it to 
be applicable to a number of different single-cell barcoding techniques that differ in the 
exact nature of the barcode generation chemistry. We also show that our approach 
produces usable data from real-world datasets, and that our integrated pipeline using 
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kallisto and transcript compatibility counts is an effective approach for rapid and accurate 
analysis of Drop-Seq single-cell RNA-Seq data.  
 We benchmarked our algorithm using an extensive set of simulations that 
systematically varied the error rate per read, the error type, and the abundance of each 
barcode [single-cell] within the dataset. From these simulations we observe that the 
barcode abundance distribution makes a significant difference to performance, with 
normally- and uniformly- distributed barcode abundances being far better tolerated than 
exponentially distributed barcodes. This behavior is expected; with exponentially 
distributed barcode abundances, the inflection point in the CDF of cyclic path weights is 
obscured, making it difficult to distinguish between a true barcode path with low 
abundance, and an error-containing path with relatively high weight. Notably, 
exponentially distributed barcode abundances are not expected (and indeed not observed) 
in real data: the total RNA content from any given single cell in an experiment are 
typically approximately uniformly distributed.  
 These simulations also demonstrated that although our method is tolerant of errors 
when identifying and error-correcting barcode sequences, errors lower its ability to assign 
individual reads to error-corrected consensus sequences. This is not surprising, because 
reads with a large number of errors are unlikely to contain any error-free k-mers that are 
required to assign a read. This effect can be mitigated by using a smaller value of k when 
assigning reads. Simulations also revealed that our algorithm is more tolerant to 
mismatch errors over insertion or deletion errors. We postulate that this is because in the 
barcode de Bruijn graph, reads that contain only mismatches form a cyclic path of the 
correct length, whereas reads containing insertion or deletion errors form paths with 
incorrect length, complicating the cyclic-path search protocol. This effect is most 
pronounced at the error rates that are higher than typical Drop-seq datasets.  
 
Conclusion 
 Single-cell genomics is a dynamic field that encompasses a large and growing 
number of techniques that measure a variety of biological properties. However one 
commonality in these workflows is that experiments mark reads originating from distinct 
cells with single cell barcodes. Correctly identifying and grouping reads by their barcodes 
in the presence of experimental and sequencing errors is an essential first step in any 
single-cell analysis pipeline. The software presented here addresses this universal 
problem, and as such it should be useful for a variety of single cell sequencing based 
genomics experiments. Although we focus here on the specific Drop-seq protocol, there 
are a number of related single-cell experiments that rely on split-pool combinatorial 
synthesis of barcodes (Rosenberg et al., 2017), as well as other massively parallel single-
cell sequencing experiments that measure other genomic and transcriptomic properties 
(Gierahn et al., 2017; Rotem et al., 2015). As error correcting and clustering barcodes is 
central to these assays as well, we believe that these methods will also benefit from our 
software. 
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Example 
The example data set (supplementary data) shows the workflow to identify and split 
barcoded reads from a published Drop-seq dataset [SRR1873277]. This dataset derives 
from a species-mixing experiment, where human and mouse cells were mixed prior to 
single-cell RNA-seq. As such reads grouped by their barcodes should also segregate by 
which species they [pseudo]align with. We can therefore evaluate the performance of 
Sircel by how frequently reads from the two species appear to derive from the same cell. 
 
Methods 
 

Raw sequencing data for Macosko et al. species mixing was obtained from the 
sequence read archive (SRR1873277) and converted to fastq format using SRA-toolkit. 
Subsamples of these datasets were obtained using standard command line tools: 

zcat INFILE.fastq.gz | head –n NUM_READS*4 | gzip > OUTFILE.fastq.gz 
We used this data without any further processing, or read filtering. Sircel was then used 
to identify barcodes and assign reads with the following parameters: k-mer length of 7, 
search breadth of 1000 subgraphs, search depth of 5 paths per subgraph. All results 
presented here were processed with 32 threads.Output from Sircel was then fed, into a 
single-cell analysis pipeline based on kallisto (N. L. Bray et al., 2016)and transcript 
compatibility counts (Ntranos et al., 2016). Our integrated pipeline, as well as ipython 
notebooks to visualize the data is available on Github.  
 Simulations were performed by first randomly generating a 500 ground truth 
barcode sequences of length 12. Each barcode was assigned a relative abundance drawn 
from one of three pre-defined distributions (normal, uniform and exponential). Reads 
were generating reads by selecting a barcode according to the barcode abundance, and 
adding a Poisson number of errors given by user-defined rate. Error type (insertion, 
deletion, mismatch or any) was also varied systematically during this step. Each 
simulation consisted of 100,000 reads generated in this manner. For each condition 
(combination of barcode abundance distribution, Poisson error rate and error type), we 
produced three separate simulations for a total of 180 datasets.  
 These simulated datasets were then fed into Sircel to identify error-free barcodes. 
For each simulation we compared the output of Sircel to the ground-truth barcodes, 
identifying true positives as barcode sequences that were present in both the Sircel output 
and the ground-truth, false positives as barcode sequences that were found in the Sircel 
output but not the ground truth, and false negatives as barcode sequences that were not 
found in the Sircel output but not the ground truth. For each true positive barcode 
identified by Sircel, we additionally evaluated whether the reads assigned to that barcode 
were correctly assigned. Reads that derived from the ground truth barcode were deemed 
correctly assigned, and all other reads were labeled as incorrectly assigned.  
 Ipython notebooks to reproduce this analysis are available on Github. 
 
Algorithm 1. Recursively identify cycles of fixed in graph 

1. Initialize recursion: 
a. Pick a starting edge 

i. Edge links node and neighbor 
1. Set the current path to the starting edge 
2. Record the identity of the starting node  
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2. Recursion: 
a. Get all outgoing edges that emanate from neighbor 
b. Sort outgoing edges by edge weight (descending) 
c. For each outgoing edge 

i. Extend the current path by this edge 
ii. Continue recursion 

3. Terminate recursion: 
a. If the current path length is longer than the barcode length 

i. If the path start node and end node are the same, the path is a cycle 
1. Return True 

ii. Else return False 
 
Algorithm 2. Identify barcodes and assign reads 

1. Index k-mers 
a. Build a look-up table associating each k-mer with a set of reads that 

contains that k-mer 
2. Identify barcodes 

a. Pick a starting edge (k-mer) in order by edge weight 
b. Build a de Bruijn sub-graph. This is a directed, weighted, de Bruijn graph 

containing only the subset of reads that contain the starting k-mer 
i. Building only a subgraph greatly speeds up graph traversal 

c. Identify high-weight cycles 
i. See Algorithm 1. 

ii. Remove this cycle from the subgraph by decrementing the weights 
of all edges in this subgraph by the capacity of this path 

d. Repeat c to find other paths that originate from this node 
e. Repeat a–e to find paths that start at a different node 

3. Merge similar paths by Hamming distance 
4. Threshold paths to identify true barcodes 

a. Identify an inflection point in the cumulative distribution of path lengths 
5. Assign reads 

a. Assign each read to the path with which it shares the most k-mers 
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Number of reads in 
dataset 

Number of reads 
indexed 

Number of cells 
detected 

Time 
 

1,000,000 100,000 562 6m 39s 

1,000,000 1,000,000 582 14m 57s 

10,000,000 100,000 575 42m 88s 

10,000,000 1,000,000 584 48m 55s 

100,000,000 100,000 574 154m 11s 

100,000,000 1,000,000 585 207m 57s 

 
Table 1. Run time for downsampled Macosko et al., datasets 
 
Figure 1. A strategy to use k-mer counting to identify sequence barcodes 
 

A. Circularizing barcodes ensures robustness against single mismatches. An example 
sequence ‘BARCODE’ contains an error (highlighted in red). When the barcode 
sequence is short relative to k, all k-mers from this sequence will contain the 
mutated base. Circularizing the sequence (bottom) ensures that there will be some 
error-free k-mers from a sequence independent of the position of the error. 
 

B. An example circular k-mer graph containing one barcode. Error-containing reads 
were simulated from a ground-truth barcode. Reads were circularized and k-mers 
were counted. The resultant k-mer graph is plotted here. Nodes in this graph are 
represented as gray dots, and edges as blue lines. Edges weights are represented 
by shading (dark = high edge weight).  Despite a fairly high rate of error (Poisson 
3 errors per 12 nucleotide barcode), the true barcode path is visually discernable 
with a modest number of reads. 

 
C. An example circular k-mer graph containing three barcodes. Same as above. 

 
Figure 2. Identifying barcodes and splitting reads from Macosko et al., species 
mixing experiment 
 

A. Circular paths were identified in the circular barcode k-mer graph from a 
published Drop-seq dataset. The cumulative distribution of circular path weights 
(shown here) clearly shows an inflection point. Paths with weight higher than this 
inflection point are deemed to be true barcodes. 
 

B. This inflection point can be identified as a local maximum in the first derivative 
of the cumulative distribution. A Savitskiy Golay filter facilitates in this 
identification by smoothing the data.  

 
C. Reads were grouped into cells by assigning them to to thresholded paths based on 

k-mer compatibility alone. This assignment results in a flat distribution in the 
number of pseudoalignments per cell. 
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D. Reads that were split based on barcode k-mer compatibility alone also segregate 
by their number of pseudoalignments to different transcriptiomes. This indicates 
that assigning reads based on k-mer compatibility produces distinct and 
biologically relevant groupings. 

 
Figure S1. Identifying consensus barcodes is robust to a high number of errors per 
barcoded, but sensitive to the distribution of barcode abundances 
 
We performed several simulations with error-prone reads deriving from 500 randomly 
generated barcode sequences.  The number of errors per read, the type of errors, and the 
distribution of barcode abundances were all systematically varied. Performance was 
evaluated by quantifying the number of true positive consensus barcodes (blue), false 
positive barcodes (red) and false negative barcodes (yellow). Data shown here represents 
5 separate simulations. 
 

A. Normally distributed barcode abundances. 
B. Uniformly distributed barcode abundances. 
C. Exponentially distributed barcode abundances 

 
Figure S2. Assigning reads to consensus barcodes by k-mer compatibility depends 
on errors rate and barcode abundance distribution  
 
We performed several simulations with error-prone reads deriving from 500 randomly 
generated barcode sequences.  The number of errors per read, the type of errors, and the 
distribution of barcode abundances were all systematically varied. The fraction of reads 
that were correctly assigned in each cell was quantified, and the median value for this 
parameter in each detected cell is shown here, as a function of Poisson error rate. Data 
shown here represents 5 separate simulations.  
 

A. Normally distributed barcode abundances. 
B. Uniformly distributed barcode abundances. 
C. Exponentially distributed barcode abundances 

 
Figure S3. Assigning reads to consensus barcodes by k-mer compatibility depends 
on errors rate and barcode abundance distribution  
 
We performed several simulations with error-prone reads deriving from 500 randomly 
generated barcode sequences.  The number of errors per read, the type of errors, and the 
distribution of barcode abundances were all systematically varied. The fraction of reads 
that were correctly assigned in each cell was quantified, and the distribution of this value 
over all cells is shown here. Data shown here represents 5 separate simulations. 
 

A. Normally distributed barcode abundances with 1 error per read 
B. Uniformly distributed barcode abundances with 1 error per read 
C. Exponentially distributed barcode abundances with 1 error per read 
D. Normally distributed barcode abundances with 2 errors per read 
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E. Uniformly distributed barcode abundances with 2 errors per read 
F. Exponentially distributed barcode abundances with 2 errors per read 

 
Figure S4. Circularized de Bruijn graph from real data.  
A de Bruijn subgraph was prepared from circularized reads that could be assigned 
assigned to 10 randomly selected barcodes from the Macosko et al dataset is depicted 
here. Line transparency is proportional to the weight of each edge.  
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