
Barcode identification for single cell genomics
Akshay Tambe1 and Lior Pachter2,3

1. Department of Molecular and Cell Biology, University of California Berkeley,
Berkeley CA 94720 USA

2. Departments of Biology and Computing & Mathematical Sciences, California
Institute of Technology, Pasadena CA 91125 USA

3. Correspondence: lpachter@caltech.edu

Abstract

Single-cell sequencing experiments use short DNA barcode ‘tags’ to identify
reads that originate from the same cell. In order to recover single-cell information from
such experiments, reads must be grouped based on their barcode tag, a crucial processing
step that precedes other computations. However, this step can be difficult due to high
rates of mismatch and deletion errors that can afflict barcodes. Here we present an
approach to identify and error-correct barcodes by traversing the de Bruijn graph of
circularized barcode k-mers. This allows for assignment of reads to consensus
fingerprints constructed from k-mers, and we show that for single-cell RNA-Seq this
improves the recovery of accurate single-cell transcriptome estimates.

Availability and implementation
Freely available source code is available at Github: https://github.com/pachterlab/Sircel
This Github repository also contains iPython notebooks to reproduce all analysis
presented in this paper.

Introduction

Tagging of sequencing reads with short DNA barcodes is a common experimental
practice that enables a pooled sequencing library to be separated into biologically
meaningful partitions. This technique is in the cornerstone of many single-cell
sequencing experiments, where reads originating from individual cells are tagged with
cell-specific barcodes; as such, the first step in any single-cell sequencing experiment
involves separating reads by barcode to recover single-cell profiles (Svensson et al.,
2017; Trapnell, 2015); (Klein et al., 2015). For example, in the Drop-Seq protocol, which
is a popular microfluidic-based single-cell experimental platform, DNA barcodes are
synthesized on a solid bead support, using split-and-pool DNA synthesis (Macosko et al.,
2015). Similar split-and-pool barcoding strategies are used in other single-cell sequencing
assays such as Seq-Well (Gierahn et al., 2017) and Split-seq (Rosenberg et al., 2017).
One consequence of this synthetic technique is that deletion errors are extremely
prevalent; by some estimates 25% of all barcode sequences observed contain at least one
deletion (Macosko et al., 2015). Ignoring such errors can therefore dramatically lower the
number of usable reads in a dataset, while incorrectly grouping reads together can
confound single cell analysis.
 Current approach to “barcode calling”, the process of grouping reads together by
barcode, use simple heuristics to first identify barcodes that are likely to be uncorrupted,
and then “error correct” remaining barcodes to increase yields. However the complex

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/136242doi: bioRxiv preprint

https://doi.org/10.1101/136242
http://creativecommons.org/licenses/by-nc/4.0/

nature of errors, that unlike sequencing based error also include deletions, can lead to
large number of discarded reads (reads that could not be assigned to a barcode) (Macosko
et al., 2015). Additionally, some current approaches requires the approximate number of
cells in the experiment be known beforehand, and in some experimental contexts such
information is not easily obtained.

The problem of identifying true barcodes from among many sequences corrupted
by mismatch and deletion errors seemingly requires a multiple sequence alignment, from
which errors can be detected and corrected (Zorita, Cuscó, & Filion, 2015). However
unlike standard biological sequence alignment settings, the single-cell barcode
identification problem requires analysis of millions, if not billions of different sequences.
On the other hand, the problem is constrained in that the sequences are short (barcodes
are typically 10-16 bp long) and the length of each barcode is the same and known.

To circumvent the need for complete (and intractable) multiple sequence
alignment, we rely on a k-mer based approach that is both fast and robust to error. Our
method makes use of the idea of circularizing the sequences that are to be error corrected,
and rather than pursuing a multiple sequence alignment approach, we instead borrow
ideas from genome assembly. However unlike assembly methods developed for
reconstructing circular genomes (Hunt, 2015) our use of circularization is merely a
method for adding robustness to the k-mer fingerprinting of barcodes.

Our methods are implemented in software called SIRCEL whose input is a list of
reads and which outputs the number and sequences of cell-barcodes from error-
containing datasets in an unbiased manner. Our implementation is robust to insertion,
deletion, and mismatch errors, and requires a minimal number of user-inputted
parameters. The output is compatible with downstream single-cell analysis tools such as
kallisto. (N. L. Bray, Pimentel, Melsted, & Pachter, 2016; Ntranos, Kamath, Zhang,
Pachter, & Tse, 2016)

Methods and algorithms
 K-mer counting is a fast and well-established technique that has previously been
used to dramatically speed up the assignment of reads to transcripts for RNA-seq (N. L.
Bray et al., 2016; Patro, Mount, & Kingsford, 2014) and metagenomics(Schaeffer,
Pimentel, Bray, Mellsted, & Pachter, 2015) and as such might be applicable to barcode
calling. We reasoned that by counting k-mers we could rapidly identify error-free
subsequences within the context of a larger error-containing read. (Li, 2015; Skums et al.,
2012) The intuition behind our approach lies in the fact that while many copies of the
same barcode may contain a different profile of errors, pairs of such barcodes may share
some overlapping subsequence that is error free. However as the barcode errors are
expected to be random, it is unlikely that several reads will share the exact same error
pattern. As such, frequently occurring k-mers would arise from error-free regions of
barcodes, while no overlap would be expected from error-prone k-mers. Similar
reasoning has been previously used to rapidly detect and reject error-containing reads
from RNA-seq and DNA assembly (Liu, Schroder, & Schmidt, 2013; Skums et al.,
2012).
 One difficulty associated with error-correcting barcodes using this technique lies
in the fact that barcodes are typically very short: for example Drop-Seq barcodes are 12
base pairs long. Conversely in order for a k-mer counting approach to be feasible we

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/136242doi: bioRxiv preprint

https://doi.org/10.1101/136242
http://creativecommons.org/licenses/by-nc/4.0/

must pick a moderately large value for k, typically k = 9. As a result there are many
positions on a barcode where a single error would ensure that none of its k-mers are
shared with an error-free barcode. To circumvent this problem we circularize the barcode
sequences before counting k-mers; this ensures that barcodes containing a single
mismatch error still share k-mers with the error-free sequence, independent of where the
error occurred within the barcode (Fig 1A). Furthermore this approach allows for
addressing the possibility of insertion or deletion errors. When circularizing the barcode
sequence, we can first either extend or truncate the sequence by one nucleotide. Doing
this provides the same robustness to positional errors, but additionally allows for
robustness to insertion or deletion errors. As every read contains unknown mutation
type(s), we perform all three circularization operations before counting k-mers. Thus, we
obtain a set of error-free subsequences that derive from the ‘true’ barcodes. This
procedure guarantees that all reads with either zero or one error contribute some error-
free k-mers, while reads with two or more errors sometimes contribute error-free k-mers,
depending on the spacing between the errors.
 We use these k-mer counts to identify and error-correct complete barcodes. To do
this we build and traverse a directed, weighted de Bruijn graph (Compeau, Pevzner, &
Tesler, 2011). In this graph, nodes represent subsequences of length k - 1, and an edge
represents two nodes that directly adjacent to each other in at least one k-mer. The weight
of these edges relates to how many times each edge (k-mer) was observed in the entire
dataset. Additionally as the barcode portions of these reads are stranded, these edges are
directed by the order of their appearance in the read (5’ to 3’). In this graph, which
originates from circularized barcode sequences, a cyclic path of length l represents a
possible barcode sequence of the same length. We define the capacity of a path to be the
weight of the lowest edge within that path. Thus, high-weight paths represent possible
barcodes that contain frequently observed k-mers, while low-weight paths likely
represent cycles that formed spuriously. This is depicted in Fig 1B and 1C. We
emphasize here that we do not need any single read to contain all k-mers in a high-weight
path / error-corrected barcode; it is the overlap of many k-mers that likely originate from
a number of reads that gives rise to such a path.

To rapidly identify cyclic paths from this graph we use a greedy depth-first
recursive search (Algorithm 1). Briefly, this algorithm works by first (randomly) picking
a node from the graph to initialize the search. Each of the outgoing edges that connect to
this node is checked, in descending order of the edge weights. This step is repeated for
each of the children nodes, for a fixed number of steps given by the length of the barcode
(a user-suppled parameter). If at the end of these steps the procedure returns to the same
node where it began, a cycle has been found. This is described in some more detail in
Algorithm 1.

This approach identifies several cyclic paths from the barcode de Bruijn graph,
and the depth of this search is determined by user-supplied parameters. As only a subset
of these paths represents a true error-corrected barcode sequence, we filter the paths
based on their path weight. We hypothesized that paths representing a true error-
corrected barcodes would have a higher capacity than paths that contained errors, or paths
formed by spurious k-mer overlap between [barcode-wise] unrelated sequences. To
verify this hypothesis we plotted the cumulative distribution of path capacities, and
observed a clear inflection point, corresponding to a subset of paths that had a

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/136242doi: bioRxiv preprint

https://doi.org/10.1101/136242
http://creativecommons.org/licenses/by-nc/4.0/

significantly higher capacity than the rest of the population. We computationally
identified this inflection point as a local maximum in the first derivative of the
cumulative distribution function. This was facilitated by first smoothing the CDF.

Paths are then thresholded at this inflection point, and paths with capacities higher
than the threshold value are deemed error-corrected barcodes, while the rest of the paths
are rejected. We then assign each read in our dataset to one of the error-corrected
barcodes based on k-mer compatibility. in other words, a read is assigned to the
consensus barcode with which it shares the most k-mers. At this point we can vary the
value of k. Preparing the barcode de Bruijn graph with a larger k than that used to
assign reads enables us to call error-free barcodes with the higher stringency, while
assigning a large number of reads (Algorithm 2).
 Finally, to improve performance we make a small modification to the protocol
outlined above. Rather than building a de Bruijn graph of the entire barcode dataset, we
instead build a new subraph for each new node we initialize the search with. This
subgraph contains all nodes that are indirectly connected (within a fixed number of steps)
to the node at which we initialize the search. This substantially simplifies the search
procedure while leaving performance unaffected. To rapidly build these subgraphs we
prepare a k-mer index of the input dataset, which maps a k-mer to a list of reads that
contains that k-mer. When performing a search from a random start node, we query the k-
mer index for the start node and prepare a de Bruijn graph from only the subset of reads
returned by the query.

As this index can be quite large (for Drop-seq, which uses 12mer barcodes, each
read produces 36 circularized and truncated / extended k-mers to be indexed), which
results in an extremely large index. We further simplify this protocol by preparing the
index from a subset of the reads. This approximation also does not affect performance, as
long as the subset is ‘representative’ of the entire dataset. The exact parameters for this
depend on the sequencing depth, number of barcodes, error rate and likely other
parameters; however in our tests simply indexing ~1m reads is sufficient (Table 1).

Results
 We validated our approach by attempting to identify and error-correct barcode
sequences in both real and simulated datasets. We re-analyzed a previously published
species-mixing Drop-Seq experiment published by Macosko et al. This experiment
involved single-cell sequencing of a mixture of human and mouse cells, and as such it
served as a useful control for barcode calling: if the calling performs well, cells should
only contain human, or mouse reads but not both. We used our algorithm on this data and
as expected found a clear inflection point in the cumulative distribution of barcode paths.
We could readily identify this inflection by its smoothed first derivative, and thresholding
the paths at this inflection point yielded 582 barcodes, each of which had accounted for
approximately the same number of reads (Fig. 2A and 2B). These values were consistent
with previously reported values from the same dataset. We then quantified single-cell
expression profiles using combined human / mouse transcriptome, once again using an
algorithm derived from k-mer counting [kallisto]. As seen in Fig. 2C, ‘cells’ that consist
of reads clustered by similar barcode k-mers also exhibit distinct expression profiles. In
nearly every case cells appear to consist of reads deriving entirely from one species (Fig.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/136242doi: bioRxiv preprint

https://doi.org/10.1101/136242
http://creativecommons.org/licenses/by-nc/4.0/

2D). This result indicates that our k-mer counting approach can be used to group reads
into single-cell datasets.

To benchmark our algorithms’ performance and establish it’s performance limits,
we performed a large number of simulations, under a wide variety of scenarios. We
produced a fixed number of ‘true’ barcodes, and produced reads by adding a Poisson
number of errors to each read. Error positions were selected uniformly at random, and
separate datasets were produced for insertion, deletion, mismatch, and all errors. We also
varied the barcode abundance distributions between normal, uniform and exponential.
For each condition we produced 3 separate datasets and evaluated our algorithms’
performance on each. As shown in Fig S1, our algorithm is able to identify the error-free
barcode sequences independent of the number of Poisson errors per read. However we do
see a dependence on the specific error type: mismatch errors are better tolerated than
insertion or deletion errors. Additionally we find that the barcode abundance distribution
strongly affects our ability to detect and error correct barcodes, especially as the error rate
increasese.
 We also used our simulations to evaluate how well we could assign reads to error-
corrected barcodes. From each true positive barcode detected from our simulations, we
computed the fraction of reads that were correctly assigned to its consensus barcode. The
median value of this parameter is shown in Fig S2, as a function of Poisson error rate,
and the distribution of this value over all cell barcodes is shown in Fig S3. Here we
observe a similar trend: whether or not a read is correctly assigned depends on the error
type, as well as barcode abundance distribution. Once again mismatch errors are better
tolerated than either insertions or deletions, while exponentially distributed barcode
abundances are tolerated worse than normally or uniformly distributed barcodes.
 To evaluate the extent to which indexing a subset of reads affects the ability to
call barcode clusters, we systematically subsampled the raw data from Macosko et al.,
and ran our software on these datasets. For each subsampled dataset we indexed either
100,000 or 1,000,000 reads. As seen in Table 1, the number of cells detected is
essentially independent of either the number of reads in the dataset, and the number of
reads indexed, showing that indexing ~1m reads is sufficient to error-correct read
barcodes. Furthermore we point out that with this indexing strategy the runtime to index a
dataset and detect consensus barcodes is constant and independent of the number of reads
in the dataset. The runtime to assign reads to consensus barcodes increases linearly with
the number of reads (Table 1).

Discussion
 We have shown how a de Bruijn graph formulation of the barcode calling
problem based on circularization of input sequences is a useful approach to identify and
error-correct barcode sequences. Our approach simplifies the problem of sequence error
correction by rephrasing it as a k-mer counting question, and as such is simple and
relatively fast. Furthermore it does not rely heavily on user-supplied parameters or any
prior knowledge about the exact nature of the sequencing errors; as such we expect it to
be applicable to a number of different single-cell barcoding techniques that differ in the
exact nature of the barcode generation chemistry. We also show that our approach
produces usable data from real-world datasets, and that our integrated pipeline using

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/136242doi: bioRxiv preprint

https://doi.org/10.1101/136242
http://creativecommons.org/licenses/by-nc/4.0/

kallisto and transcript compatibility counts is an effective approach for rapid and accurate
analysis of Drop-Seq single-cell RNA-Seq data.
 We benchmarked our algorithm using an extensive set of simulations that
systematically varied the error rate per read, the error type, and the abundance of each
barcode [single-cell] within the dataset. From these simulations we observe that the
barcode abundance distribution makes a significant difference to performance, with
normally- and uniformly- distributed barcode abundances being far better tolerated than
exponentially distributed barcodes. This behavior is expected; with exponentially
distributed barcode abundances, the inflection point in the CDF of cyclic path weights is
obscured, making it difficult to distinguish between a true barcode path with low
abundance, and an error-containing path with relatively high weight. Notably,
exponentially distributed barcode abundances are not expected (and indeed not observed)
in real data: the total RNA content from any given single cell in an experiment are
typically approximately uniformly distributed.
 These simulations also demonstrated that although our method is tolerant of errors
when identifying and error-correcting barcode sequences, errors lower its ability to assign
individual reads to error-corrected consensus sequences. This is not surprising, because
reads with a large number of errors are unlikely to contain any error-free k-mers that are
required to assign a read. This effect can be mitigated by using a smaller value of k when
assigning reads. Simulations also revealed that our algorithm is more tolerant to
mismatch errors over insertion or deletion errors. We postulate that this is because in the
barcode de Bruijn graph, reads that contain only mismatches form a cyclic path of the
correct length, whereas reads containing insertion or deletion errors form paths with
incorrect length, complicating the cyclic-path search protocol. This effect is most
pronounced at the error rates that are higher than typical Drop-seq datasets.

Conclusion
 Single-cell genomics is a dynamic field that encompasses a large and growing
number of techniques that measure a variety of biological properties. However one
commonality in these workflows is that experiments mark reads originating from distinct
cells with single cell barcodes. Correctly identifying and grouping reads by their barcodes
in the presence of experimental and sequencing errors is an essential first step in any
single-cell analysis pipeline. The software presented here addresses this universal
problem, and as such it should be useful for a variety of single cell sequencing based
genomics experiments. Although we focus here on the specific Drop-seq protocol, there
are a number of related single-cell experiments that rely on split-pool combinatorial
synthesis of barcodes (Rosenberg et al., 2017), as well as other massively parallel single-
cell sequencing experiments that measure other genomic and transcriptomic properties
(Gierahn et al., 2017; Rotem et al., 2015). As error correcting and clustering barcodes is
central to these assays as well, we believe that these methods will also benefit from our
software.

Acknowledgements
We thank Jase Gehring and Vasilis Ntranos for helpful comments and feedback during
the development of the method.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/136242doi: bioRxiv preprint

https://doi.org/10.1101/136242
http://creativecommons.org/licenses/by-nc/4.0/

Example
The example data set (supplementary data) shows the workflow to identify and split
barcoded reads from a published Drop-seq dataset [SRR1873277]. This dataset derives
from a species-mixing experiment, where human and mouse cells were mixed prior to
single-cell RNA-seq. As such reads grouped by their barcodes should also segregate by
which species they [pseudo]align with. We can therefore evaluate the performance of
Sircel by how frequently reads from the two species appear to derive from the same cell.

Methods

Raw sequencing data for Macosko et al. species mixing was obtained from the
sequence read archive (SRR1873277) and converted to fastq format using SRA-toolkit.
Subsamples of these datasets were obtained using standard command line tools:

zcat INFILE.fastq.gz | head –n NUM_READS*4 | gzip > OUTFILE.fastq.gz
We used this data without any further processing, or read filtering. Sircel was then used
to identify barcodes and assign reads with the following parameters: k-mer length of 7,
search breadth of 1000 subgraphs, search depth of 5 paths per subgraph. All results
presented here were processed with 32 threads.Output from Sircel was then fed, into a
single-cell analysis pipeline based on kallisto (N. L. Bray et al., 2016)and transcript
compatibility counts (Ntranos et al., 2016). Our integrated pipeline, as well as ipython
notebooks to visualize the data is available on Github.
 Simulations were performed by first randomly generating a 500 ground truth
barcode sequences of length 12. Each barcode was assigned a relative abundance drawn
from one of three pre-defined distributions (normal, uniform and exponential). Reads
were generating reads by selecting a barcode according to the barcode abundance, and
adding a Poisson number of errors given by user-defined rate. Error type (insertion,
deletion, mismatch or any) was also varied systematically during this step. Each
simulation consisted of 100,000 reads generated in this manner. For each condition
(combination of barcode abundance distribution, Poisson error rate and error type), we
produced three separate simulations for a total of 180 datasets.
 These simulated datasets were then fed into Sircel to identify error-free barcodes.
For each simulation we compared the output of Sircel to the ground-truth barcodes,
identifying true positives as barcode sequences that were present in both the Sircel output
and the ground-truth, false positives as barcode sequences that were found in the Sircel
output but not the ground truth, and false negatives as barcode sequences that were not
found in the Sircel output but not the ground truth. For each true positive barcode
identified by Sircel, we additionally evaluated whether the reads assigned to that barcode
were correctly assigned. Reads that derived from the ground truth barcode were deemed
correctly assigned, and all other reads were labeled as incorrectly assigned.
 Ipython notebooks to reproduce this analysis are available on Github.

Algorithm 1. Recursively identify cycles of fixed in graph

1. Initialize recursion:
a. Pick a starting edge

i. Edge links node and neighbor
1. Set the current path to the starting edge
2. Record the identity of the starting node

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/136242doi: bioRxiv preprint

https://doi.org/10.1101/136242
http://creativecommons.org/licenses/by-nc/4.0/

2. Recursion:
a. Get all outgoing edges that emanate from neighbor
b. Sort outgoing edges by edge weight (descending)
c. For each outgoing edge

i. Extend the current path by this edge
ii. Continue recursion

3. Terminate recursion:
a. If the current path length is longer than the barcode length

i. If the path start node and end node are the same, the path is a cycle
1. Return True

ii. Else return False

Algorithm 2. Identify barcodes and assign reads

1. Index k-mers
a. Build a look-up table associating each k-mer with a set of reads that

contains that k-mer
2. Identify barcodes

a. Pick a starting edge (k-mer) in order by edge weight
b. Build a de Bruijn sub-graph. This is a directed, weighted, de Bruijn graph

containing only the subset of reads that contain the starting k-mer
i. Building only a subgraph greatly speeds up graph traversal

c. Identify high-weight cycles
i. See Algorithm 1.

ii. Remove this cycle from the subgraph by decrementing the weights
of all edges in this subgraph by the capacity of this path

d. Repeat c to find other paths that originate from this node
e. Repeat a–e to find paths that start at a different node

3. Merge similar paths by Hamming distance
4. Threshold paths to identify true barcodes

a. Identify an inflection point in the cumulative distribution of path lengths
5. Assign reads

a. Assign each read to the path with which it shares the most k-mers

Bibliography

Bray, N. L., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal probabilistic

RNA-seq quantification. Nature Biotechnology, 34(5), 525–527.
http://doi.org/10.1038/nbt.3519

Compeau, P. E. C., Pevzner, P. A., & Tesler, G. (2011). How to apply de Bruijn graphs to
genome assembly. Nature Biotechnology, 29(11), 987–991.
http://doi.org/10.1038/nbt.2023

Gierahn, T. M., Wadsworth, M. H., Hughes, T. K., Bryson, B. D., Butler, A., Satija, R., et
al. (2017). Seq-Well: portable, low-cost RNA sequencing of single cells at high
throughput. Nature Methods, 14(4), 395–398. http://doi.org/10.1038/nmeth.4179

Hunt, M. (2015). Circlator: automated circularization of genome assemblies using long

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/136242doi: bioRxiv preprint

https://doi.org/10.1101/136242
http://creativecommons.org/licenses/by-nc/4.0/

sequencing reads. Genome Biology, 1–10. http://doi.org/10.1186/s13059-015-0849-0
Klein, A. M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., et al. (2015).

Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem
Cells. Cell, 161(5), 1187–1201. http://doi.org/10.1016/j.cell.2015.04.044

Li, H. (2015). BFC: correcting Illumina sequencing errors. Bioinformatics, 1–3.
http://doi.org/10.1093/bioinformatics/btv290/-/DC1

Liu, Y., Schroder, J., & Schmidt, B. (2013). Musket: a multistage k-mer spectrum-based
error corrector for Illumina sequence data. Bioinformatics, 29(3), 308–315.
http://doi.org/10.1093/bioinformatics/bts690

Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., et al. (2015).
Highly Parallel Genome-wide Expression Profiling of Individual Cells Using
Nanoliter Droplets. Cell, 161(5), 1202–1214.
http://doi.org/10.1016/j.cell.2015.05.002

Ntranos, V., Kamath, G., Zhang, J. M., Pachter, L., & Tse, D. N. (2016). Fast and
accurate single-cell RNA-seq analysis by clustering of transcript-compatibility
counts. Genome Biology, 1–14. http://doi.org/10.1186/s13059-016-0970-8

Patro, R., Mount, S. M., & Kingsford, C. (2014). Sailfish enables alignment-free isoform
quantification from RNA-seq reads using lightweight algorithms. Nature
Biotechnology, 32(5), 462–464. http://doi.org/10.1038/nbt.2862

Rosenberg, A. B., Roco, C., Muscat, R. A., Kuchina, A., Mukherjee, S., Chen, W., et al.
(2017). Scaling single cell transcriptomics through split pool barcoding, 1–13.
http://doi.org/10.1101/105163

Rotem, A., Ram, O., Shoresh, N., Sperling, R. A., Goren, A., Weitz, D. A., & Bernstein,
B. E. (2015). Single-cell ChIP-seq reveals cell subpopulations defined by chromatin
state. Nature Biotechnology, 1–11. http://doi.org/10.1038/nbt.3383

Schaeffer, L., Pimentel, H., Bray, N., Mellsted, P., & Pachter, L. (2015).
Pseudoalignment for metagenomic read assignment. Arxiv Preprint, 1–13.

Skums, P., Dimitrova, Z., Campo, D. S., Vaughan, G., Rossi, L., Forbi, J. C., et al.
(2012). Efficient error correction for next-generation sequencing of viral amplicons.
BMC Bioinformatics, 1–13. http://doi.org/10.1186/1471-2105-13-S10-S6

Svensson, V., Natarajan, K. N., Ly, L.-H., Miragaia, R. J., Labalette, C., Macaulay, I. C.,
et al. (2017). Power analysis of single-cell RNA-sequencing experiments. Nature
Methods, 14(4), 381–387. http://doi.org/10.1038/nmeth.4220

Trapnell, C. (2015). Defining cell types and states with single-cell genomics. Genome
Research, 25(10), 1491–1498. http://doi.org/10.1101/gr.190595.115

Zorita, E., Cuscó, P., & Filion, G. J. (2015). Starcode: sequence clustering based on all-
pairs search. Bioinformatics, 31(12), 1913–1919.
http://doi.org/10.1093/bioinformatics/btv053

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/136242doi: bioRxiv preprint

https://doi.org/10.1101/136242
http://creativecommons.org/licenses/by-nc/4.0/

Number of reads in
dataset

Number of reads
indexed

Number of cells
detected

Time

1,000,000 100,000 562 6m 39s

1,000,000 1,000,000 582 14m 57s

10,000,000 100,000 575 42m 88s

10,000,000 1,000,000 584 48m 55s

100,000,000 100,000 574 154m 11s

100,000,000 1,000,000 585 207m 57s

Table 1. Run time for downsampled Macosko et al., datasets

Figure 1. A strategy to use k-mer counting to identify sequence barcodes

A. Circularizing barcodes ensures robustness against single mismatches. An example
sequence ‘BARCODE’ contains an error (highlighted in red). When the barcode
sequence is short relative to k, all k-mers from this sequence will contain the
mutated base. Circularizing the sequence (bottom) ensures that there will be some
error-free k-mers from a sequence independent of the position of the error.

B. An example circular k-mer graph containing one barcode. Error-containing reads
were simulated from a ground-truth barcode. Reads were circularized and k-mers
were counted. The resultant k-mer graph is plotted here. Nodes in this graph are
represented as gray dots, and edges as blue lines. Edges weights are represented
by shading (dark = high edge weight). Despite a fairly high rate of error (Poisson
3 errors per 12 nucleotide barcode), the true barcode path is visually discernable
with a modest number of reads.

C. An example circular k-mer graph containing three barcodes. Same as above.

Figure 2. Identifying barcodes and splitting reads from Macosko et al., species
mixing experiment

A. Circular paths were identified in the circular barcode k-mer graph from a
published Drop-seq dataset. The cumulative distribution of circular path weights
(shown here) clearly shows an inflection point. Paths with weight higher than this
inflection point are deemed to be true barcodes.

B. This inflection point can be identified as a local maximum in the first derivative
of the cumulative distribution. A Savitskiy Golay filter facilitates in this
identification by smoothing the data.

C. Reads were grouped into cells by assigning them to to thresholded paths based on

k-mer compatibility alone. This assignment results in a flat distribution in the
number of pseudoalignments per cell.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/136242doi: bioRxiv preprint

https://doi.org/10.1101/136242
http://creativecommons.org/licenses/by-nc/4.0/

D. Reads that were split based on barcode k-mer compatibility alone also segregate
by their number of pseudoalignments to different transcriptiomes. This indicates
that assigning reads based on k-mer compatibility produces distinct and
biologically relevant groupings.

Figure S1. Identifying consensus barcodes is robust to a high number of errors per
barcoded, but sensitive to the distribution of barcode abundances

We performed several simulations with error-prone reads deriving from 500 randomly
generated barcode sequences. The number of errors per read, the type of errors, and the
distribution of barcode abundances were all systematically varied. Performance was
evaluated by quantifying the number of true positive consensus barcodes (blue), false
positive barcodes (red) and false negative barcodes (yellow). Data shown here represents
5 separate simulations.

A. Normally distributed barcode abundances.
B. Uniformly distributed barcode abundances.
C. Exponentially distributed barcode abundances

Figure S2. Assigning reads to consensus barcodes by k-mer compatibility depends
on errors rate and barcode abundance distribution

We performed several simulations with error-prone reads deriving from 500 randomly
generated barcode sequences. The number of errors per read, the type of errors, and the
distribution of barcode abundances were all systematically varied. The fraction of reads
that were correctly assigned in each cell was quantified, and the median value for this
parameter in each detected cell is shown here, as a function of Poisson error rate. Data
shown here represents 5 separate simulations.

A. Normally distributed barcode abundances.
B. Uniformly distributed barcode abundances.
C. Exponentially distributed barcode abundances

Figure S3. Assigning reads to consensus barcodes by k-mer compatibility depends
on errors rate and barcode abundance distribution

We performed several simulations with error-prone reads deriving from 500 randomly
generated barcode sequences. The number of errors per read, the type of errors, and the
distribution of barcode abundances were all systematically varied. The fraction of reads
that were correctly assigned in each cell was quantified, and the distribution of this value
over all cells is shown here. Data shown here represents 5 separate simulations.

A. Normally distributed barcode abundances with 1 error per read
B. Uniformly distributed barcode abundances with 1 error per read
C. Exponentially distributed barcode abundances with 1 error per read
D. Normally distributed barcode abundances with 2 errors per read

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/136242doi: bioRxiv preprint

https://doi.org/10.1101/136242
http://creativecommons.org/licenses/by-nc/4.0/

E. Uniformly distributed barcode abundances with 2 errors per read
F. Exponentially distributed barcode abundances with 2 errors per read

Figure S4. Circularized de Bruijn graph from real data.
A de Bruijn subgraph was prepared from circularized reads that could be assigned
assigned to 10 randomly selected barcodes from the Macosko et al dataset is depicted
here. Line transparency is proportional to the weight of each edge.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/136242doi: bioRxiv preprint

https://doi.org/10.1101/136242
http://creativecommons.org/licenses/by-nc/4.0/

BARCODEBAR
BARC
 ARCO
 RCOD
 CODE
 ODEB
 DEBA
 EBAR

BARCODE
BARC
 ARCO
 RCOD
 CODE

A. B. C.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/136242doi: bioRxiv preprint

https://doi.org/10.1101/136242
http://creativecommons.org/licenses/by-nc/4.0/

A. B.

C. D.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/136242doi: bioRxiv preprint

https://doi.org/10.1101/136242
http://creativecommons.org/licenses/by-nc/4.0/

