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SUMMARY	
We	previously	piloted	the	concept	of	a	Connectivity	Map	(CMap),	whereby	genes,	drugs	and	disease	states	are	
connected	by	virtue	of	common	gene-expression	signatures.	Here,	we	report	more	than	a	1,000-fold	scale-up	
of	the	CMap	as	part	of	the	NIH	LINCS	Consortium,	made	possible	by	a	new,	low-cost,	high	throughput	reduced	
representation	expression	profiling	method	that	we	term	L1000.	We	show	that	L1000	is	highly	reproducible,	
comparable	to	RNA	sequencing,	and	suitable	for	computational	 inference	of	the	expression	 levels	of	81%	of	
non-measured	transcripts.	We	further	show	that	the	expanded	CMap	can	be	used	to	discover	mechanism	of	
action	of	 small	molecules,	 functionally	annotate	genetic	variants	of	disease	genes,	and	 inform	clinical	 trials.	
The	1.3	million	L1000	profiles	described	here,	as	well	as	tools	for	their	analysis,	are	available	at	https://clue.io.	
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HIGHLIGHTS	

● A	new	gene	expression	profiling	method,	L1000,	dramatically	lowers	cost	
● The	 Connectivity	 Map	 database	 now	 includes	 1.3	 million	 publicly	 accessible	 L1000	 perturbational	

profiles	
● This	 expanded	 Connectivity	 Map	 facilitates	 discovery	 of	 small	 molecule	 mechanism	 of	 action	 and	

functional	annotation	of	genetic	variants		
● The	work	establishes	feasibility	and	utility	of	a	truly	comprehensive	Connectivity	Map	

 
 
INTRODUCTION	
  
The	sequencing	of	the	human	genome	provided	the	parts	list	of	life,	and	this	in	turn	has	led	to	an	explosion	of	
new	insights	into	the	genetic	basis	of	disease.	Genome-wide	association	studies	have	identified	risk-associated	
loci	 for	major	diseases,	and	the	sequencing	of	human	tumors	has	similarly	 identified	the	somatic	mutations	
that	underlie	many	types	of	cancer.	The	research	community	has	benefitted	from	these	genomic	resources	by	
being	able	to	readily	 look	up	sequence	variants	 in	 large-scale	compendia	of	genomic	variation.	Such	look-up	
tables	of	biology,	which	support	the	generation	and	interrogation	of	new	hypotheses,	have	transformed	how	
modern	research	is	done.	
		
A	challenge,	however,	is	that	a	parts	list	and	its	association	with	disease	is	generally	not	sufficient	to	establish	
causality,	 and	 to	 provide	 mechanistic	 and	 circuit-level	 insights	 into	 uncharacterized	 gene	 products.	 Even	
beyond	the	precise	biochemical	function	of	particular	proteins,	the	pathways	in	which	they	operate	are	often	
unknown.	Truly	understanding	cellular	function	requires	perturbing	the	system	–	modulating	the	expression	of	
a	gene	of	interest,	and	monitoring	the	downstream	consequences.	Of	course	the	detailed	characterization	of	
individual	 proteins	 –	 one	 at	 a	 time	 –	 is	 the	 bedrock	 of	 biomedical	 research.	 But	 systematic,	 large-scale	
compendia	of	the	cellular	effects	of	genetic	perturbation	have	yet	to	be	established	as	a	community	resource.	
  
Similarly,	 there	 has	 been	 no	 method	 to	 systematically	 determine	 the	 cellular	 effects	 of	 a	 given	 chemical	
compound.	 For	 example,	 it	 would	 be	 desirable	 to	 be	 able	 to	 query	 a	 functional	 look-up	 table	 to	 discover	
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unexpected	off-target	activities	of	a	compound	–	such	activities	often	being	discovered	only	 late	in	the	drug	
development	process,	resulting	in	side	effects	that	limit	clinical	use.	Furthermore,	the	mechanism	of	action	of	
drugs	 with	 proven	 clinical	 benefit	 is	 often	 poorly	 understood,	 thereby	making	 it	 difficult	 to	 develop	 next-
generation	drugs	that	improve	their	utility.	
 
We	 previously	 hypothesized	 that	 a	 potential	 solution	 to	 these	 problems	 might	 be	 the	 creation	 of	 a	
comprehensive	catalog	of	cellular	signatures	representing	systematic	perturbation	with	genetic	perturbagens	
(reflecting	protein	function)	and	pharmacologic	perturbagens	(reflecting	small	molecule	function).	Signatures	
that	proved	to	be	similar	might	thus	represent	useful	and	previously	unrecognized	connections	(e.g.,	between	
two	proteins	operating	in	the	same	pathway,	between	a	small	molecule	and	its	protein	target,	or	between	two	
small	molecules	of	similar	function	but	structural	dissimilarity).	Such	a	catalog	of	connections	could	thus	serve	
as	a	functional	look-up	table	of	the	genome,	and	we	termed	this	concept	the	Connectivity	Map	(Lamb,	2006).	
	
We	previously	piloted	 the	Connectivity	Map	 (CMap)	concept	by	 treating	cells	with	164	FDA-approved	drugs	
and	tool	compounds,	and	then	performing	mRNA	expression	profiling	using	Affymetrix	microarrays.	A	total	of	
564	gene	expression	profiles	were	generated,	and	a	measure	of	gene	expression	signature	similarity	based	on	
the	Kolmogorov-Smirnov	statistic	was	developed	so	that	users	could	query	the	CMap	database	using	a	user-
defined	signature	of	interest	(e.g.,	a	signature	of	disease	state,	cellular	process,	genetic	perturbation	or	small	
molecule	 action).	 The	 pilot	 Connectivity	 Map	 database	 has	 served	 as	 a	 public	 resource,	 with	 over	 18,000	
registered	users	who	have	submitted	over	150,000	queries	to	the	CMap	website	(broadinstitute.org/cmap).	
  
Recently	published	uses	of	the	CMap	pilot	dataset	include	discovery	of	the	anthelmintic	drug	parbendazole	as	
an	inducer	of	osteoclast	differentiation	(Brum	et	al.,	2015),	the	triterpene	celastrol	as	a	leptin	sensitizer	(Liu	et	
al.,	2015),	compounds	targeting	COX2	and	ADRA2A	as	potential	diabetes	treatments	(Zhang	et	al.,	2015),	small	
molecule	therapeutics	for	skeletal	muscular	atrophy	(Dyle	et	al.,	2014)	and	spinal	muscular	atrophy	(Farooq	et	
al.,	2009),	and	new	therapeutic	hypotheses	 for	the	treatment	of	 inflammatory	bowel	disease	 (Dudley	et	al.,	
2011)	 and	 cancer	 (Singh	 et	 al.,	 2016);	 (Muthuswami	 et	 al.,	 2013;	Wang	 et	 al.,	 2008);	 (Schnell	 et	 al.,	 2015);	
(Fortney	et	al.,	2015;	Wang	et	al.,	2011);	(Vilar	et	al.,	2009);	(Churchman	et	al.,	2015).	
	
Recent	 reports	 similarly	 point	 to	 the	 utility	 of	 CMap	 in	 dissecting	 biological	 pathways,	 including	 the	
identification	 of	 regulators	 of	 the	 transcription	 factor	 p73	 (Rosenbluth	 et	 al.,	 2008),	 the	 discovery	 of	
pharmacologic	 modulators	 of	 the	 unfolded-protein	 response	 (Saito	 et	 al.,	 2009),	 and	 the	 discovery	 of	 the	
mechanism	 of	 action	 of	 the	 cytostatic	 compound	 CCT020312	 as	 a	 regulator	 a	 translation	 initiation	 factor	
kinase	known	as	EIF2AK3	(Stockwell	et	al.,	2012).	
  
Despite	the	popularity	of	the	pilot	Connectivity	Map	pilot	dataset,	its	small	scale	limits	its	utility.	With	only	164	
drug	perturbations	 in	only	3	 cancer	 cell	 lines,	 the	database	 lacks	 the	necessary	 richness	of	a	 truly	genome-
scale	resource.	Missing	 is	a	diversity	of	chemical	perturbations,	genetic	perturbations	(i.e.,	gain-	and	loss-of-
function	 studies)	 as	 well	 as	 a	 diversity	 of	 cell	 types	 that	 ideally	 would	 span	multiple	 cell	 lineages	 and	 cell	
states.	Ultimately,	a	Connectivity	Map	should	contain	signatures	of	perturbation	of	all	genes	in	the	genome,	all	
small	molecules	of	 interest	to	the	community,	and	all	cell	 types	of	relevance	to	biomedical	research.	Such	a	
database	might	need	to	contain	tens	of	millions	of	gene	expression	profiles	to	be	truly	comprehensive.	
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Unfortunately,	the	high	cost	of	commercial	gene	expression	microarrays	and	even	RNA	sequencing	precludes	
such	 a	 genome-scale	 Connectivity	 Map.	 We	 therefore	 describe	 here	 a	 new	 approach	 to	 gene	 expression	
profiling	based	on	a	reduced	representation	of	the	transcriptome.	This	method,	which	we	call	L1000,	is	high-
throughput	and	low-cost,	and	is	thus	well-suited	to	a	 large-scale	Connectivity	Map.	We	also	report	here	the	
first	1,319,138	L1000	profiles	as	part	of	the	NIH	LINCS	initiative,	representing	over	a	1,000-fold	expansion	of	
the	pilot	Connectivity	Map	resource.	
	
RESULTS	
	
Reduced	representation	of	transcriptome	
Some	 of	 the	 earliest	 studies	 of	 genome-wide	 expression	 data	 showed	 that	 gene	 expression	 is	 highly	
correlated,	with	clusters	of	genes	exhibiting	similar	expression	patterns	across	cell	states	(Eisen	et	al.,	1998).	
Given	such	correlation	structure,	we	hypothesized	that	it	might	be	possible	to	capture	at	low	cost	any	cellular	
state	 by	 measuring	 a	 reduced	 representation	 of	 the	 transcriptome.	 This	 concept	 is	 similar	 to	 that	 used	
routinely	 in	 human	 genetics,	 whereby	 a	 reduced	 representation	 of	 genetic	 variation	 is	 used	 to	 guide	
genotyping	of	a	‘tag	SNP’	within	a	haplotype	block	and	then	the	other	(non-measured)	SNPs	on	the	haplotype	
are	computationally	inferred.	
	
To	 explore	 this	 transcriptional	 reduced	 representation	 concept,	 we	 first	 assembled,	 from	 NCBI’s	 Gene	
Expression	 Omnibus	 (GEO)	 (Edgar	 et	 al.,	 2002),	 a	 diverse	 collection	 of	 12,031	 gene	 expression	 profiles	
generated	using	Affymetrix	HGU133A	arrays.	We	used	 these	 to	 identify	 a	 subset	of	 informative	 transcripts,	
which	we	term	‘landmark’	transcripts.	We	sought	to	determine	the	optimal	number	of	landmarks	k.	 If	k	was	
too	small,	too	much	information	might	be	lost,	whereas	if	k	was	too	large,	sufficient	cost	reduction	compared	
to	the	entire	transcriptome	might	be	not	be	achieved.	To	address	this,	we	asked	what	number	of	landmarks	
would	 optimally	 recover	 the	 observed	 connections	 seen	 in	 the	 pilot	 Connectivity	 Map	 dataset	 based	 on	
Affymetrix	arrays	(Dataset	DSCMAP-AFFX).	Specifically,	our	prior	work	indicated	that	25	query	signatures	yielded	
robust	and	expected	connections	to	small	molecules	in	the	CMap	pilot	dataset	(Table	S1).	We	therefore	used	
those	 25	 signatures	 to	 query	 the	 imputed	 DSCMAP-AFFX	 dataset	 for	 each	 value	 of	 k,	 counting	 how	 often	 we	
recovered	the	connections	observed	in	the	original	dataset	at	a	comparable	rank	based	on	the	Kolmogorov-
Smirnov	 statistic	 (See	 Methods).	 Figure	 S1A	 shows	 the	 results	 of	 this	 analysis,	 which	 revealed	 that	 1,000	
landmarks	were	sufficient	to	recover	82%	of	expected	connections.	This	computational	simulation	provided	an	
early	 indication	 that	 measuring	 a	 subset	 of	 the	 transcriptome	 might	 recapitulate	 much	 of	 the	 functional	
information	present	in	datasets	that	quantify	the	full	transcriptome.	
	
The	 result	 thus	 provided	 the	motivation	 to	 develop	 a	 laboratory	method	 suitable	 for	measuring	 the	 1,000	
landmark	 transcripts	at	 low	cost.	We	adopted	a	data-driven	approach	to	select	1,000	 landmark	genes	using	
the	DSGEO	dataset.	Because	the	dataset	contains	a	non-uniform	representation	of	various	aspects	of	biology	
(for	example	 certain	 tumor	 types	 such	as	breast	 and	 lung	 cancer	were	disproportionately	 represented),	we	
applied	Principal	Component	Analysis	(PCA)	as	a	dimensionality	reduction	procedure	to	minimize	bias	toward	
any	particular	lineage	or	cellular	state.	In	this	reduced	eigenspace	of	386	components	(which	explained	90%	of	
the	variance),	cluster	analysis	was	performed	to	identify	tight	clusters	of	commonly	co-regulated	transcripts.	
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We	applied	an	iterative	peel-off	procedure	to	select	the	centroids	(Tseng	and	Wong,	2005).	At	each	iteration	
we	identified	the	most	concordant	clusters.	For	each	cluster	the	transcript	closest	to	the	centroid	was	selected	
as	 a	 candidate	 landmark	 gene.	 All	 cluster	 members	 were	 subsequently	 dropped	 and	 the	 procedure	 was	
repeated	 to	 identify	additional	clusters	 in	 the	 remaining	 feature	space.	Transcripts	nominated	as	 landmarks	
through	this	process	were	then	tested	empirically	to	assess	ability	to	measure	 levels	accurately	 in	the	assay	
protocol	as	described	below.	
 
L1000	assay	platform	
Having	 established	 through	 simulations	 that	 measuring	 ~1,000	 landmarks	 was	 sufficient	 to	 capture	 the	
majority	of	information	encoded	in	genome-wide	expression	profiles,	we	next	sought	to	develop	a	laboratory	
method	capable	of	measuring	1,000	transcripts	at	low	cost.	For	this	purpose,	we	adapted	a	method	involving	
ligation-mediated	 amplification	 (LMA)	 followed	 by	 capture	 of	 the	 amplification	 products	 on	 fluorescently-
addressed	microspheres	beads	(Peck	et	al.,	2006).	We	extended	this	method	to	a	1,000-plex	reaction	(Figure	
1A;	 protocols	 at	 clue.io/sop-L1000.pdf).	 Briefly,	 cells	 growing	 in	 384-well	 plates	 were	 lysed	 and	 mRNA	
transcripts	 captured	 on	 oligo-dT-coated	 plates.	 cDNAs	 were	 synthesized	 from	 captured	 transcripts	 and	
subjected	to	LMA	using	locus-specific	oligonucleotides	harboring	a	unique	24-mer	barcode	sequence	and	a	5’	
biotin	 label.	 The	 biotinylated	 LMA	 products	 were	 detected	 by	 hybridization	 to	 polystyrene	 microspheres	
(beads)	 of	 distinct	 fluorescent	 color,	 each	 coupled	 to	 an	 oligonucleotide	 complementary	 to	 a	 barcode,	 and	
then	 stained	 with	 streptavidin-phycoerythrin.	 Thus,	 each	 bead	 was	 analyzed	 both	 for	 its	 color	 (denoting	
landmark	 identity)	 and	 fluorescence	 intensity	 of	 the	 phycoerythrin	 signal	 (denoting	 landmark	 abundance).	
Because	only	500	bead	colors	are	commercially	available,	we	devised	a	strategy	that	allows	two	transcripts	to	
be	 identified	by	a	single	bead	color	(Methods	and	Figure	1B).	The	final	assay,	which	we	call	L1000,	contains	
1,058	 probes	 for	 978	 landmark	 transcripts	 and	 80	 control	 transcripts	 chosen	 for	 their	 invariant	 expression	
across	cell	states	(see	Methods).	The	reagent	cost	of	the	L1000	assay	is	approximately	$2	per	profile.	
 
Optimization	and	validation	of	L1000	
The	 fidelity	 of	 L1000	 depends	 on	 its	 ability	 to	 quantify	 endogenous	 levels	 of	 intended	 landmark	 transcript	
accurately	 and	 specifically.	 In	 designing	 landmark-specific	 oligonucleotide	 probes,	 we	 followed	 several	
computational	procedures	that	maximized	matches	to	the	target	DNA	sequence	while	minimizing	non-specific	
hybridization	(Wetmur,	1991)	(See	Methods).	As	sequence-based	probe-selection	methods	are	imperfect,	we	
further	 optimized	 the	 accuracy	 of	 L1000	 probes	 experimentally.	 Previously	 validated	 shRNAs	 targeting	
landmark	transcripts	were	used	to	 infect	MCF7	and	PC3	cells,	and	the	L1000	platform	was	used	to	measure	
changes	 in	 landmark	 transcript	 abundance	 (Figure	 1C).	 L1000	 probes	 that	 failed	 to	 detect	 the	 perturbed	
transcript	 were	 re-designed.	 Several	 cycles	 of	 iteration	 resulted	 in	 a	 final	 L1000	 probe	 set	 comprising	 978	
landmarks	and	the	80	control	genes	(Table	S2).		
	
Having	chosen	the	L1000	landmark	transcripts	using	an	entirely	data-driven	approach	optimized	for	maximal	
information	rather	than	on	biological	function,	we	asked	whether	the	landmarks	are	enriched	in	any	particular	
functional	classes	 (e.g.,	 transcription	factors).	We	computed	hypergeometric	overlap	statistics	and	found	no	
substantial	 enrichment	 for	 any	 particular	 protein	 class.	 Similarly,	 we	 found	 no	 evidence	 of	 developmental	
lineage	bias,	based	on	an	analysis	of	landmark	expression	patterns	across	30	tissue	types	(Figure	S1B).	These	
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results	 are	 consistent	 with	 our	 goal	 of	 identifying	 landmark	 transcripts	 based	 on	 their	 ability	 to	 faithfully	
reconstruct	the	transcriptome,	without	over-optimizing	for	any	particular	pathway,	cell	type	or	cell	state.	
 
L1000	reproducibility	
As	an	initial	measure	of	L1000	reproducibility,	we	analyzed	technical	replicates	of	6	cancer	cell	lines	in	which	
aliquots	 of	 the	 same	 RNA	 sample	 were	 subjected	 to	 replicate	 L1000	 profiling	 (12	 replicates	 in	 each	 of	 3	
batches,	 yielding	 36	 replicates	 per	 cell	 line).	Within	 each	 cell	 line,	we	 computed	 the	 Spearman	 correlation	
between	 all	 pairwise	 combinations	 of	 replicates,	 excluding	 the	 comparison	 of	 each	 replicate	 to	 itself.	 We	
found	that	nearly	all	pairwise	comparisons	achieved	a	high	correlation	(>0.9)	suggesting	low	sample-to-sample	
variability	 (Figure	S1C).	 Furthermore,	 intra-batch	variation	was	comparable	 to	 inter-batch	variation.	Overall,	
analysis	of	216	such	replicates	resulted	in	a	median	correlation	coefficient	of	0.95,	 indicating	extremely	high	
technical	reproducibility	of	the	assay.		
 
Comparison	of	L1000	to	RNA-seq	
RNA	 sequencing	 (RNA-seq)	 has	 become	 the	 standard	 for	 gene	 expression	 profiling,	 and	 thus	we	 sought	 to	
benchmark	L1000	against	it.	We	note	that	while	RNA-seq	is	attractive	given	its	unbiased	nature,	it	suffers	from	
technical	complexity	in	library	preparation,	and	most	importantly,	inability	to	detect	non-abundant	transcripts	
without	 deep	 sequencing	 that	 results	 in	 higher	 costs.	 The	 L1000	 platform,	 like	 DNA	 microarrays,	 is	
hybridization-based,	thus	making	the	detection	of	non-abundant	transcripts	feasible.	As	an	initial	assessment	
of	cross-platform	performance,	mRNA	samples	from	6	cell	lines	were	profiled	on	L1000,	Affymetrix	U133A	and	
Illumina	BeadChip	arrays,	and	by	RNA-seq.	Hierarchical	clustering	of	these	data	grouped	samples	by	cell	type,	
not	measurement	platform	(Figure	1D),	and	moreover	cross-platform	gene	expression	correlation	was	at	the	
transcript	level	(Figure	1E,	upper	panel).		

To	 more	 extensively	 compare	 L1000	 to	 RNA-seq,	 we	 analyzed	 3,176	 samples	 that	 were	 profiled	 on	 both	
platforms.	 The	 RNA	 samples,	 representing	 30	 tissues	 were	 previously	 sequenced	 as	 part	 of	 the	 GTEx	
Consortium	(The	GTEx	Consortium,	2015);	DSGTEx-rnaseq),	and	we	subjected	aliquots	of	those	same	samples	to	
L1000	 profiling	 (DSGTEx-L1000).	 We	 then	 computed	 sample	 self-correlations	 for	 the	 3,176	 samples	 and	 the	
median	 sample	 self-correlation	 was	 0.84,	 with	 a	 notably	 right-shifted	 distribution	 relative	 to	 non-self	
correlations	(Figure	1E,	 lower	panel	 left).	We	also	measured	sample	Recall	 (Rsample,	see	Methods),	wherein	a	
given	 L1000	 profile	 is	 forced	 to	 compete	 with	 all	 other	 RNA-seq	 profiles	 in	 order	 to	 find	 its	 RNA-seq	
counterpart.	This	analysis	yielded	3,103/3,176	samples	(98%)	with	a	Rsample	>	0.99	(indicating	99th	percentile)	
and	all	but	5	(99.84%)	had	a	Rsample	>	0.95	(Figure	S1D).	Taken	together,	these	results	indicate	a	strong	degree	
of	similarity	in	profiles	across	L1000	and	RNA-seq	platforms.	

 
Inferring	gene	expression	from	L1000	landmarks	
Using	8,555	RNA-seq	samples	(Dataset	DSGTEx-rnaseq)	as	an	 independent	test	set,	we	used	landmark	transcript	
measurements	to	infer	the	remainder	of	the	transcriptome.	As	a	test	of	inference	accuracy,	we	analyzed	gene-
level	recall	(Rgene)	for	each	of	the	inferred	genes	and	assessed	performance	by	comparing	the	result	to	a	null	
distribution	of	correlations	between	all	inferred	transcripts	and	all	measured	transcripts.	This	analysis	showed	
that	 inference	was	 accurate	 (defined	 as	 Rgene	 >	 0.95)	 for	 9,196	 of	 the	 11,350	 inferred	 genes	 (81%).	When	
combined	with	 the	978	measured	 landmarks,	 the	 L1000	platform	 thus	measures	or	 infers	with	high	 fidelity	
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83%	of	transcripts,	but	yields	poor	inference	for	17%	(Figure	1E,	lower	panel	right	and	Table	S3).	Inferences	for	
these	17%	were	therefore	not	used	in	any	of	the	analyses	that	follow.		
	
Generation	of	the	first	million	L1000	Connectivity	Map	profiles	
Having	validated	a	low-cost,	high-throughput	L1000	assay,	we	set	out	to	create	a	large-scale	Connectivity	Map	
dataset	as	a	community	resource.	We	expanded	on	the	Connectivity	Map	pilot	dataset	in	several	dimensions.		
	
First,	we	increased	the	number	of	small	molecule	perturbations	from	164	FDA-approved	drugs	to	19,811	small	
molecule	drugs,	tool	compounds	and	screening	library	compounds	including	those	with	clinical	utility,	known	
mechanism	of	action,	or	nomination	from	the	NIH	Molecular	Libraries	Program.	Each	compound	was	profiled	
in	triplicate,	either	at	6	or	24	hours	following	treatment.		
	
Second,	we	expanded	in	the	dimension	of	genetic	perturbation	by	knocking	down	and	overexpressing	4,372	
genes	 selected	 on	 the	 basis	 of	 their	 association	 with	 human	 disease	 or	 their	 membership	 in	 biological	
processes	 or	 pathways.	 Each	 genetic	 perturbation	 was	 profiled	 in	 triplicate,	 96	 hours	 after	 infection.	 For	
overexpression	 studies,	 a	 single	 cDNA	 clone	 representing	 the	 entire	 coding	 sequence	 was	 lentivirally	
transduced	(Moffat	et	al.,	2006).	For	loss-of-function	experiments,	three	distinct	shRNAs	targeting	each	gene	
were	profiled.		
	
Third,	we	expanded	in	the	dimension	of	cell	 lines.	Whereas	the	CMap	pilot	dataset	contained	profiles	in	just	
three	cancer	cell	 lines,	we	expanded	the	dataset	to	 include	as	many	as	77	cell	 lines.	Well-annotated	genetic	
and	small	molecule	perturbagens	were	profiled	 in	a	core	set	of	9	cell	 lines,	yielding	a	 reference	dataset	we	
refer	to	as	Touchstone	v1.	Uncharacterized	small	molecules	without	known	mechanism	of	action	(MOA)	were	
profiled	variably	across	3	to	77	cell	lines,	yielding	a	dataset	we	refer	as	Discovery	v1.	Details	of	the	contents	of	
both	datasets	are	available	in	Table	S4.	
	
In	 total,	 we	 generated	 1,328,098	 L1000	 profiles	 from	 42,553	 perturbagens	 (19,811	 small	 molecule	
compounds,	18,493	shRNAs,	3,627	cDNAs,	and	622	biologics)	for	a	total	of	476,251	signatures	(consolidating	
replicates),	representing	over	a	1,000-fold	increase	over	the	CMap	pilot	dataset.	We	term	this	first	release	of	
an	L1000-based	compendium	as	CMap-L1000v1	(Figure	2A).	All	data,	at	multiple	levels	of	pre-processing	are	
available	via	GEO	(accession	GSE92742	and	pre-processing	code	via	GitHub),	and	for	easier	use	via	the	CLUE	
analysis	environment	(https://clue.io;	see	below	and	Figure	2B).	
	
CMap	query	methodology	
The	 connectivity	 workflow	 involves	 interrogating	 the	 CMap	 database	 of	 signatures	 with	 a	 query	 (a	 set	 of	
differentially	 expressed	 genes	 representing	 a	 biological	 state	 of	 interest).	 Each	 of	 the	 signatures	 in	 the	
database	 represents	a	weighted	average	across	 the	3	biological	 replicate	perturbations	 (see	Methods).	 This	
moderated	z-score	procedure	serves	to	mitigate	the	effects	of	uncorrelated	or	outlier	replicates,	and	can	be	
thought	of	as	a	'de-noised'	representation	of	perturbational	response	(Figure	2C).	The	similarity	of	the	query	
to	each	of	the	CMap	signatures	is	computed,	thus	yielding	a	rank	ordered	list	of	the	473,647	signatures	in	the	
CMap-L1000v1	 dataset.	 However,	 simply	 sorting	 by	 degree	 of	 similarity	 can	 be	misleading	 because	 such	 a	
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procedure	 alone	 does	 not	 statistically	 address	 issues	 such	 as	 magnitude	 of	 gene	 expression	 change	 or	
specificity	of	observed	connections.	
	
We	 therefore	developed	a	Connectivity	 Score	 (Figure	2D)	 that	provides	 three	measures	of	 confidence:	 1)	 a	
nominal	 p-value	derived	by	 comparing	 the	 similarity	between	 the	query	 and	 reference	 signature,	 using	 the	
Kolmogorov-Smirnov	enrichment	statistic	(Subramanian	et	al.,	2005),	to	a	null	distribution	of	random	queries;	
2)	a	 false	discovery	 rate	 (FDR)	 that	adjusts	 the	p-value	 to	account	 for	multiple	hypothesis	 testing	given	 the	
large	numbers	of	comparisons	in	the	dataset;	and	3)	Tau	(τ),	which	compares	an	observed	enrichment	score	to	
all	others	in	the	database.	τ	is	a	standardized	measure	ranging	from	-100	to	100	and	can	be	used	to	compare	
results	across	queries;	a	τ	of	90	indicates	that	only	10%	of	perturbations	showed	stronger	connectivity	to	the	
query.	 A	 connection	 with	 a	 significant	 p-value	 and	 FDR	 but	 low	 τ	 would	 suggest	 a	 highly	 promiscuous	
perturbagen	whose	connections	are	not	unique.		
	
These	Connectivity	Score	metrics	thus	constitute	a	statistical	framework	that	provides	a	holistic	quantification	
of	the	relationship	between	a	query	and	a	perturbagen,	as	opposed	to	merely	sorting	by	degree	of	similarity,	
as	was	used	 in	 the	CMap	pilot.	Additionally,	while	 the	Connectivity	 Scores	 are	 generated	on	each	 cell	 type	
individually,	 we	 summarize	 those	 scores	 across	 all	 profiled	 cell	 types	 and	 thus	 provide	 a	 measure	 of	
robustness.	 Importantly,	 this	 analytical	 approach	 is	 platform-independent,	 allowing	 users	 to	 create	 query	
signatures	from	any	gene	expression	platform.		
	
Feasibility	of	querying	a	million-profile	compendium	
With	an	analytical	framework	in	hand,	we	next	set	out	to	test	the	CMap	compendium	for	its	ability	to	produce	
biologically	meaningful	connections.	That	is,	while	our	analysis	of	replicate	measurements	demonstrated	that	
L1000	 is	 robust,	 it	 is	conceivable	 that	as	 the	size	of	 the	dataset	 increased,	so	might	biological	and	technical	
noise,	thereby	obscuring	real	signal.	Additionally,	laboratory	and	platform	batch	effects	might	overwhelm	true	
signal	 thereby	making	 it	 harder	 to	 find	 genetic	 or	 pharmacological	 connections	when	 query	 signatures	 are	
generated	 by	 other	 labs	 on	 other	 expression	 platforms.	 To	 address	 this,	we	 compiled	 a	 database	 of	 7,578	
perturbational	 signatures	 from	 public	 sources	 from	 which	 we	 identified	 1,143	 perturbational	 profiles	 that	
matched	 a	CMap-L1000v1	 perturbagen,	 and	were	 therefore	 eligible	 for	 Recall	 analysis.	 For	 each	 query,	we	
assessed	whether	it	connected	to	its	equivalent	in	CMap-L1000v1	at	a	high	level	of	confidence	(defined	as	NP	
<=0.05,	FDR	<=	0.25	and	|τ|	>=	90).	909/1,143	queries	 (80%)	exhibited	 the	expected	connectivity.	We	note	
that	 the	 inference	 of	 expression	 values	 from	 landmarks	 was	 essential	 for	 the	 success	 in	 recovering	
connections.	20%	of	connections	were	lost	when	the	analysis	was	restricted	to	landmarks	only.	Furthermore,	
48	query	signatures	contained	zero	landmark	transcripts	and	were	therefore	not	analyzable	without	inference	
of	 the	 remainder	 of	 the	 transcriptome.	Overall,	we	 conclude	 that	 the	Connectivity	Map	dataset	 has	 a	 high	
degree	of	biological	coherence	that	can	be	used	to	discover	connections	to	user-defined,	external	queries	(see	
Methods	and	Table	S5	for	queries	tested	and	scores).	
	
Discovering	off-target	effects	of	shRNAs	
The	scope	of	the	L1000	dataset	provides	an	unprecedented	opportunity	to	examine	the	biological	effects	of	
RNA	 interference,	 in	 particular,	 the	 off-target	 effects	 of	 shRNAs.	 Such	 off-target	 effects	 have	 long	 been	
suspected,	but	there	has	been	no	way	to	systematically	quantify	the	magnitude	and	nature	of	a	given	shRNA’s	
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on-target	 versus	 off-target	 gene	 expression	 effect.	 To	 address	 this,	 we	 analyzed	 13,187	 shRNAs	 targeting	
3,799	genes	(3	shRNAs/gene)	across	9	cell	lines.	We	then	compared	each	pair	of	shRNA-induced	L1000	profiles	
focusing	on	the	degree	of	similarity	between	two	shRNAs	targeting	the	same	gene	(“shared	gene”)	and	two	
shRNAs	targeting	different	genes	but	sharing	the	same	2-8	nucleotide	seed	sequence	known	to	contribute	to	
off-target	effects	(“shared	seed”)	(Jackson	et	al.,	2003).	Figure	3A	shows	that	as	a	group,	shared	gene	similarity	
is	 only	 slightly	 greater	 than	 that	 observed	between	 randomly	 selected	pairs	 of	 shRNAs.	 In	 contrast,	 shared	
seed	pairs	were	dramatically	more	similar	compared	to	the	null	distribution,	indicating	that	the	magnitude	of	
off-target	 effects	 of	 shRNAs	 substantially	 exceeds	 the	magnitude	 of	 their	 on-target	 effect.	 To	 address	 the	
strong	 off-target	 effects	 of	 shRNAs,	 we	 reasoned	 that	 while	 on-target	 gene	 expression	 effects	 of	 different	
shRNAs	 targeting	 the	 same	 gene	 should	 be	 the	 same,	 their	 off-target	 effects	 should	 not.	 We	 therefore	
developed	 an	 algorithm	 to	 produce	 a	 Consensus	 Gene	 Signature	 (CGS)	 that	 reflects	 the	 consistent	 (and	
therefore	on-target)	gene	expression	effects	of	shRNAs	and	used	the	CGS	output	for	all	analyses	that	follow.	
The	CGS	method	and	its	validation	are	being	reported	elsewhere.	Examples	of	the	CGS	recovering	compound-
gene	connections	that	were	missed	at	the	individual	shRNA	level	are	shown	in	Figure	3B.		
	
Characterizing	small	molecule	function	
A	theoretical	feature	of	a	large-scale	Connectivity	Map	is	the	ability	to	determine	mechanism	of	action	(MOA)	
of	 a	 small	 molecule,	 based	 simply	 on	 similarity	 of	 gene	 expression	 induced	 by	 genetic	 perturbagens	 or	
compounds	 of	 known	 function.	 As	 a	 first	 step	 in	 assessing	 feasibility	 of	 such	 an	 approach,	 we	 sought	 to	
determine	 whether	 known	MOAs	 of	 drugs	 and	 tool	 compounds	 could	 be	 recovered	 by	 the	 CMap.	 This	 is	
challenging,	however,	because	most	compounds	 lack	ground	truth	with	 respect	 to	 their	protein	 targets	and	
associated	pathways.	While	certain	targets	of	many	compounds	are	known,	even	those	compounds	may	have	
additional	unidentified	targets,	and	for	some	compounds,	precise	MOA	remains	unknown.	Nevertheless,	we	
used	multiple	information	resources	to	associate	1,902	compounds	to	protein	targets	and	associated	pathway	
members	profiled	in	the	CMap.	This	led	to	58,820	expected	relationships	that	could	plausibly	be	recovered	in	
the	CMap-L1000v1	 compendium	 (see	Methods	 and	 screening	 library	 publication	 for	 details	 of	 annotations)	
(Corsello	 et	 al.,	 2017).	We	 then	 sought	 to	 recover	 those	 relationships	 from	 among	 the	 approximately	 160	
million	pairwise	relationships	(connections)	that	could	be	assessed	across	the	compendium.	
	
For	each	compound,	we	computed	the	true	positive	rate	(i.e.,	recovery	of	expected	relationships).	We	refer	to	
these	 expected	 relationships	 as	 expected	 pairs.	 To	 estimate	 the	 false	 positive	 rate,	 we	 counted	 the	
connections	 between	 compounds	 and	 genetic	 or	 pharmacologic	 perturbagens	 annotated	 as	 having	 a	
relationship	with	a	different	 small	molecule	 in	 the	dataset.	We	refer	 to	 such	 relationships	as	null	pairs.	We	
then	 plotted	 the	 true	 positive	 rate	 against	 the	 false	 positive	 rate	 at	 various	 thresholds	 of	 statistical	
significance,	thereby	generating	an	ROC	curve	from	which	an	AUC	could	be	calculated.	An	AUC	>0.6	is	typically	
regarded	 as	 signifying	 a	 positive	 signal.	 At	 that	 cut-off,	 an	 average	 of	 45%	 of	 expected	 relationships	 were	
recovered	in	any	one	of	the	9	cell	lines	tested	(range	29%-58%	per	cell	line).	This	number	rose	to	63%	when	
Connectivity	Scores	were	summarized	across	all	9	lines	(full	results	in	Table	S6).	
	
While	 this	 result	 is	encouraging,	37%	of	compounds	did	not	show	evidence	of	connection	to	 their	expected	
targets.	 Failure	 to	 recover	 such	 connections	 could	 be	 explained	 by	 many	 factors	 including	 i)	 incomplete	
inhibition	of	 the	 target	by	 the	 compound,	 ii)	off-target	effects	of	 compounds	and	genetic	perturbations,	 iii)	
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missing	 information	 in	 the	 L1000	 read-out,	 iv)	 incorrect	 literature-based	 annotations	 of	 compounds,	 v)	
biological	differences	between	small	molecule	inhibition	of	specific	aspects	of	protein	function	(e.g.,	enzymatic	
inhibition)	 compared	 to	 complete	 loss	 of	 function	 (e.g.,	 scaffolding	 functions)	 induced	 by	 shRNA-mediated	
knock-down,	and	vi)	the	existence	of	previously	unrecognized	bona	fide	connections	that	effectively	penalize	
the	known	connections	–	particularly	if	the	novel	connections	are	stronger	than	the	expected	ones.		
	
An	even	more	stringent	approach	is	to	ask	whether	the	direct	protein	target	(not	just	the	affected	pathway)	of	
a	 small	molecule	 could	be	 recovered	by	 the	CMap.	 For	 this	 analysis,	we	evaluated	926	drugs	 targeting	283	
proteins,	 and	 found	 that	 51%	of	 these	 connections	were	 recovered	 (defined	 by	 being	 in	 the	 top	 100	 gene	
perturbations,	 representing	 the	 top	 3%	 of	 genes	 tested,	 Table	 S7).	 We	 also	 explored	 whether	 failure	 to	
recover	 expected	 connections	 might	 be	 explained	 at	 least	 in	 part	 by	 cellular	 context.	 To	 address	 this,	 we	
selected	25	compounds	lacking	strong	connections	to	their	expected	direct	targets	in	the	9	core	cell	types,	and	
we	re-profiled	them	in	additional	39	cell	lines.	In	12/25	cases	(48%),	the	expected	connections	were	revealed	
(Table	S7,	 first	12	rows).	The	rescue	of	expected	connections	by	expanding	the	number	of	cell	 lines	profiled	
could	 be	 explained	 by	 either	 differences	 in	 cell	 state	 (e.g.,	 developmental	 lineage)	 or	 by	 genotype	 (e.g.,	
mutation	 status).	We	 note	 that	 CMap	 connections	 can	 indeed	 be	 sensitive	 to	 genotype.	 For	 example,	 we	
observed	that	the	signature	of	the	MDM2	inhibitor	AMG-232	differed	 in	MCF10A	breast	epithelial	cells	 that	
were	either	TP53	wild-type	or	homozygously	deleted,	reflecting	MDM2’s	role	as	a	negative	regulator	of	TP53	
(Figure	S2A).	
	
Taken	together,	these	results	indicate	that	the	CMap	can	serve	as	a	powerful	strategy	to	assign	mechanism	of	
action	to	small	molecules,	and	furthermore	suggests	that	the	success	of	this	approach	will	improve	by	further	
expansion	of	the	CMap	to	include	maximally	genetically	and	developmentally	diverse	cell	types.	
	
Defining	perturbagen	classes	(PCLs)	
The	analytical	strategy	described	in	the	sections	above	establishes	a	statistically	principled	method	for	ranking	
the	 significance	of	 connections	 to	 a	CMap	query.	A	 challenge,	however,	 is	 that	 the	analysis	 returns	 a	 rank-
ordered	 list	 of	 connections,	 leaving	 the	 user	 to	 extract	 biological	meaning	 from	 the	 list	 (e.g.,	 by	 observing	
similar	compounds	or	pathway-related	genes	at	the	top	of	the	list).	In	some	cases,	such	biological	insights	are	
obvious,	 but	 often	 they	 are	 not.	 We	 reasoned	 that	 observed	 connections	 could	 be	 analyzed	 in	 a	 manner	
analogous	to	defining	consensus	signatures	across	multiple	shRNAs	targeting	the	same	gene.	That	is,	while	any	
given	member	of	an	MOA	class	would	likely	have	a	multitude	of	targets,	integrating	signatures	across	several	
examples	of	an	MOA	class	would	sharpen	the	on-target	signal,	while	diminishing	off-target	effects,	as	has	been	
proposed	previously	(Seashore-Ludlow	et	al.,	2015).	
	
We	codified	this	class-level	annotation	by	first	identifying	groups	of	compounds	of	distinct	chemical	structure	
that	 share	 the	 same	MOA.	We	 also	 identified	 groups	 of	 genetic	 perturbagens	 belonging	 to	 the	 same	 gene	
family	 or	 being	 commonly	 targeted	 by	 the	 same	 compounds.	 These	 perturbagen	 classes	 (PCLs)	 were	 then	
further	refined	by	excluding	from	the	PCL	any	compounds	that	failed	to	empirically	connect	with	their	cognate	
class	members	based	on	L1000	connectivity	analysis	(see	Methods	and	Figure	4A).	This	procedure	yielded	171	
high	 confidence	 genetic	 and	 pharmacologic	 PCLs	 (Table	 S8).	 Observing	 strong	 connectivity	 to	 a	 PCL,	 as	
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opposed	 to	an	 individual	perturbation,	 thus	provides	users	with	a	higher	 level	of	 confidence	 in	 interpreting	
biological	mechanism	from	CMap	analyses.	
	
To	test	this	hypothesis,	we	profiled	137	test	compounds	known	to	share	a	mechanism	with	one	or	more	of	54	
small	molecule	PCLs,	but	which	were	not	used	in	the	construction	of	the	PCL.	L1000	profiling	indeed	revealed	
that	 for	 41/54	 classes	 (76%),	 the	 test	 compounds	 connected	 to	 their	 designated	 PCL	 in	multiple	 cell	 types	
(Figure	 4B).	 For	 an	 additional	 7/54	 (13%),	 a	 selective	 connection	 was	 observed	 in	 a	 single	 cell	 type.	 The	
remaining	6/54	(11%)	did	not	reconnect	at	a	threshold	of	τ	>90.	
	
We	next	asked	whether	drugs	with	established	MOA	also	had	unexpected,	strong,	and	selective	connections	
to	a	validated	PCL.	Selectivity	was	defined	as	the	fraction	of	PCLs	to	which	a	drug	failed	to	connect	at	a	given	τ	
threshold.	 132	 drugs	 (3.9%)	 had	 such	 off-target	 connections	 (See	 Methods	 and	 interactive	 matrix	 at	
https://clue.io).	 For	 example,	 compounds	 showing	 connectivity	 to	 the	 protein	 kinase	 C	 (PKC)	 inhibitor	 PCL	
were	 often	 also	 strongly	 correlated	 to	 the	 GSK3	 inhibitor	 PCL.	 44	 such	 dually	 connected	 compounds	were	
found	 (τ>=95,	 selectivity	 >=0.85),	 including	 the	 PKC	 inhibitor	 enzastaurin	 which	 showed	 dose-responsive	
connectivity	 to	both	PKC	and	GSK3	 inhibitor	 classes	 (τGSK=99.79	 τPKC=99.47,	 selectivity=0.88)	across	a	 similar	
dose	 range	 (Figure	 4D).	 Interestingly,	 synergy	 between	 compounds	 targeting	 these	 pathways	 has	 been	
reported	 (Rovedo	et	 al.,	 2011),	 and	 the	Kinomescan	biochemical	 binding	 assay	 confirms	 that	 enzastaurin	 is	
indeed	also	a	potent	GSK3	inhibitor	with	a	biochemical	KD	of	8	nM	(Davis	et	al.,	2011).	Importantly,	however,	
not	all	GSK	inhibitory	compounds	have	PKC	off-target	effects.	23	small	molecules	(Table	S9)	showed	GSK	PCL	
selectivity.	 Interestingly,	 the	 top	 scoring	GSK3	 PCL	 connection	without	 strong	 PKC	 connectivity	 (τGSK=96.66,	
τPKC=13.71,	selectivity=0.95)	was	the	compound	JNJ-16259685,	developed	against	the	metabotropic	glutamate	
receptor	GRM1	(also	known	as	mGluR1).	 Interestingly,	GRM1	has	been	recently	reported	to	be	an	upstream	
effector	 of	 GSK3β	 (Liu	 et	 al.,	 2005).	 These	 results	 highlights	 the	 use	 of	 the	 Connectivity	 Map	 to	 identify	
compounds	with	a	desired	level	of	selectivity,	and	shows	that	even	well-characterized	compounds	may	have	
unexpectedly	strong	direct	or	downstream	effects.	
	
Importantly,	 compounds	 connected	 to	 multiple	 PCLs	 were	 not	 limited	 to	 kinase	 inhibitors.	 For	 example,	
examination	of	the	BET	bromodomain	inhibitor	PCL	recovered	compounds	developed	as	BET	inhibitors	(JQ1-
(+),	 I-BET-151,	 I-BET-762,	 PFI-1,	 SB-203580	 and	 LY-303511	 not	 used	 in	 PCL	 definition)	 but	 also	 compounds	
developed	 against	 other	 targets	 (Table	 S10).	 Examples	 include	 alprazolam,	 a	 benzodiazepine	 shown	 to	 also	
interact	with	BET	proteins	(Filippakopoulos	et	al.,	2012),	XMD11-85H,	a	BRSK2	kinase	inhibitor,	droxinostat,	an	
HDAC	 inhibitor,	 and	BRD-1103,	 a	 tool	 compound	 inhibiting	 JAK3.	 Followup	of	 XMD11-85H,	 droxinostat	 and	
BRD-1103	 via	 bromoscan	 revealed	 inhibitory	 activity	 against	 one	 or	more	 of	 the	 32	 bromodomains	 tested	
(Figure	S3A).	
	
We	note	that	in	the	future,	as	the	number	of	compounds	in	the	Connectivity	Map	grows,	splitting	of	current	
PCLs	 to	 reflect	 subclasses	 with	 distinct	 patterns	 of	 selectivity	 may	 be	 possible.	 For	 example,	 the	 histone	
deacetylase	(HDAC)	inhibitor	PCL	class	currently	has	20	members,	each	with	varying	selectivity	against	the	13	
HDAC	proteins.	Clustering	 the	 L1000	gene	expression	data	 revealed	 clear	 substructure	within	 the	PCL,	with	
pan-HDAC-inhibitory	 compounds	 forming	 a	 distinct	 cluster,	 and	 compounds	 selective	 for	 either	 HDAC6	 or	
HDAC1,3	and	8	forming	distinct	clusters	(Figure	5A).		
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Taken	together,	these	results	suggest	that	Connectivity	Map	analysis	can	be	used	to	ascertain	the	selectivity	of	
drug	candidates	by	profiling	the	breadth	of	their	cellular	effects	in	living	cells.	In	most	cases,	lack	of	selectivity	
is	considered	a	liability.	In	principle,	multi-targeted	compounds	could	have	desirable	therapeutic	benefits,	and	
the	 CMap	 could	 be	 used	 to	 guide	 medicinal	 chemistry	 toward	 such	 dual	 activities.	We	 note	 that	 such	 an	
approach	is	particularly	powerful	when	considering	protein	targets	for	which	family-wide	profiling	methods	do	
not	exist.	
	
Cellular	context	
To	 study	 the	 effect	 of	 cellular	 context	 on	 perturbational	 responses,	 we	 compared	 the	 signatures	 of	 2,429	
drugs	across	a	panel	of	9	cancer	cell	 lines.	On	average	38%	of	compounds	scored	as	 transcriptionally	active	
(based	on	signature	strength	and	 replicate	consistency)	 in	any	single	cell	 type	 (range	28%-45%)	and	92%	of	
small	molecule	drugs	scored	as	active	in	at	least	one	cell	line.	Of	1,399	(58%)	compounds	active	in	at	least	3	
cell	 lines,	26%	(corresponding	to	15%	of	all	compounds)	produced	highly	similar	signatures	across	the	entire	
panel,	whereas	 perhaps	 not	 surprisingly,	 the	 remainder	were	 active	 in	 only	 1	 or	 2	 cell	 lines	 or	 produced	 a	
diversity	of	cellular	signatures	(see	Methods	and	Figure	S2B,	S2C).		
	
As	 might	 be	 expected,	 connections	 with	 support	 across	 multiple	 cell	 types	 tended	 to	 target	 core	 cellular	
processes	 (e.g.,	 ribosomal	 function,	proteasome	complex),	whereas	compounds	with	 reproducibly	 cell-type-
selective	patterns	of	 connectivity	 tended	 to	 target	more	 specialized	mechanisms.	 For	example,	 connectivity	
between	 multiple	 glucocorticoid	 receptor	 agonists	 was	 restricted	 to	 those	 cell	 types	 in	 which	 the	
glucocorticoid	receptor	gene	NR3C1	was	expressed	(Figure	S2D,	upper	panel).	Connectivity	between	multiple	
small	molecule	PPARG	agonists	was	greatest	in	HT29	and	PC3,	the	two	core	cell	lines	with	the	highest	baseline	
expression	of	 PPARG	 itself	 (Figure	 S2D,	 lower	 panel).	 Similarly,	 the	 connection	between	 androgen	 receptor	
(AR)	knockdown	and	the	AR	antagonist	nilutamide	was	strongest	 in	the	AR-expressing	cell	 line	VCAP	(Figure	
S2E).	We	also	note	 that	 the	naturally	occurring	genetic	diversity	of	disparate	 cell	 lines	adds	 to	 the	value	of	
CMap	analyses.	For	example,	connections	between	genetic	perturbation	of	the	MAP	kinase	pathway	and	small	
molecule	 inhibitors	of	RAF	or	MEK	kinases	were	strongest	 in	the	cell	 lines	A375	and	HT29	that	harbor	BRAF	
V600E	 kinase-activating	mutations.	 This	 and	 other	 additional	 examples	 of	 lineage-selective	 connections	 are	
shown	in	Figure	S2E.	
	
Identifying	bioactive	subsets	of	small	molecule	screening	libraries	
Modern	methods	in	chemical	synthesis	now	make	it	possible	to	create	 large	numbers	of	structurally	diverse	
small	molecule	compounds.	However,	many	such	compounds	fail	to	engage	specific	protein	targets	or	to	even	
enter	 living	 cells.	We	 asked	whether	 an	 L1000	 profile	 could	 serve	 as	 a	 sensor	 for	 biological	 activity.	 If	 so,	
screening	chemical	libraries	with	L1000	might	enable	rapid	elimination	of	compounds	lacking	obvious	activity	
and	help	prioritize	others	for	subsequent	cell-based	screening.	In	support	of	this	notion,	and	consistent	with	
our	earlier	studies	(Wawer	et	al.,	2014),	we	found	that	whereas	2,232/2,429	(92%)	established	drugs	yielded	a	
strong	L1000	transcriptional	response	(defined	as	Transcriptional	Activity	Score	(TAS)	>0.2;	see	Methods),	only	
2,418/16,527	(15%)	un-optimized	compounds	had	high	TAS	scores.	We	note,	however,	that	compounds	with	
cell-type	selective	bioactivity	might	be	missed	by	this	approach.	
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Interestingly,	the	TAS-low	drugs	were	enriched	in	antimicrobial	agents	that	would	not	be	expected	to	target	
human	 proteins	 (Figure	 5B).	 An	 exception	 to	 this	 finding	 is	 the	 antimicrobial	 triclosan	 (used	 in	 consumer	
products),	which	yielded	a	particularly	high	TAS	score,	consistent	with	 its	having	effects	 in	mammalian	cells.	
We	note	that	the	safety	of	triclosan	has	recently	been	questioned	(Dinwiddie	et	al.,	2014;	Yueh	et	al.,	2014).	
Projection	of	TAS-high	compounds	 in	two	dimensions	using	the	t-SNE	method	 (Van	der	Maaten	and	Hinton,	
2008)	shows	that	many	uncharacterized	compounds	cluster	with	existing	PCLs	(Figure	5C).	A	more	quantitative	
approach	to	assigning	MOA	of	uncharacterized	compounds	is	described	below.	
	
Discovery	of	MOA	of	novel	small	molecules		
Having	 demonstrated	 the	 ability	 to	 recover	 expected	 small	 molecule-protein	 target	 connections,	 we	 next	
asked	 whether	 the	 Connectivity	 Map	 could	 be	 used	 as	 a	 means	 to	 identify	 the	 MOA	 of	 previously	
uncharacterized	compounds.	For	this	analysis,	we	queried	the	Touchstone	reference	database	with	signatures	
from	L1000	profiling	of	compounds	from	various	screening	libraries.		
	
We	put	particular	 attention	 to	 the	discovery	of	 novel	 kinase	 inhibitors	 simply	because	of	 the	 availability	 of	
facile	 methods	 for	 validating	 CMap	 predictions.	 For	 example,	 our	 analysis	 indicated	 that	 the	 unannotated	
compound	BRD-2751	showed	strong	connectivity	to	the	Rho-associated	protein	kinase	(ROCK)	PCL,	suggesting	
that	it	might	in	fact	be	a	ROCK	inhibitor.	To	test	this	hypothesis,	we	subjected	the	compound	to	kinome-wide	
binding	measurements	(using	the	Kinomescan	assay)	and	found	that	precisely	as	predicted,	the	compound	has	
a	KD	of	56	nM	against	ROCK1	(Figure	6A).	We	note	that	while	the	compound	had	not	been	previously	reported	
to	 be	 a	 ROCK1	 inhibitor,	 its	 chemical	 structure	 is	 reminiscent	 of	 canonical	 ROCK	 inhibitory	 compounds.	 As	
another	 example,	 several	 compounds	 (BRD-5161,	 BRD-5657,	 and	 BRD-9186)	were	 predicted	 to	 function	 as	
MTOR	and/or	PI3	kinase	inhibitors.	Kinomescan	dose-response	profiling	confirmed	that	the	three	compounds	
were	 indeed	MTOR/PI3K	 inhibitors,	 spanning	 a	 range	 of	 potencies	 and	 selectivities	 (Figure	 S3B).	 As	 a	 large	
number	 of	 potent	 and	 selective	 PI3K/MTOR	 inhibitors	 already	 exist,	 we	 did	 not	 investigate	 these	 novel	
compounds	further.	However,	these	results	illustrate	the	power	of	looking	up	MOA	information	directly	from	
the	Connectivity	Map.	
	
Discovery	of	a	selective	CSNK1A1	inhibitor	
We	next	asked	whether	we	could	use	the	Connectivity	Map	to	discover	a	compound	with	a	particular	activity	–	
in	this	case,	an	inhibitor	of	an	emerging	therapeutic	target	in	cancer:	Casein	Kinase	1A1	(CSNK1A1).	CSNK1A1	
is	 a	 serine-threonine	 kinase	 that	 was	 recently	 reported	 as	 an	 essential	 gene	 in	 certain	 subtypes	 of	
myelodysplastic	syndrome	and	acute	myeloid	leukemia,	and	also	has	been	recently	shown	to	be	targeted	for	
degradation	by	 the	drug	 lenalidomide,	which	 is	 particularly	 effective	 in	MDS	patients	with	 chromosome	5q	
deletion	 (the	 locus	 of	 the	 CSNK1A1	 gene)	 (Järås	 et	 al.,	 2014;	 Krönke	 et	 al.,	 2015;	 Schneider	 et	 al.,	 2014).	
Furthermore,	CSNK1A1	has	been	reported	as	a	mediator	of	drug	resistance	to	EGFR	inhibitors	in	lung	cancer	
(Lantermann	et	al.,	2015).	Unfortunately,	potent	and	selective	CSNK1A1	small	molecule	inhibitors	have	yet	to	
be	reported.	
		
As	CSNK1A1	was	among	the	3,799	genes	subjected	to	shRNA-mediated	knock-down,	we	used	the	L1000	data	
to	generate	a	signature	of	CSNK1A1	loss	of	function.	We	then	queried	all	compounds	in	the	database	against	
this	 signature	 to	 identify	 perturbations	 that	 phenocopied	 CSNK1A1	 loss.	 One	 unannotated	 small	molecule,	
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BRD-1868,	 not	 previously	 suspected	 to	 be	 a	 kinase	 inhibitor,	 showed	 strong	 connectivity	 to	 CSNK1A1	
knockdown	in	two	cell	types.	This	suggested	that	BRD-1868	might	function	as	a	novel	CSNK1A1	inhibitor.	To	
test	this	hypothesis,	we	subjected	the	compound	to	kinase	specificity	profiling,	testing	its	ability	to	bind	to	456	
kinases	 using	 the	 Kinomescan	 assay.	 Remarkably,	 the	 assay	 confirmed	 BRD-1868’s	 ability	 to	 bind	 CSNK1A1	
with	high	specificity	and	modest	potency	(KD	2.2	uM).	Follow-up	enzymatic	assays	confirmed	that	BRD-1868	
not	only	binds	CSNK1A1,	but	inhibits	its	enzymatic	activity	(Figure	6B).	While	not	yet	highly	potent,	BRD-1868	
represents,	 to	 our	 knowledge,	 the	 most	 selective	 CSNK1A1	 inhibitor	 reported	 to	 date,	 making	 it	 an	 ideal	
candidate	 for	 further	 chemical	optimization.	Most	 importantly,	 the	 result	highlights	 the	power	of	using	 the	
L1000	Connectivity	Map	as	a	starting	point	for	drug	discovery	–	even	in	the	absence	of	prior	examples	of	the	
drug	class.	
	
Using	L1000	data	to	assess	allele	function	
The	 preceding	 analyses	 have	 focused	 primarily	 on	 using	 the	 L1000	 CMap	 to	 functionally	 annotate	 small	
molecule	compounds.	We	next	asked	whether	a	similar	strategy	could	be	used	to	annotate	the	function	of	an	
allelic	series	of	genes.	Building	on	results	we	recently	reported	(Berger	et	al.,	2016),	we	sought	to	determine	
whether	 the	 CMap	 could	 distinguish	 the	 downstream	 consequences	 of	 overexpression	 of	 cDNAs	 harboring	
particular	somatic	mutations	observed	 in	human	tumors.	For	example,	 the	ubiquitin	 ligase	FBXW7	 is	a	well-
known	 negative	 regulator	 of	 MYC	 protein	 expression.	 As	 expected,	 Connectivity	 Map	 analysis	 found	 that	
overexpression	of	wild-type	FBXW7	strongly	connected	to	knock-down	of	MYC.	In	addition,	overexpression	of	
6	 mutant	 alleles	 found	 in	 cancer	 patients	 (I347M,	 V464E,	 R465C,	 R465H,	 A502V,	 and	 R505C)	 all	 lost	 this	
connection	to	MYC	loss-of-function,	whereas	4	other	alleles	retained	connectivity	to	MYC	knock-down	(Figure	
7A,	lower	panel).	Examination	of	the	substrate-bound	FBXW7	crystal	structure	(Hao	et	al.,	2007)	indicated	that	
the	mutations	predicted	by	the	Connectivity	Map	to	be	damaging	map	to	amino	acid	residues	in	the	FBXW7	
substrate-recognition	pocket,	whereas	the	non-damaging	alleles	do	not	(Figure	7A,	upper	panel).	
		
The	CMap	similarly	predicted	the	functional	impact	of	the	tumor	suppressor	KEAP1.	Nineteen	alleles	of	KEAP1	
were	subjected	to	L1000	profiling.	Whereas	wild-type	KEAP1	showed	the	expected	CMap	connection	to	knock-
down	 of	 its	 known	 transcriptional	 target	NFE2L2,	 multiple	 alleles	 of	 KEAP1	 lacked	 the	NFE2L2	 connection,	
suggesting	 that	 these	 were	 KEAP1	 loss-of-function	 alleles.	 Indeed,	 a	 subset	 of	 these	 alleles	 were	 recently	
functionally	characterized	and	reported	to	result	 in	 loss	of	KEAP1	 function,	as	predicted	by	the	Connectivity	
Map	analysis	 (Hast	et	al.,	2014)	(Figure	S3C,	 left	panel).	A	similar	phenomenon	was	observed	with	alleles	of	
the	phosphatase	PTEN,	which	negatively	 regulates	PI3K	activity.	Whereas	overexpression	of	wild-type	PTEN	
showed	 connectivity	 to	 signatures	 of	 PI3K	 inhibitors,	 such	 connectivity	 was	 lost	 with	 PTEN	 mutations	 at	
residues	 M35	 (mutated	 in	 Cowden’s	 syndrome),	 G127	 (important	 for	 active	 site	 conformation)	 and	 G129	
(required	for	phosphatase	activity)	(Han	et	al.,	2000;	Olschwang	et	al.,	1998)	(Figure	S3C,	right	panel).	Taken	
together,	these	results	suggest	the	feasibility	of	using	L1000	gene	expression	profiling	as	a	generic	read-out	of	
allele	function.	
  
Using	CMap	to	interpret	clinical	trial	results	
The	 CMap	 resource	 has	 been	 developed	 to	 support	 research,	 not	 routine	 clinical	 care.	 However,	 we	
hypothesized	 that	 there	 might	 be	 potential	 for	 the	 Connectivity	 Map	 to	 inform	 clinical	 investigation.	 Too	
often,	drugs	are	brought	to	clinical	development	without	a	 full	understanding	of	 their	biological	activities	 in	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2017. ; https://doi.org/10.1101/136168doi: bioRxiv preprint 

https://doi.org/10.1101/136168


 

15 

preclinical	 models,	 and	 even	 more	 commonly	 without	 an	 understanding	 of	 their	 activity	 in	 patients.	 We	
analyzed	two	oncology	clinical	trials	in	which	tumor	samples	were	obtained	before	and	after	treatment,	and	
the	resulting	gene	expression	data	made	publicly	available.	
		
In	the	first	study,	21	patients	with	melanoma	were	treated	with	the	RAF	inhibitors	dabrafenib	or	vemurafenib	
and	9	patients	were	treated	with	dabrafenib	plus	the	MEK	inhibitor	trametinib	(Carlino	et	al.,	2013;	Long	et	al.,	
2014).	Biopsies	were	obtained	prior	 to	treatment	and	at	 the	time	of	 relapse,	and	 in	 four	patients,	early	on-
treatment	biopsies	were	also	obtained.	The	authors	performed	expression	profiling	on	the	Illumina	beadchip	
platform,	 and	 we	 used	 those	 data	 (GSE50509,	 GSE61992)	 as	 queries	 to	 the	 L1000	 Connectivity	 Map.	
Comparing	the	four	available	early	on-treatment	biopsies	to	the	pre-treatment	biopsies,	we	observed	strong	
positive	 connectivity	 to	multiple	 reference	 readouts	of	MAP	kinase	 inhibition,	 consistent	with	drug-induced	
silencing	of	the	MAP	kinase	pathway	shortly	after	treatment.	Analysis	of	patient	samples	at	the	time	of	relapse	
showed	 that	 several	 patients	 showed	 strong	 negative	 connectivity	 to	 these	 same	 CMap	 perturbations,	
suggestive	of	reactivation	of	the	MAP	kinase	pathway	–	a	known	mechanism	of	drug	resistance	in	melanoma	
(Wagle	et	al.,	2014).	One	of	 those	patients	 (patient	10)	was	 indeed	shown	to	have	a	MAP	kinase-activating	
BRAF	 splice	variant,	consistent	with	the	Connectivity	Map	results	 (Figure	7B).	Pathway	reactivation	was	also	
detected	 in	 a	 resistant	 tumor	 with	 MAP2K1	 mutation	 (patient	 C1)	 and	 in	 a	 resistant	 tumor	 with	 BRAF	
amplification	(patient	C10).		
	
In	 the	 second	 study,	 patients	with	 solid	 tumors	were	 treated	with	 the	 pan-CDK	 inhibitor	 PHA-793887	 in	 a	
phase	 I	 clinical	 trial.	 Seven	 patients	 from	 that	 trial	were	 subjected	 to	 gene	 expression	 profiling	 of	 biopsies	
obtained	pre-treatment	and	on-treatment	using	an	Agilent	microarray	platform	(Locatelli	et	al.,	2010;	Massard	
et	 al.,	 2011).	 For	 each	 patient,	 the	 on-treatment	 expression	 profile	 was	 compared	 to	 their	 pre-treatment	
profile	and	the	difference	used	as	a	signature	to	query	the	the	Connectivity	Map	database.	The	Connectivity	
Map	analysis	showed	an	association	between	duration	of	therapy	(a	proxy	for	clinical	benefit)	and	connectivity	
to	 the	 overexpression	 of	 key	 negative	 regulators	 of	 the	 cell	 cycle	 such	 as	 CDKN1A	 and	 CDKN2A.	 Strong	
connectivity	was	also	observed	to	knock-down	of	the	cyclin-dependent	kinase	CDK4	–	one	of	the	targets	of	the	
drug	(Figure	7C).	Interestingly,	the	patients	with	rapidly	progressive	disease	showed	anti-correlation	to	this	cell	
cycle	inhibition	signature,	possibly	reflective	of	a	feedback	mechanism	to	reactivate	the	cell	cycle	in	the	face	of	
CDK4	 inhibition.	 These	 results,	 while	 reflecting	 only	 a	 small	 number	 of	 patients,	 are	 encouraging	 from	 a	
number	 of	 perspectives.	 First,	 they	 suggest	 that	 while	 the	 drug	 PHA-793887	 may	 be	 a	 pan-CDK	 inhibitor,	
inhibition	 of	 CDK4	 may	 be	 the	 most	 clinically	 relevant.	 Such	 information	 could	 be	 used	 to	 guide	 the	
development	 of	 new	 chemical	 analogs.	 Second,	 the	 results	 suggest	 that	 on-treatment	 biopsy	 coupled	 to	
Connectivity	Map	analysis	may	prove	useful	as	an	early,	molecular	readout	of	target	engagement	in	patients.	
Such	a	strategy,	if	implemented	broadly,	could	bring	rich	new	detail	to	clinical	trials.	
  
Accessing	Connectivity	Map	data	
All	 of	 the	 L1000	 Connectivity	 Map	 data	 described	 in	 this	 report	 are	 available	 without	 restriction	 to	 the	
research	community	including	individuals	from	commercial	entities.	To	enhance	the	accessibility	and	utility	of	
this	resource,	we	have	developed	a	number	of	computational-visualization	tools	that	enable	users	to	interact	
with	 data	 at	multiple	 levels	 (from	 raw	 data	 to	 processed	 to	 normalized	 data),	 using	 a	 variety	 of	methods	
optimized	 for	 technical	 and	 non-technical	 users	 (e.g.,	 restful	 Application	 Programming	 Interfaces	 (APIs)	 for	
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computational	 biologists	 and	 software	 engineers,	 and	 web	 applications	 for	 biologists).	 The	 most	 efficient	
method	of	accessing	the	data	and	tools	is	via	the	secure,	cloud-based	computing	environment	that	we	termed	
CLUE	 (Connectivity	 Map	 Linked	 User	 Environment),	 available	 at	 https://clue.io.	 To	 enable	 computational	
researchers	 to	 reproduce	 our	 findings	 exactly,	 code	 is	 available	 at	 GitHub,	 and	 the	 entire	 preprocessing	
workflow	is	available	as	a	container	in	the	AWS	Docker	registry.	Raw	data	are	also	available	for	download	from	
GEO	(accession	GSE92742),	but	users	will	find	it	more	efficient	to	interact	with	the	data	in	the	CLUE	computing	
environment.		
	
DISCUSSION		
The	study	reported	here	demonstrates	the	feasibility	of	a	large-scale	compendium	of	functional	perturbations	
of	 human	 cells,	 coupled	 to	 a	 complex,	 information-rich	 gene	 expression	 read-out.	 The	 notion	 of	 such	 a	
compendium	 was	 first	 proposed	 in	 yeast	 by	 Friend	 and	 colleagues	 (Hughes	 et	 al.,	 2000),	 and	 our	 pilot	
Connectivity	Map	showed	 that	 the	concept	 could	be	extended	 to	mammalian	cells	 (Lamb,	2006).	But	 to	be	
truly	useful	as	a	community	resource,	such	a	map	of	molecular	connections	between	cellular	states	must	be	
comprehensive:	 if	 only	 a	 limited	 number	 of	 perturbations	 are	 profiled,	 only	 a	 limited	 number	 of	 new	
molecular	connections	are	likely	to	be	discovered.	
		
Our	development	of	the	L1000	platform	made	 it	possible	to	scale	up	the	pilot	Connectivity	Map	concept	by	
more	 than	 1,000-fold.	 By	 making	 expression	 profiling	 inexpensive,	 scale	 up	 became	 tractable.	 The	 L1000	
platform	 has	 certain	 attributes	 and	 limitations	 that	 are	 worth	 considering	 –	 particularly	 when	 considering	
transcriptome-wide	RNA	sequencing	as	the	alternative.	Because	L1000	is	hybridization-based,	it	is	possible	to	
monitor	the	expression	of	non-abundant	transcripts.	While	such	rare	transcripts	(e.g.,	encoding	transcription	
factors)	 can	 also	 be	detected	by	RNA-seq,	 very	 high	depth	of	 sequencing	 coverage	 is	 needed,	 and	 this	 can	
become	 cost-prohibitive.	 Nevertheless,	 as	 sequencing	 costs	 continue	 to	 drop,	 RNA-sequencing-based	
approaches	such	as	Perturb-Seq	 (Dixit	et	al.,	2016)	 should	be	considered	 for	efficient	approaches	 to	pooled	
genetic	 perturbations	 in	 future	 iterations	 of	 the	 Connectivity	Map.	We	 note,	 however,	 that	 L1000	 has	 the	
advantage	of	being	low-cost	even	at	low-scale,	whereas	the	low	cost	of	RNA-seq	can	only	be	achieved	at	high-
scale.	
		
We	 chose	 the	 ~1000	 landmark	 transcripts	 in	 an	 unbiased	 manner,	 based	 on	 their	 orthogonal	 expression	
patterns	across	 the	diversity	of	publicly	available	gene	expression	data	generated	by	 labs	across	 the	world,	
and	diverse	cell	 types	and	disease	states	 they	 represent.	Even	so,	 it	 is	possible	 that	a	 second	generation	of	
L1000	 could	 further	 improve	 on	 the	 informativeness	 of	 the	 method.	 Indeed,	 alternative	 probe-selection	
methods	 have	 been	 proposed	 (Donner	 et	 al.,	 2012).	 Whether	 alternative	 sets	 of	 1,000	 transcripts	 would	
improve	on	the	ability	to	discover	connections	(the	primary	goal	of	the	CMap)	remains	to	be	established.	
		
The	ability	to	 infer	the	expression	of	genes	not	directly	measured	in	the	L1000	assay	was	also	explored.	We	
found	that	a	simple	ordinary	least	squares	model	was	able	to	predict	the	expression	of	81%	of	non-measured	
transcripts.	We	recognize	that	our	inference	algorithm	can	likely	be	improved.	Indeed,	a	recent	contest	(to	be	
reported	 in	detail	 elsewhere;	data	 at	GEO	GSE92743)	 showed	 that	different	 computational	 approaches	 can	
significantly	 improve	 inference	 accuracy.	 An	 interesting	 approach	 would	 be	 to	 develop	 a	 cell-type	 specific	
inference	 model,	 but	 the	 extent	 to	 which	 such	 customized	 inference	 improves	 the	 ability	 to	 discover	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2017. ; https://doi.org/10.1101/136168doi: bioRxiv preprint 

https://doi.org/10.1101/136168


 

17 

connections	remains	to	be	determined.	We	also	note	that	while	our	inference	method	was	successful	 in	the	
cell	types	tested,	it	is	conceivable	that	it	could	perform	less	well	in	cell	types	highly	dissimilar	to	those	used	to	
train	 the	model.	 As	 increasing	 amounts	 of	 RNA-seq	 data	 are	 being	 generated	 by	 the	 community,	 it	will	 be	
interesting	to	see	whether	such	data	can	be	used	to	further	improve	L1000	inference.		
		
The	1,319,138	L1000	profiles	reported	here	(yielding	473,647	signatures	after	combining	replicates)	represent	
42,553	 genetic	 and	 small	 molecule	 perturbations	 profiled	 across	 a	 variable	 number	 of	 cell	 types.	 To	 our	
knowledge,	 this	 far	 exceeds	 any	 other	 publicly	 available	 resource	 of	 cellular	 perturbation.	 An	 important	
question,	 however,	 is	 the	 extent	 to	 which	 this	 large	 CMap	 resource	 can	 be	 used	 to	 discover	 important	
biological	 connections	 (e.g.,	 to	 inform	 MOA	 of	 compounds,	 to	 discover	 pathway	 membership	 of	 gene	
products,	 or	 to	 connect	 disease	 states	 to	 pathways	 and	 small	 molecules).	 In	 the	 absence	 of	 a	 true	 “gold	
standard,”	we	attempted	to	estimate	the	success	rate	(and	false	positive	rate)	of	the	CMap	approach	using	a	
number	of	metrics.	
	
For	 example,	 we	 used	 the	 annotation	 of	 protein	 targets	 of	 small	 molecule	 drugs	 and	 tool	 compounds	 to	
determine	whether	such	 targets	could	be	 recovered	 from	the	CMap.	Our	 results	 showed	that	up	 to	63%	of	
small	molecule	mechanisms	of	action	could	be	recovered.	The	failure	to	recover	the	remaining	37%	may	be	
explained	 by	 a	 number	 of	 factors	 including	 ambiguities	 in	 annotation	 of	 compounds,	 incomplete	 target	
engagement	 by	 compounds	 and	 genetic	 reagents,	 limitations	 of	 the	 L1000	 platform,	 or	 the	 inability	 of	
transcriptional	 profiling	 to	 recover	 certain	 types	 of	 connections.	 Further	 work	 should	 focus	 on	 algorithmic	
improvements	that	increase	the	success	in	recovering	known	connections.	However,	even	at	63%	success,	the	
CMap	represents	a	powerful	 strategy	 to	discover	mechanism	of	action	of	new,	unannotated	compounds.	 In	
particular,	researchers	are	often	reluctant	to	perform	cell-based	small	molecule	screens	because	of	a	concern	
that	discovering	MOA	may	be	difficult	 if	not	 impossible.	Our	results	suggest	 that	Connectivity	Map	analysis,	
while	not	definitive,	may	rapidly	yield	MOA	hypotheses	that	can	then	be	experimentally	validated.	
	
Indeed,	our	follow	up	of	several	un-annotated	compounds	indicated	that	CMap	predictions	were	correct.	We	
focused	 on	 kinases	 simply	 because	 of	 the	 availability	 of	 readily	 available	 methods	 for	 confirming	 kinase	
inhibitory	activity	of	compounds,	but	there	is	no	reason	to	believe	that	the	success	of	the	approach	is	kinase-
restricted.	 Specifically,	 we	 found	 that	 compounds	 predicted	 to	 be	 inhibitors	 of	 PI3kinase,	 MTOR,	 GSK3	 or	
ROCK	 kinases	 were	 in	 fact	 inhibitors	 of	 those	 kinases.	 Perhaps	 most	 interestingly,	 we	 discovered	 a	 highly	
selective	 inhibitor	of	 the	casein	kinase	CSNK1A1	–	a	newly	emerging	protein	essential	 for	survival	of	certain	
myeloid	 malignancies	 and	 also	 implicated	 in	 EGFR	 inhibitor	 resistance	 (Lantermann	 et	 al.,	 2015).	 The	
compound,	 BRD-1868,	 was	 discovered	 entirely	 through	 computational	 analysis;	 no	 laboratory	 experiments	
were	 needed	 to	 generate	 the	 CSNK1A1	 inhibitory	 hypothesis.	We	note	 that	 this	 discovery	 underscores	 the	
value	of	having	a	 large-scale	 compendium	of	 genetic	 and	pharmacologic	perturbations.	Had	knock-down	of	
CSNK1A1	 not	 been	 profiled	 in	 the	 CMap,	 and	 had	 BRD-1868	 similarly	 not	 been	 profiled,	 the	 connection	
between	 the	 two	would	 not	 have	 been	made.	Discoveries	 such	 as	 this	 provide	 strong	 rationale	 for	 further	
expansion	of	the	CMap	resource.	
		
The	discovery	of	shRNA-small	molecule	connections	also	highlights	the	potential	of	shRNA-mediated	loss-of-
function	perturbations.	Our	large-scale	analysis	of	18,493	shRNA	profiles	showed	that	the	off-target	effects	of	
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shRNAs	 far	 exceed	 their	 on-target	 effects,	 consistent	 with	 recent	 reports	 (Tsherniak	 et	 al.).	 However,	 the	
generation	of	a	Consensus	Gene	Signature	(CGS)	that	identifies	gene	expression	changes	common	to	multiple	
shRNAs	 targeting	 the	 same	 gene	 substantially	 improved	 the	 ability	 to	 discover	 on-target	 connections	 by	
minimizing	 effects	 of	 the	 off-target	 component	 of	 individual	 shRNAs.	 Nevertheless,	 the	 CGS	 procedure	 is	
imperfect,	 and	 some	 off-target	 effects	 likely	 remain.	 Indeed,	 preliminary	 studies	 of	 CRISPR/Cas9-mediated	
gene	 knock-out	 suggest	 that	 genome	 editing	 approaches	 may	 recover	 some	 genetic	 connections	 to	 small	
molecules	that	were	missed	by	RNA	interference-based	perturbation.	
		
Two	 caveats	 bear	 mentioning.	 First,	 we	 and	 others	 have	 recently	 shown	 that	 CRISPR/Cas9-based	 genome	
editing	 results	 in	 non-specific	 toxicity	 that	 is	 directly	 proportional	 to	 the	 number	 of	 cuts	 to	 the	 genome	
(Aguirre	et	al.,	2016).	The	extent	to	which	such	non-specific	effects	can	be	computationally	corrected	 in	the	
context	 of	 CMap	 analysis	 remains	 to	 be	 determined.	 This	 is	 particularly	 relevant	when	 performing	 genetic	
perturbations	 in	 cancer	 cell	 lines	 that	 often	 harbor	 copy	 number	 alterations.	 Second,	 it	 remains	 to	 be	
determined	 whether	 complete	 gene	 knock-out	 (via	 CRISPR)	 or	 partial	 knock-down	 (via	 shRNA)	 better	
phenocopies	 the	 effect	 of	 a	 small	 molecule.	 For	 example,	 complete	 loss	 of	 function	 may	 lead	 to	 loss	 of	
viability,	 whereas	 partial	 loss	 of	 function	 may	 be	 tolerated,	 and	 thus	 yield	 a	 high-quality	 transcriptional	
signature.	For	the	time	being,	it	will	therefore	likely	be	wise	for	further	expansion	of	the	CMap	to	include	both	
shRNA-	and	CRISPR-mediated	perturbational	profiles.	
		
Importantly,	 however,	we	 recognize	 that	 genetic	 loss-of-function	 (whether	 by	 CRISPR	 or	 shRNA)	 and	 small	
molecule	 loss-of-function	may	not	be	 synonymous.	Small	molecules	often	 inhibit	 specific	aspects	of	protein	
function	(e.g.,	enzyme	activity),	whereas	genetic	perturbation	generally	also	results	in	loss	of	function	entirely	
–	 including	 scaffolding	 functions	 that	 may	 mediate	 important	 protein-protein	 complex	 formation.	 Such	
scaffolding	 function	 may	 also	 explain,	 at	 least	 in	 part,	 why	 certain	 expected	 connections	 between	 small	
molecules	and	genetic	perturbation	of	their	direct	targets	were	not	recovered.	
		
Our	analysis	of	L1000	perturbations	across	multiple	cell	 types	 revealed,	perhaps	not	surprisingly,	 that	 some	
perturbations	yield	universal	signatures	across	cell	types,	whereas	others	yield	highly	cell-type	selective	gene	
expression	signatures.	43%	of	compounds	active	in	multiple	cell	types	showed	a	diversity	of	cellular	responses,	
arguing	 for	 the	 importance	of	 further	expansion	of	 the	Connectivity	Map	 into	new	cell	 types.	 The	 fact	 that	
many	 compounds	 yield	 a	 universal	 signature	 regardless	 of	 cell	 type	 also	 has	 important	 implications.	
Specifically,	the	value	of	continuing	to	profile	such	compounds	across	a	large	number	of	cell	lines	is	probably	
low.	 In	contrast,	many	yielded	unique	signatures	 in	neural	 lineage	cells	 compared	 to	epithelial	 cancer	 lines,	
indicating	that	an	expanded	Connectivity	Map	should	continue	to	explore	a	diversity	of	cell	lineages	and	states	
(e.g.,	cancer	vs.	normal).	Future	iterations	of	the	Connectivity	Map	might	therefore	benefit	from	an	adaptive	
experimental	design	whereby	the	selection	of	future	cell	lines	is	chosen	based	on	the	performance	of	an	initial	
set.	 Furthermore,	 it	 is	 conceivable	 that	 computational	 selection	 of	 cell	 lines	 most	 likely	 to	 yield	 new	
information	compared	to	those	already	profiled	could	optimize	further	growth	of	the	CMap.	
		
Importantly,	 the	 Connectivity	Map	 concept	 is	 not	 restricted	 to	mRNA	expression	 as	 the	 readout	 of	 cellular	
perturbation.	Indeed,	the	L1000	data	reported	here	were	generated	as	part	of	the	NIH’s	Library	of	Integrated	
Network-based	 Cellular	 Signatures	 (LINCS)	 program.	 Other	 groups	 are	 generating	 proteomic	 and	 other	
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readouts	following	perturbation.	Indeed,	recent	reports	suggest	that	high-content	imaging	can	also	serve	as	a	
readout	 of	 cellular	 perturbation	 (Rohban	 et	 al.,	 2017).	 Early	 work	 by	 the	 ChemBank	 initiative	 similarly	
demonstrated	feasibility	of	annotating	compounds	based	on	their	cellular	consequences	(Seiler	et	al.,	2008).	
An	 important	 direction	 for	 the	 future	will	 be	 the	 integration	 of	 such	 data	 in	 hopes	 of	 bringing	multi-omic	
readouts	to	bear	on	deciphering	the	functional	consequences	of	experimental	perturbations.	
		
Biomedical	research	in	the	21st	century	reflects	a	dramatic	increase	in	the	sheer	amount	of	data	available	for	
analysis,	 and	 a	 commensurate	 need	 for	 increasingly	 sophisticated	 computational	 tools.	 In	 the	 past,	
researchers	would	often	download	genomic	datasets	to	their	own	computers,	and	run	computational	analyses	
locally.	In	the	era	of	big	data,	however,	such	data	downloads	become	impractical.	To	facilitate	more	efficient	
analysis	 of	 CMap	 data,	 we	 have	 created	 a	 cloud-based	 data	 storage	 and	 analysis	 system	 called	 CLUE,	
accessible	at	clue.io.	In	the	CLUE	environment,	users	can	access	all	publicly	available	CMap	data,	append	any	
private	data,	and	access	a	collection	of	user-friendly	analysis	apps	designed	for	intuitive	use	by	experimental	
biologists.	 Computational	 biologists	 can	 access	 data	 using	 data	APIs	 at	 clue.io/api.	We	note	 that	 additional	
L1000	analytical	tools	developed	by	others	are	available	through	the	LINCS	data	coordinating	center	website	
at	lincsproject.org.	
		
The	 Connectivity	 Map	 described	 here	 represents	 a	 dramatic	 increase	 in	 the	 scale	 of	 publicly	 accessible	
functional	genomic	data.	Nevertheless,	the	effort	is	just	a	start.	A	truly	comprehensive	CMap	would	expand	in	
multiple	 dimensions.	 First,	 the	 number	 of	 small	 molecules	 profiled	 would	 increase	 to	 include	much	 larger	
collections	 (e.g.,	 all	 FDA-approved	drugs	and	drugs	 in	 clinical	development,	 and	unoptimized	compounds	 in	
common	 screening	 libraries).	 Second,	 the	 genetic	 perturbations	 would	 include	 allelic	 series	 of	 important	
disease-associated	 genes.	 The	 preliminary	 experiments	 described	 here	 establish	 the	 feasibility	 of	 creating	
comprehensive	look-up	tables	of	all	possible	alleles	of	disease	genes,	thereby	generating	functional	readouts	
of	 genetic	 variation.	 Third,	 while	 our	 analyses	 show	 that	 a	 substantial	 proportion	 of	 perturbations	 yield	
universal	 gene	 expression	 signatures,	 the	 importance	 of	 cellular	 context	 is	 obvious.	 Accordingly,	 future	
iterations	of	 the	CMap	should	explore	new	cell	 types	 including	patient-derived	 iPS	cells	and	genome-edited	
isogenic	 cell	 lines.	 Fourth,	 future	 expansion	 should	 include	 different	 types	 of	 perturbational	 read-outs.	
Increasingly,	 the	 decreasing	 cost	 and	 increasing	 throughput	 of	 other	 read-outs	 (e.g.,	 high	 content	 imaging,	
limited	proteomic	profiling)	make	comprehensive	Connectivity	Map-style	perturbational	profiling	conceivable.	
An	important	goal	for	the	years	ahead	should	be	to	establish	which	of	these	alternative	data	types	are	most	
complementary	to	transcriptional	profiling.	
		
Last,	 we	 emphasize	 that	 the	 analytical	 approaches	 described	 here	 represent	 only	 an	 initial	 approach.	
Improvements	in	all	aspects	of	analysis	are	highly	likely	to	be	possible.	It	 is	our	hope	that	by	making	the	1.3	
million	L1000	profiles	freely	accessible,	the	computational	biology	community	will	generate	new	analysis	and	
visualization	tools	and	similarly	contribute	them	to	the	CMap/LINCS	ecosystem.	
		
As	with	all	 large-scale	community	 resources,	 the	 full	potential	of	 the	Connectivity	Map	will	only	be	 realized	
with	time.	Whether	it	proves	ultimately	most	useful	for	elucidating	small	molecule	mechanism	of	action,	for	
providing	 functional	 readouts	 of	 allelic	 series,	 or	 for	 generating	 new	 therapeutic	 hypotheses	 based	 on	
modulation	of	disease	signatures	remains	to	be	seen.	Such	emerging	utility	should	guide	the	further	expansion	
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of	a	future	CMap.	However,	 it	seems	likely	that	the	explosion	of	 insights	 into	the	biological	basis	of	disease,	
coupled	to	systematic	functional	genomic	resources	such	as	the	Connectivity	Map	hold	potential	for	a	flood	of	
new	biologic	and	therapeutic	hypotheses.	
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MAIN	FIGURE	LEGENDS	
	
Figure	1.	L1000	gene	expression	platform	implementation	and	validation	
A.	Schematic	of	 ligation-mediated	amplification	 (LMA)	of	 landmark	genes.	Cells	growing	 in	384-well	plates	
are	lysed	and	the	mRNA	transcripts	captured	on	oligo-dT-coated	plates.	1,000	locus-specific	oligonucleotides	
harboring	a	unique	24-mer	barcode	sequence	are	then	used	to	perform	an	LMA	reaction,	and	the	biotinylated	
LMA	products	 are	 detected	 by	 hybridization	 to	 optically	 addressed	 polystyrene	microspheres	 (beads).	 Each	
bead	is	coupled	to	an	oligonucleotide	complementary	to	a	barcode.	The	amount	of	biotinylated	transcript	 is	
quantified	by	fluorescence	after	staining	with	streptavidin-phycoerythrin	(SAPE).	
B.	Schematic	of	quantification	of	the	~1,000	landmarks	using	500	bead	colors.	Each	bead	is	analyzed	for	its	
bead	 color	 (denoting	 the	 landmark	 identity)	 and	 its	 phycoerythrin	 fluorescence	 intensity	 (denoting	 the	
landmark	 transcript	 abundance).	 Barcodes	 representing	 each	 gene	 are	 coupled	 to	 beads	 of	 the	 same	 color	
(one	gene	per	bead).	Genes	coupled	to	the	same	color	in	two	are	combined	in	a	ratio	of	2:1	prior	to	use.	We	
construct	a	histogram	of	mean	fluorescent	intensity,	yielding	a	distribution	that	consists	of	two	peaks,	with	the	
larger	peak	(by	bead	count)	designating	the	expression	of	the	gene	for	which	double	the	amount	of	beads	are	
present,	 and	 the	 smaller	 peak	 representing	 the	 other	 gene.	 Using	 the	 k-means	 clustering	 algorithm,	 the	
distribution	is	partitioned	into	two	distinct	components	and	the	median	expression	value	for	each	component	
is	then	assigned	as	the	expression	value	of	the	appropriate	gene.	
C.	Validation	of	L1000	probes	using	shRNA	knockdown.	MCF7	and	PC3	cells	were	 transduced	with	shRNAs	
targeting	955	landmark	genes,	and	generated	signatures.	For	each	targeted	gene,	we	computed	the	percentile	
rank	of	 its	expression	z-score	in	the	experiment	 in	which	it	was	targeted	relative	to	all	other	experiments	 in	
which	it	was	not	targeted.	841	of	955	genes	(88%)	rank	in	the	top	1%	and	907	of	955	(95%)	rank	in	the	top	5%,	
indicating	the	majority	of	L1000	probes	are	measured	with	high	fidelity.	Top	panel:	expression	z-score	of	BAX	
gene	 in	 every	 experiment.	 Note	 it	 achieves	 the	 lowest	 expression	 z-score	 in	 the	 experiment	 in	 which	 it	 is	
targeted.	Middle	panel:	Distributions	of	all	targeted	(orange)	and	non-targeted	(white)	z-scores.	Bottom	panel:	
Scatter	of	percentile	rank	versus	expression	z-score	for	955	targeted	genes.	
D.	Comparison	of	L1000	with	other	platforms.	Samples	of	purified	total	RNA	from	six	human	cancer	cell	lines	
were	profiled	on	L1000,	Affymetrix	GeneChip	HG-U133	Plus	2.0	Array,	 Illumina	Human	HT-12	v4	Expression	
BeadChip	Array,	and	mRNA-seq	(Illumina	Hi-Seq).	Data	cluster	by	cell	line	and	not	by	platform,	suggesting	that	
the	cross-platform	differences	are	smaller	than	the	biological	differences	between	cell	lines.		
E.	Extended	comparison	of	L1000	with	RNA-seq	and	Affymetrix	using	patient-derived	samples.	Identical	RNA	
samples	from	3,176	tissue	specimens	collected	as	part	of	the	GTEx	project	were	profiled	on	L1000	and	RNA-
seq.	A	subset	was	also	profiled	on	Affymetrix	microarrays.	Top	panels:	Scatter	plots	of	L1000	expression	versus	
RNA-seq	 in	 landmark	(left)	and	 landmark	plus	 inferred	(middle)	spaces	for	a	single	sample.	L1000	correlates	
with	RNA-seq	to	the	same	degree	as	Affymetrix	correlates	with	RNA-seq	(right).	Bottom	left:	Distributions	of	
L1000-RNA-seq	correlations	for	the	same	sample	(orange)	and	different	samples	(gray).	This	analysis	yielded	
3,103/3,176	(98%)	with	a	recall	(R)	>	0.99	(indicating	99th	percentile)	and	all	but	5	samples	(99.84%)	had	a	R	>	
0.95	(not	shown).	Bottom	right:R	for	the	L1000	inferred	genes	relative	to	their	RNA-seq	measured	equivalents.	
9,196	of	11,350	(81%)	have	R	in	the	95th	percentile	and	are	thus	termed	well	inferred.	Taken	together,	these	
results	 indicate	 that	 the	 expression	 profiles	 generated	 by	 L1000	 are	 highly	 similar	 to	 their	 RNA-seq	
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equivalents.		
	
Figure	2.	L1000	dataset	coverage,	signature	generation,	and	data	access	
A.	 Depiction	 of	 data	 in	CMap-L1000v1.	Perturbations	 are	 divided	 by	 type,	 annotation	 status,	 and	 cell	 line	
coverage.	 The	 number	 of	 genetic	 perturbagens	 refers	 to	 the	 number	 of	 unique	 genes	 targeted	 by	 either	
shRNA	or	over-expression.	Annotated	perturbations	profiled	systematically	across	9	core	cell	 lines	comprise	
the	 Touchstone	 portion	 of	 the	 dataset	 (CMap-TS)	 and	 are	 useful	 for	 reference	 comparisons,	 while	
unannotated	reagents	comprise	the	Discover	portion	and	present	opportunities	for	discovery.	
B.	Modes	of	access	to	analysis	tools	and	data	via	the	clue.io	software	platform.	The	clue.io	platform	enables	
computational	 biologists,	 bench	 scientists,	 and	 software	 engineers	 to	 leverage	 CMap	 by	 offering	 web	
applications	for	analysis,	APIs	and	docker	containers	for	code	and	data	access.	Raw	data	can	be	downloaded	
from	NCBI	GEO.	
C.	 Schematic	 of	 signature	 generation	 and	 data	 levels.	 1)	 Raw	 bead	 count	 and	 fluorescence	 intensity	 are	
acquired	from	Luminex	scanners	2)	Data	are	deconvoluted	to	assign	expression	levels	to	two	genes	measured	
on	 the	 same	 analyte	 3a)	 Data	 are	 normalized	 to	 adjust	 for	 non-biological	 variation	 3b)	 12,328	 genes	 are	
inferred	from	the	978	landmarks	4)	Data	are	converted	to	differential	expression	values	5)	Replicate	profiles	
are	collapsed	into	signatures.	
D.	Schematic	of	query	analysis.	A	query	is	specified	by	lists	of	up-	and	down-regulated	genes.	The	similarity	
between	query	and	all	signatures	in	CMap-TS	are	computed.	Normalized	similarities	are	converted	to	p-value	
and	 FDR,	 and	 tau	 via	 comparison	 with	 compendia	 random	 and	 reference	 queries,	 respectively.	 Finally,	
perturbagens	are	sorted	by	tau	to	provide	the	list	of	most	similar	and	opposing	perturbagens,	thus	providing	
hypotheses	for	potential	follow-up.	
	
Figure	3.	Analysis	of	genetic	loss	of	function	perturbations	
A.	Notable	off-target	effects	of	shRNAs.	Distributions	of	spearman	correlations	between	signatures	of	12,961	
shRNAs	 targeting	 the	 same	 gene	 but	 having	 different	 seed	 sequences	 (blue),	 targeting	 different	 genes	 but	
having	the	same	seed	(red)	and	all	pairs	of	shRNAs	(gray).	12,691	shRNAs	targeting	3,724	unique	genes	were	
considered	and	data	shown	is	for	the	A549	cell	line.	The	all	pairs	distribution	was	randomly	down-sampled	to	
10M	points	 for	plotting.	While	shRNAs	targeting	the	same	gene	are	better	correlated	than	all	pairs,	shRNAs	
with	the	same	seed	are	much	more	correlated,	suggesting	that	the	shRNA	seed	effect	may	dominate	the	gene	
effect,	presenting	a	problem	for	analysing	shRNA	signatures.	Data	is	shown	from	the	A549	cell	line.	
B.	Consensus	Gene	Signature	(CGS)	improves	on-target	signal.	A	consensus	gene	signature	(CGS)	is	computed	
from	a	weighted	average	of	signatures	of	independent	shRNAs	targeting	the	gene.	Connectivity	to	annotated	
small	molecules	targeting	each	gene	is	markedly	improved	by	CGS	over	individual	shRNAs,	suggesting	that	the	
CGS	procedure	mitigates	the	seed	effect	inherent	to	individual	shRNAs	and	enhances	on-target	signal.	
C.	CRISPR	knockout	augments	compound-target	analysis.		
Top:	 Consistency	 between	 Loss	 of	 Function	 (LoF)	 signatures	 from	 CRISPR	 and	 CGS	 enhances	 confidence	 in	
connectivity	 to	 small	 molecules.	 Middle:	 CRISPR-based	 LoF	 recovers	 some	 connections	 to	 small	 molecules	
missed	by	CGS.	Bottom:	Lack	of	compound-target	connectivity,	despite	consistency	between	LoF	reagents	and	
validated	 compound	 signature	 suggests	 non-equivalency	 of	 genetic	 and	 pharmacological	 agent	 derived	
signatures.	
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Figure	4.	Reference	perturbagen	classes	for	CMap	discovery	
A.	 Schematic	 of	 Perturbagen	 Class	 (PCL)	 definition.	Reference	 PCLs	 are	 established	 by	 integrating	 existing	
drug	and	gene	annotations	with	CMap	connectivity	results.	Left:	Annotations	are	first	gathered	from	literature	
sources	and	perturbagens	with	shared	annotations	are	grouped	to	form	candidate	sets.	Middle:	Perturbagens	
that	 do	 not	 sufficiently	 recover	 their	 expected	 connections	 via	 ROC	 analysis,	 are	 excluded.	 Right.	 The	
remaining	 members	 are	 then	 assessed	 for	 intra-group	 connectivity	 and	 groups	 that	 are	 sufficiently	
interconnected	are	retained	as	PCLs.	These	PCLs	serve	as	robust	sensors	of	biological	activities	and	are	useful	
in	interpreting	CMap	query	results.	
B.	PCL	validation.	137	compounds	with	known	activities	corresponding	to	one	or	more	of	54	PCLs,	but	that	
were	not	used	in	PCL	construction,	were	prospectively	profiled	across	multiple	cell	types	and	subjected	to	PCL	
connectivity	 analysis.	 The	 histogram	 shows	 the	 rank	 of	 each	 expected	 PCL	 connection	 for	 these	 137	
compounds	(red)	versus	the	rank	of	all	unexpected	PCL	connections	 (blue).	The	expected	PCL	distribution	 is	
notably	 right-shifted,	 indicating	 that	 PCLs	 are	 accurately	 reading	 out	 the	 expected	 activities	 from	 an	
independent	compound	set.	
C.	 Using	 PCLs	 for	 discovery.	 3,333	 known	 drugs	 and	 2,418	 unannotated	 but	 transcriptionally	 active	
compounds	 were	 subject	 to	 PCL	 connectivity	 analysis.	 The	 plot	 shows	 the	 count	 of	 strong	 and	 selective	
connections	 to	 validated	 PCLs	 by	 known	 drugs	 not	 annotated	 with	 the	 given	 PCL’s	 activity	 (blue)	 and	
unannotated	compounds	(orange).	The	novel	connections	of	known	drugs	present	hypotheses	for	secondary	
mechanisms	and/or	off-target	effects,	while,	 for	unannotated	compounds,	 they	may	suggest	 the	molecule’s	
primary	activity.	
D.	Detecting	multiple	drug	activities	using	PCLs.	The	known	PKC	inhibitor	enzastaurin	was	profiled	 in	CMap	
across	multiple	doses.	Connectivity	to	each	established	kinase	inhibitor	PCL	is	shown	in	the	heatmap.	Strong	
dose-responsive	connections	were	observed	to	the	PKC	and	GSK3	inhibitor	PCLs.	
	
Figure	5.	Characterizing	known	and	unexpected	activities	of	small	molecules	
A.	Antibacterials	exhibit	 lower	transcriptional	activity	than	other	drugs.	Distributions	of	 the	maximum	TAS	
per	compound	for	147	antibacterials	and	2,372	known	drugs	in	CMap-TS.	The	antibacterials’	TAS	distribution	is	
significantly	 lower	 than	 that	 of	 other	 drugs,	 which	 matches	 the	 intuition	 that	 these	 compounds	 should	
generally	 have	 lower	 magnitude	 effects	 in	 human	 cells.	 (p-value	 corresponds	 to	 2-sided	 KS	 test	 using	 R’s	
ks.test	function).	
B.	 Comparison	 of	 unannotated	 compounds	with	 known	 drugs.	The	 figure	 shows	 a	 tSNE	 projection	 of	 the	
signatures	 of	 2,418	 unannotated	 but	 transcriptionally	 active	 compounds	 (orange)	 along	with	 PCL	members	
(blue).	There	are	several	highlighted	instances	of	unannotated	compounds	clustering	with	drugs	of	the	same	
mechanism,	 suggesting	 hypotheses	 for	 the	 unannotated	 compounds.	 In	 addition,	 the	 unannotated	
compounds	 occupy	 regions	 not	 covered	 by	 known	 drugs,	 presenting	 opportunities	 for	 novel	 mechanism	
discovery	and	potential	expansion	of	CMap-TS	
C.	HDAC	 inhibitor	PCL	 substructure.	Hierarchical	 clustering	of	pairwise	 connectivities	of	 the	HDAC	 inhibitor	
PCL	 members	 reveals	 substructure	 within	 the	 class.	 The	 pan-HDAC	 inhibitors	 generally	 cluster	 together,	
distinct	from	the	more	isoform-selective	compounds,	suggesting	that	gene	expression	can	be	used	to	further	
stratify	compounds	within	the	same	class.	
	
Figure	6.	Kinase	inhibitor	discovery	using	reference	transcriptional	signatures	
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A.	Discovery	 of	 a	 potent	 ROCK1/ROCK2	 inhibitor.	 Top	 left	 panel:	 The	 chemical	 structure	 of	 BRD-2751	 ,	 a	
predicted	ROCK	inhibitor	is	shown.	Right:	TREEspot	selectivity	profile	of	Kinomescan	binding	assay	confirmed	
compound	binding	to	ROCK1/ROCK2.	Bottom	left:	Dose	response	testing	by	Kinomescan	showed	ROCK1	Kd	of	
56	nM.	B.	Discovery	of	a	highly	 specific	CSNK1A1	 inhibitor.	 Top	 left	panel:	The	chemical	 structure	of	BRD-
1868,	 a	 predicted	 CSNK1A1	 inhibitor,	 is	 shown.	 Top	 right:	 TREEspot	 image	 of	 Kinomescan	 binding	 assay	
performed	 with	 BRD-1868	 at	 10	 micromolar	 demonstrated	 inhibition	 of	 only	 6	 out	 of	 456	 kinases	 tested	
including	CSNK1A1.	Bottom	left:	CSNK1A1	binding	by	BRD-1868	was	confirmed	by	Kinomescan	with	Kd	of	2.2	
uM.	 Error	 bars	 indicate	 standard	 deviation	 between	 technical	 replicates.	 Bottom	 right:	 BRD-1868	 inhibits	
phosphorylation	of	peptide	substrate	by	CSNK1A1	with	IC50	of	12.9	uM.	Error	bars	indicate	standard	deviation	
between	technical	replicates.	Kinase	selectivity	images	generated	using	TREEspot	Software	Tool	and	reprinted	
with	permission	from	KINOMEscan,	a	division	of	DiscoveRx	Corporation.	
	
Figure	7.	Assessing	impact	of	allelic	variants	and	drug	response	in	clinical	trials		
A.	Predicting	LOF	alleles.	A	series	of	clinically-observed	mutant	FBXW7	alleles	were	overexpressed	in	multiple	
cells	 types	and	L1000	profiles	were	obtained.	Overexpression	of	wild-type	FBXW7	connects	strongly	to	MYC	
shRNA,	which	is	a	known	target	of	this	ubiquitin	ligase.	FBXW7	crystal	structure	was	obtained	from	the	Protein	
Data	Bank	(2OVQ).	Mutations	at	peptides	adjacent	to	the	substrate	recognition	site	(depicted	in	orange)	lose	
the	MYC	shRNA	connection	as	shown	in	the	heat	map	as	median	tau	score	across	multiple	cell	types.	Bar	plot	
indicates	the	incidence	of	each	specific	mutation	in	the	COSMIC	database.		
B.	 Predicting	 therapeutic	 efficacy.	 Transcriptional	 profiles	 of	 pre-treatment	 and	 early	 on-treatment	 tumor	
biopsies	were	obtained	from	a	published	clinical	trial	of	the	CDK	inhibitor	PHA-793887.	Differential	expression	
signatures	between	the	two	time	points	were	generated	for	each	patient	by	calculating	the	log	fold	change	in	
each	gene.	CMap	query	results	demonstrated	a	range	of	connectivities	to	negative	regulators	of	the	cell	cycle.	
Patients	with	strong	positive	connectivity	to	cell	cycle	inhibition	signatures	remained	on	the	clinical	trial	for	a	
mean	duration	of	5.25	months,	while	patients	profiles	with	negative	negative	correlations	were	on	trial	for	a	
mean	duration	of	only	two	months.	
C.	 Interpreting	 drug	 resistance.	 Transcriptional	 profiles	 of	 pre-treatment,	 early	 on-treatment,	 and	 relapse	
tumor	 biopsies	 were	 obtained	 from	 two	 published	 melanoma	 clinical	 trials	 of	 BRAF	 and	 MEK	 inhibitors.	
Queries	 from	 early	 on-treatment	 versus	 pre-treatment	 biopsies	 exhibited	 connectivity	 to	 pharmacologic	
inhibition	of	BRAF	or	MEK	as	well	 as	BRAF	 shRNA	 in	A375	 cells,	 reflecting	 target	 engagement	 in	 vivo.	MAP	
kinase	signaling	was	re-activated	(as	 indicated	by	a	strong	negative	connection	to	the	same	CMap	reference	
signatures)	in	the	subset	of	relapse	biopsies	with	known	MAP	kinase	pathway-related	resistance	mutations.	
	
SUPPLEMENTAL	LEGENDS	
Figure	S1.	Properties	and	technical	validation	of	Landmark	genes	
A.	 Evaluating	 dimensionality	 reduction.	 Simulation	 showing	 the	 mean	 percentage	 of	 33	 benchmark	
connections	recovered	from	an	imputed	CMap	pilot	dataset	(+/-	SEM)	as	a	function	of	number	of	landmarks	
used	 in	 the	 imputation,	 indicating	 that	 around	1000	 landmarks	were	 sufficient	 to	 recover	 82%	of	 expected	
connections	
B.	 Landmark	 gene	 expression.	 Distributions	 of	 baseline	 expression	 of	 landmark	 genes	 across	 the	 30	 tissue	
types	present	 in	dataset	DSGTEx-RNA-seq.	The	majority	of	 landmark	genes	are	expressed	 in	each	 tissue	and	 the	
distributions	of	expression	are	similar	across	 tissues,	 suggesting	 that	 landmarks	are	not	over-optimized	 to	a	
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particular	context.	
C.	Technical	replicate	reproducibility.	Top:	Scatter	plots	of	3	technical	replicates	for	a	sample	of	commercial	
MCF7	 RNA.	 Bottom:	 Distributions	 of	 median	 spearman	 correlations	 between	 technical	 replicates	 of	
commercial	 RNA	 samples	 from	 6	 cell	 lines	 (36	 replicates	 per	 cell	 line).	 Nearly	 all	 correlations	 exceed	 0.90,	
suggesting	low	sample-to-sample	variability.	
D.	Comparison	with	RNA-seq.	Scatter	plot	of	replicate	recall	(RR)	vs.	cross-platform	spearman	correlation	for	
3,176	patient-derived	 samples	profiled	on	RNA-seq	and	 L1000.	3,103/3,176	 samples	 (98%)	had	a	RR	<	0.01	
(indicating	99th	percentile)	and	all	but	5	samples	(99.84%)	had	a	RR	<	0.05,	suggesting	high	similarity	between	
the	two	platforms.	
	
Figure	S2.	Characteristics	of	perturbational	signatures	
A.	MDM2	 inhibitor	 AMG-232	 shows	 TP53-dependent	 transcriptional	 response.	 Left:	 Correlation	matrix	 of	
AMG-232’s	signatures	across	cell	lines	at	6-point	dose	ranging	[0.04-10	uM].	Signatures	in	background	of	TP53	
homozygous	deletion	lose	correlation	with	signatures	in	TP53	wild	type	background.	Right:	Boxplots	of	AMG-
232	TAS.	TAS	is	notably	lower	in	background	of	TP53	homozygous	deletion	compared	to	wild	type.	
B.	Cell	context	and	transcriptional	activity.	The	bars	show	the	percentage	of	2,429	small	molecule	compounds	
that	produced	high	TAS	signatures	in	a	specified	number	of	cell	lines	(TAS	≥	0.2).	The	cumulative	percentages	
are	shown	in	blue.	92%	of	compounds	produce	a	high-TAS	signature	in	at	least	one	cell	line.	
C.	Multiplicity	 of	 signatures.	 The	 bars	 indicate	 the	 percentage	 of	 2,429	 compounds	 that	 gave	 a	 single	 or	
multiple	 signatures	 across	 all	 the	 cell	 lines	 in	 which	 each	 compound	was	 active	 (minimum	 of	 3	 cell	 lines).	
Compounds	 that	were	 active	 in	 fewer	 than	 three	 cell	 lines	 are	 captured	 in	 the	 first	 two	bars.	Only	 15%	of	
compounds	produced	a	single	signature,	suggesting	that	transcriptional	response	is	dependent	on	cell	context	
for	a	majority	of	compounds.	
D.	 Context-specific	 interconnectivity.	 The	 bar	 plot	 shows	 the	 baseline	 expression	 of	 the	 gene	NR3C1,	 the	
target	 of	 these	 compounds,	 across	 the	 9	 core	 cell	 lines.	 The	 small	 heat	 map	 below	 each	 bar	 shows	 the	
interconnectivity	 of	 the	 44	 members	 of	 the	 glucocorticoid	 agonist	 PCL	 in	 the	 same	 cell	 line.	 The	
interconnectivity	 is	highest	 in	the	cell	 lines	 in	which	the	target	 is	most	highly	expressed.	Right)	The	bar	plot	
shows	baseline	expression	of	 the	gene	PPARG,	which	encodes	 the	 target	of	PPARG	agonists.	The	 thumbnail	
heatmaps	show	the	inter-connectivity	of	16	members	of	the	PPARG	receptor	agonist	PCL.	
E.	 Context-dependent	 connection	 between	 compounds	 and	 their	 gene	 targets.	 The	 raster	 plot	 shows	 the	
connectivity	between	the	indicated	gene	knockdown	and	its	targeting	compounds,	where	each	circle	is	a	cell	
line.	 Filled	 circles	 indicate	 cell	 lines	 in	 which	 the	 compound-gene	 connection	 is	 expected,	 either	 due	 to	
mutation	in	(BRAF,	MAPK	genes)	or	high	expression	of	(all	others)	the	target	gene.	The	strong	connections	are	
enriched	 for	 the	 expected	 cell	 lines,	 suggesting	 that	 CMap	 connectivities	 can	 be	 indicative	 of	 context	
specificity.	
	
Figure	S3.	Experimental	follow-up	of	CMap	hypotheses	and	functional	annotation	of	allelic	variants	
A.	Confirmation	of	predicted	bromodomain	 inhibitors.	 TREEspot	 selectivity	profile	 indicating	 the	 inhibitory	
activity	of	droxinostat,	XMD11-85H,	and	BRD-1103	against	 the	32	bromodomains	tested	by	the	BROMOmax	
assay.	All	three	compounds	were	active	against	at	least	one	bromodomain.	Images	generated	using	TREEspot	
Software	Tool	and	reprinted	with	permission	from	KINOMEscan,	a	division	of	DiscoveRx	Corporation.	
B.	 Confirmation	 of	 predicted	 PI3K/MTOR	 inhibitors.	 Chemical	 structures	 and	 affinities	 (kD)	 between	 three	
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predicted	PI3K/MTOR	inhibitors	and	AKT1,	MTOR,	and	4	PI3K	isoforms,	as	measured	by	the	Kinomescan	assay.	
All	 three	 compounds	 show	 at	 least	 micromolar	 affinity	 for	 a	 subset	 of	 the	 predicted	 targets,	 with	 two	
compounds	showing	nanomolar	affinities.	
C.	CMap	connectivities	 correspond	 to	 loss	of	 function	mutations.	 Left:	Heat	map	showing	 the	connectivity	
between	the	over-expression	signatures	of	various	KEAP1	alleles	in	A549	cells	to	the	knockdown	of	NFE2L2	in	
A549	cells.	Right:	Heat	map	showing	the	connectivity	between	the	over-expression	signatures	of	various	PTEN	
alleles	and	the	PI3K	and	MTOR	inhibitor	classes.	For	both	KEAP1	and	PTEN,	mutations	at	known	active	residues	
important	for	protein	function	result	in	loss	of	expected	connectivity.	
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1.	QUICK	GUIDE	TO	WHERE	TO	FIND	METHODS	IN	THIS	SUPPLEMENTAL	TEXT	

1. Reduced	 representation	 of	 transcriptome.	 “We	 therefore	 used	 those	 25	 signatures	 to	 query	 the	
imputed	 DSCMAP-AFFX	 dataset	 for	 each	 value	 of	 k,	 counting	 how	 often	 we	 recovered	 the	 connections	
observed	 in	 the	 original	 dataset	 at	 a	 comparable	 rank	 based	 on	 the	 Kolmogorov-Smirnov	 statistic”:	
Methods	section	3	

2. L1000	assay	platform.	
a. “Thus,	each	bead	was	analyzed	both	for	its	color	(denoting	landmark	identity)	and	fluorescence	

intensity	 of	 the	 phycoerythrin	 signal	 (denoting	 landmark	 abundance).	 Because	 only	 500	 bead	
colors	 are	 commercially	 available,	 we	 devised	 a	 strategy	 that	 allows	 two	 transcripts	 to	 be	
identified	by	a	single	bead	color”:	Methods	section	4	

b. “The	final	assay,	which	we	call	L1000,	contains	1,058	probes	for	978	landmark	transcripts	and	
80	control	transcripts	chosen	for	their	invariant	expression	across	cell	states”:	Methods	section	
4		

3. Optimization	 and	 validation	 of	 L1000.	 “In	 designing	 landmark-specific	 oligonucleotide	 probes,	 we	
followed	several	computational	procedures	that	maximized	matches	to	the	target	DNA	sequence	while	
minimizing	non-specific	hybridization”:	Methods	section	5	

4. CMap	query	methodology	
a. “Each	of	the	signatures	in	the	database	represents	a	weighted	average	across	the	3	biological	

replicate	perturbation”:	Methods	section	9	
b. “We	therefore	developed	a	Connectivity	Score”:		Methods	section	9	

5. Characterizing	small-molecule	function.	“This	led	to	58,820	expected	relationships	that	could	plausibly	
be	recovered	in	the	CMap-L1000v1	compendium”:	Methods	section	12	

6. Defining	perturbagen	classes	(PCLs)	
a. “These	 perturbagen	 classes	 (PCLs)	 were	 then	 further	 refined	 by	 excluding	 from	 the	 PCL	 any	

compounds	that	failed	to	empirically	connect	with	their	cognate	class	members	based	on	L1000	
connectivity	analysis”:	Methods	section	13	

b. “We	next	asked	whether	drugs	with	established	MOA	also	had	unexpected,	strong,	and	selective	
connections	to	a	validated	PCL.	Selectivity	was	defined	as	the	fraction	of	PCLs	to	which	a	drug	
failed	 to	 connect	 at	 a	 given	 τ	 threshold.	 132	 drugs	 (3.9%)	 had	 such	 off-target	 connections”:	
Methods	section	13	

7. Cellular	context.	“Of	1,399	(58%)	compounds	active	in	at	least	3	cell	lines,	26%	(corresponding	to	15%	
of	 all	 compounds)	 produced	 highly	 similar	 signatures	 across	 the	 entire	 panel,	 whereas	 perhaps	 not	
surprisingly,	 the	 remainder	 were	 active	 in	 only	 1	 or	 2	 cell	 lines	 or	 produced	 a	 diversity	 of	 cellular	
signatures”:	Methods	section	14.		

8. Identifying	 bioactive	 subsets	 of	 small-molecule	 screening	 libraries.	 “We	 found	 that	 whereas	
2,232/2,429	 (92%)	 established	 drugs	 yielded	 a	 strong	 L1000	 transcriptional	 response	 defined	 as	
Transcriptional	Activity	Score	(TAS)	>0.2”:	Methods	section	15	
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2.	DATA	ACCESS	-	LIST	OF	DATASETS	USED	AND	WHERE	TO	DOWNLOAD	THEM	

All	 datasets	 used	 or	 referred	 to	 in	 this	 manuscript	 are	 available	 for	 download	 by	 all	 from	 the	 NCBI	 Gene	
Expression	Omnibus	(GEO)	under	accession	number	GSE92742.	

Name	 Brief	description	/	use	case	

Datasets	

Dataset—DSGEO	 Collection	of	publicly	available	gene	expression	profiles	on	Affymetrix	HGU133A	
arrays	that	was	used	to	select	landmark	genes	and	train	the	inference	model.	
	
rows:	22,268	features	
columns:	12,301	samples	

Dataset—DSGEO-OLS	 The	 matrix	 of	 weights	 learned	 by	 training	 the	 L1000	 inference	 algorithm,	
ordinary	least	squares	(OLS)	linear	regression,	on	DSGEO.	
	
rows:	21,290	inferred	features	
columns:	978	landmark	genes	+	intercept	=	979	

Dataset—DSCMAP-AFFXB01	 Pilot	 connectivity	Map	 dataset	 of	 455	 gene	 expression	 profiles	 of	 human	 cell	
lines	treated	with	164	small	molecule	compounds	that	were	used	in	simulations	
to	determine	the	optimal	number	of	landmarks.	
	
rows:	22,268	features	
columns:	455	samples	

Dataset—DSreproducibility	 Samples	of	purified	total	RNA	from	six	human	cancer	cell	lines,	purchased	from	
Life	Technologies,	were	subjected	 to	L1000	profiling.	L1000	expression	profiles	
were	generated	consisting	of	12	technical	replicates	for	each	of	the	six	cell	lines,	
all	 done	 in	 three	 consecutive,	 independent	 LMA	batches,	 yielding	 36	 replicate	
profiles	per	cell	line	and	a	total	of	216	total	profiles		(6	cell	line	x	12	replicates	x		
3	 batches).	 These	 profiles	were	 used	 to	 assess	 the	 technical	 reproducibility	 of	
the	L1000	assay.	
	
rows:	978	landmark	genes	
columns:	216	samples	
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Dataset—DSLM-KD	 We	 evaluated	 if	 probes	 designed	 against	 individual	 target	 landmark	 genes	
worked	in	the	multiplexed	gene	assay	format.	To	assess	the	specificity	of	L1000	
landmark	 probe	 measurements,	 we	 procured	 shRNAs	 from	 The	 RNAi	
Consortium	(TRC)	that	targeted	landmark	genes,	treated	MCF7	and	PC3	cell	lines	
with	 these	 shRNAs.	 The	 resulting	 dataset	 contains,	 as	 columns,	 an	 individual	
shRNA	targeting	a	 landmark	gene	performed	in	either	MCF7	or	the	PC3	cancer	
cell	 line.	 Rows	 are	 z-scores	 of	 all	measured	 landmark	 genes.	 For	 each	 gene	 in	
each	 sample,	 we	 computed	 differential	 expression	 values	 (z-scores)	 by	
comparing	the	gene’s	expression	value	in	the	given	sample	to	that	same	gene’s	
expression	values	in	all	other	samples.	
	
rows:	978	landmark	genes	
columns:	955	samples	

Dataset—DSGTEx-RNA-seq	 Compendium	 of	 8,555	 RNA-seq	 samples	 obtained	 from	 the	 GTEx	 consortium	
(version	6).	A	subset	of	3,176	of	these	samples	were	also	profiled	on	L1000	and	
were	used	to	compare	the	two	platforms.	
	
rows:	12,320	genes	
columns:	8,555	samples	

Dataset—DSGTEx-l1000	 From	the	GTEx	version	6	collection,	a	subset	of	3,176	samples	were	generously	
donated	by	the	GTEx	consortium	for	profiling	in	the	L1000	assay.	
	
rows:	970	landmark	+	11,350	inferred	=	12,320	genes	
columns:	3,176	samples	

Dataset—DSGTEx-RNA-seq-lmonly	 For	 convenience	 of	 use	 during	 assay	 validation	 and	 inference	 testing,	 we	
separated	out	from	the	overall	GTEx	RNA-seq	dataset	(DSGTEx-RNA-seq),	the	subset	
of	 landmark	 genes	 	 and	 refer	 to	 it	 as	DSGTEx-RNA-seq-lmonly	 	 in	 the	methods.	Note	
that	the	GTEx	pre-processing	provided	mappings	for	970	of	the	landmark	genes.	
	
rows:	970	landmark	genes	
columns:	8,555	samples	

Dataset—DSGTEx-RNA-seq-INF	 Inferred	 version	 of	 DSGTEx-RNA-seq	 dataset	 generated	 by	 applying	 DSGEO-OLS	 to	
DSGTEx-RNA-seq-lmonly.	
	
rows:	970	landmark	+	11,350	inferred	=	12,320	genes	
columns:	8,555	samples	

Below	are	the	datasets	corresponding	to	the	main	CMap-L1000	v1	resource	generated	and	used	in	this	paper.	
For	more	details	on	download	and	format	of	datasets	deposited	in	GEO,	please	see:	https://clue.io/GEO-guide	
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GSE92742_Broad_LINCS_Le
vel1_LXB_n1403502.tar.gz	

Level	1	-	RAW:	Archive	of	raw	LXB	files.	
	
1,403,502	scans	

GSE92742_Broad_LINCS_Le
vel2_GEX_delta_n49216x97
8.gctx.gz	&	
GSE92742_Broad_LINCS_Le
vel2_GEX_epsilon_n126992
2x978.gctx.gz	

Level	 2	 -	 GEX:	 Deconvoluted	 expression	 profiles.	 Data	 are	 provided	 in	 two	
separate	files,	one	each	for	two	slightly	different	iterations	of	the	landmark	gene	
set	(delta	and	epsilon).	Note	that	the	vast	majority	of	data	was	generated	using	
epsilon.	Very	poor	or	corrupt	LXB	files	were	discarded.	
	
rows:	978	landmark	genes	
columns:	1,319,138	profiles	

GSE92742_Broad_LINCS_Le
vel3_INF_mlr12k_n1319138
x12328.gctx.gz	

Level	3	-	QNORM:	LISS	and	quantile-normalized	expression	profiles.		
	
rows:	978	landmark	+	11,350	inferred	=	12,328	genes	
columns:	1,319,138	profiles	

GSE92742_Broad_LINCS_Le
vel4_ZSPCINF_mlr12k_n131
9138x12328.gctx.gz	

Level	4	-	ZS:	Differential	expression	profiles.	
	
rows:	978	landmark	+	11,350	inferred	=	12,328	genes	
columns.	1,319,138	profiles	

GSE92742_Broad_LINCS_Le
vel5_COMPZ.MODZ_n4736
47x12328.gctx.gz	

Level	5	-	MODZ:	Replicate-collapsed	differential	expression	signatures.	
	
rows:	978	landmark	+	11,350	inferred	=	12,328	genes	
columns:	473,647	signatures	

Laboratory	Protocols	

Doc	D01—L1000	assay	
Standard	Operating	
Protocol	
PDF		

The	full	protocol	for	the	laboratory	execution	of	the	L1000	assay.	

Doc	D02—Cell	culture	and	
treatment	conditions	
PDF		

Details	of	 culture	conditions	used	 for	each	of	 the	core	cell	 lines	 in	 the	current	
dataset.	Includes	cell	plating	density	and	media	used.	

Code	:	http://github.com/cmap/cmapM	

Code—Preprocessing	Level	
1	(RAW)	to	Level	2	(GEX)	

Deconvolute	978	gene	expression	values	from	500	Luminex	bead	colors.	

Code—Preprocessing	Level	
2	(GEX)	to	Level	3	(QNORM)	

1.	 To	mitigate	 non-biological	 variation,	 adjust	 samples	 according	 to	 80	 in-well	
invariant	 control	 genes	 and	 rescale	 such	 that	 all	 samples	 follow	 the	 same	
empirical	distribution.	
2.	Infer	the	expression	of	11,350	non-measured	genes	from	the	978	landmarks.	
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Code—Preprocessing	Level	
3	(QNORM)	to	Level	4	(ZS)	

Obtain	 measures	 of	 differential	 expression	 (z-score)	 for	 each	 gene	 in	 each	
sample.	
	

Code—Preprocessing	Level	
4	(ZSPC)	to	Level	5	(MODZ)	

To	 mitigate	 outlier	 samples	 and	 obtain	 a	 more	 robust	 signature	 of	 a	
perturbation,	 we	 collapse	 level	 4	 profiles	 into	 a	 composite	 signature	 using	 a	
weighted	averaging	procedure.	
	

Code—infer_ols	 Given	a	new	profile	with	the	978	landmark	gene	measurements,	use	DSGEO-OLS	to	
impute	the	values	of	genes	

Code—train_ols	 Given	the	DSGEO	and	landmark	gene	identities,	train	an	OLS	model	and	generate	
DSGEO-OLS	

 

3.	REDUCED	REPRESENTATION	OF	THE	TRANSCRIPTOME	

Dataset for Landmark selection 

We	assembled	a	large,	diverse	collection	of	12,063	gene	expression	samples	profiled	on	Affymetrix	HG-U133A	
microarrays	from	the	Gene	Expression	Omnibus		(GEO)	(Edgar	R	et	al.,	2002).	These	data	were	used	to	identify	
the	subset	of	universally	 informative	transcripts	to	be	measured,	which	we	term	‘Landmark	Genes’	 (Dataset	
DSGEO).		

Simulations	to	determine	appropriate	number	of	landmarks	

We	 sought	 to	 determine	 the	 optimal	 number	 of	 landmarks.	 To	 address	 this,	 we	 asked	 what	 number	 of	
landmarks	 would	 optimally	 recover	 the	 observed	 connections	 seen	 in	 the	 pilot	 Connectivity	 Map	 dataset	
based	on	Affymetrix	arrays	(Dataset	DSCMAP-AFFXB01).	We	assembled	a	collection	of	25	query	signatures	based	on	
prior	external	work	that	yielded	33	robust	and	expected	connections	in	the	pilot	DSCMAP-AFFXB01dataset	(Table	
S1).	At	each	value	of	k	(ranging	100-10,000),	we	generated	an	imputed	version	of	the	this	dataset	using	OLS	
regression	 (trained	 on	 samples	 from	 DSGEO)	 with	 a	 random	 selection	 of	 k	 landmarks	 as	 the	 independent	
variables,	queried	 it	with	 the	benchmark	signatures,	and	assessed	 the	percentage	of	connections	 that	were	
recovered.	We	repeated	this	procedure	10	times	for	each	choice	of	k.	Figure	S1A	shows	the	mean	percentage	
of	connections	recovered	as	a	function	of	k,	suggesting	that	on	average	82%	of	connections	are	recovered	at	
k=1,000	landmarks.	

Landmark	genes	-	selection	procedure	

We	 adopted	 a	 data-driven	 approach	 to	 select	 1,000	 landmark	 genes	 using	 the	 DSGEO	 dataset.	 Because	 the	
dataset	contains	a	non-uniform	representation	of	various	aspects	of	biology	(for	example	certain	tumor	types	
such	 as	 breast	 and	 lung	 cancer	 were	 disproportionately	 represented),	 we	 applied	 Principal	 Component	
Analysis	 (PCA)	 as	 a	 dimensionality	 reduction	 procedure	 to	 minimize	 bias	 toward	 any	 particular	 lineage	 or	
cellular	 state.	 In	 a	 reduced	 eigenspace	 of	 386	 components	 (which	 explained	 90%	 of	 the	 variance),	 cluster	
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analysis	was	performed	on	the	loadings	to	identify	clusters	of	commonly	co-regulated	transcripts.	We	applied	
an	iterative	peel-off	procedure	to	select	the	centroids	(Tseng	and	Wong	2005).	At	each	iteration	we	identified	
the	most	concordant	clusters	via	k-means.	For	each	cluster	the	transcript	closest	to	the	centroid	was	selected	
as	 a	 candidate	 landmark	 gene.	 All	 cluster	 members	 were	 subsequently	 dropped	 and	 the	 procedure	 was	
repeated	to	identify	additional	clusters	in	the	remaining	feature	space.	

Landmark	genes	-	baseline	expression	of	landmark	genes	across	a	diversity	of	tissue	types	

Our	procedure	for	selecting	Landmark	Genes	was	data-driven	and	the	simulations	presented	above	indicate	
that	both	the	landmark	and		inferred	genes	capture	relevant	information	about	cell	state.	However,	given	a	
new	state,	any	inference	algorithm	will	only	work	if	a	fair	number	of	the	landmark	genes	are	expressed	in	that	
state.	We	examined	expression	across	lineage	using	the	Genotype	Tissue	Expression	(GTEx)	RNA-seq	dataset	
(DSGTEx-RNA-seq)	of	3,176	patient-derived	expression	profiles	from	30	different	tissue	types	(Figure	S1B).	We	
quantified	the	expression	levels	of	the	landmark	genes	reported	in	the	dataset	and	observed	that	at	a	RPKM	
threshold	of	1	at	least	86%	of	Landmark	Genes	are	expressed	in	each	of	the	3,176	samples	(with	an	average	of	
92%	expressed	in	each	sample),	and	that	range	of	expression	is	similar	across	tissue	types. 

Landmark	genes	-	functional	enrichment	analysis	of	landmark	content	

Our	data-driven	procedure	suggested	genes	to	include	as	landmarks	based	on	analysis	of	the	12,063	sample	
compendium	 DSGEO.	 We	 then	 asked	 if	 genes	 suggested	 by	 this	 data	 driven	 approach	 were	 enriched	 in	
particular	known	biological	pathways	or	categories.	

For	every	landmark	gene	we	accessed	from	the	NCBI	Entrez	database	its	current	gene	description	and	family	
assignment.	We	also	annotated	every	landmark	gene	with	the	pathway	(as	defined	in	MSigDB)	in	which	it	 is	
thought	 to	 function	 (when	 available).	 Finally,	 we	 looked	 up	 its	 biological/molecular	 category	 from	 Gene	
Ontology	 (GO).	 These	 annotations	 were	 analyzed	 for	 functional	 enrichment	 to	 ask	 if	 the	 landmarks,	 when	
considered	 as	 a	 set,	 are	 dominated	 by	 a	 few	 functions	 or	 if	 on	 the	 whole	 they	 map	 to	 many	 different	
functions.	 For	 example,	 at	 one	 extreme	 the	 transcriptionally	 active	 genes	 could	 belong	 to	 basic	 regulatory	
processes	(e.g	transcription	factors).	

To	do	this	analysis	we	intersected	the	978	landmarks	with	a	database	of	gene	sets	compiled	in	Gene	Ontology	
using	the	hypergeometric	statistic	 (gene	to	GO	gene	ontology,	conditional	 test	 for	over-representation).	We	
used	the	R	Bioconductor	package	GOstats	(v2.36.0)	and	the	ontology	from	GO.db	(v3.2.2).	The	results	shows	
that	while	some	categories	are	enriched	(e.g	ATP	binding,	nucleoside/nucleotide	activity,	transcription	factor	
binding,	kinase	regulator	activity)	the	percentage	of	the	978	genes	that	are	in	any	such	set	is	small.	While	we	
did	observe	a	number	of	classes	 to	be	enriched	 in	 the	 landmark	genes,	 these	categories	 tend	to	be	generic	
(e.g.	 enzyme	 binding,	 protein	 kinase	 binding,	 catalytic	 activity,	 ATP	 binding)	 and/or	 contain	 only	 a	 small	
fraction	 of	 the	 landmark	 genes	 (e.g.	 protein	 kinase	 binding,	 which	 contains	 84	 of	 978	 landmarks).	 	 Taken	
together,	we	did	not	find	any	particular	functional	category	dominating	the	list	of	landmarks	chosen.	
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4.	L1000	ASSAY	PLATFORM	

Overview	of	the	L1000	assay		

Having	 established	 through	 simulations	 that	 measuring	 approximately	 1,000	 landmarks	 was	 sufficient	 to	
capture	the	majority	of	information	encoded	in	genome-wide	expression	profiles,	we	next	sought	to	develop	a	
laboratory	method	capable	of	actually	measuring	1,000	transcripts	at	low	cost.	For	this	purpose,	we	adapted	a	
method	we	previously	reported	 involving	90-plex	 ligation-mediated	amplification	(LMA)	followed	by	capture	
of	 the	 amplification	 products	 on	 fluorescently-addressed	 microspheres	 (beads)	 (Peck	 et	 al.,	 2006).	 We	
extended	 this	method	 to	 a	1,000-plex	 reaction.	Briefly,	 cells	 growing	 in	384-well	 plates	were	 lysed	and	 the	
mRNA	transcripts	captured	on	oligo-dT-coated	plates.	1,000	distinct	locus-specific	oligonucleotides	harboring	
a	unique	24-mer	barcode	sequence	were	 then	used	 to	perform	an	LMA	reaction,	and	 the	biotinylated	LMA	
products	 were	 detected	 by	 hybridization	 to	 optically	 addressed	 polystyrene	 microspheres	 (beads),	 each	
coupled	 to	 an	 oligonucleotide	 complementary	 to	 a	 barcode,	 and	 staining	 with	 streptavidin-phycoerythrin.	
Each	bead	was	analyzed	for	its	bead	color	(denoting	the	landmark	identity)	and	its	phycoerythrin	fluorescence	
intensity	(denoting	the	landmark	transcript	abundance)	using	a	Luminex	FlexMap	3D	system.	Because	only	500	
unique	bead	colors	are	commercially	available	we	developed	a	procedure	called	TagDuo	that	allows	two	genes	
to	be	detected	on	a	single	bead	color	(see	below).	The	final	L1000	assay	contained	probes	for	978	landmark	
transcripts	and	80	control	transcripts	chosen	for	their	invariant	expression	(see	below).		

Probes	and	primers	

Each	 transcript	 of	 interest	 was	 targeted	 with	 an	 upstream	 and	 downstream	 probe	 pair.	 Upstream	 and	
downstream	 probes	 were	 each	 designed	 with	 a	 20nt	 gene	 specific	 region	 (40nt	 contiguous	 sequence	 per	
probe	 pair),	 a	 unique	 identifying	 barcode,	 and	 a	 universal	 primer	 site.	 	 The	 gene	 specific	 sequences	 were	
blasted	against	the	human	genome	to	verify	that	each	is	unique	to	the	targeted	gene	of	interest,	as	described	
in	the	steps	below.	In	addition	to	gene	specific	sequence,	upstream	probes	contained	a		T7	primer	site,	and	a	
24-nucleotide	(nt)	barcode,	and	downstream	probes,	which	were	5’	phosphorylated,	contained	the	T3	primer	
site.	Barcode	 sequences	are	 shown	 in	 supplementary	Table	S2.	Probes	were	 synthesized	by	 IDT	 (Integrated	
DNA	Technologies).	

We	followed	an	iterative	process	of	probe	design	followed	by	empirical	probe	validation,	as	follows,	until	we	
achieved	~1,000	landmark	genes	with	a	validated	probe.		

1. Landmark	genes	proposed	based	on	computational	analysis.	
2. For	each	gene,	select	a	40	base	sequence	using	the	following	design	principles,	then	split	into	two	20-

mers	
a. Empirical	probe	design	rules:	

i. the	region	must	be	contiguous	with	no	gaps	
ii. must	be	3’	biased	to	minimize	RNA	degradation	
iii. choose	regions	with	few	repeats	to	minimize	cross-reactivity	

3. Perform	computational	 sequence	QC	by	aligning	against	human	 reference	genome	 (assembly	HG19)	
using	BLAT	(Kent	2002)		

a. Ensure	a	perfect	alignment	to	intended	gene's	reference	sequence	
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b. Check	for	non-specific	alignment	of	the	probe	sequence	to	other	genes	
c. If	either	checks	(a)	or	(b)	fail,	then	redesign	the	probe	sequence	

4. Build	upstream	and	downstream	probes	using	T7	and	T3	primer	sites	and	FlexMAP	tag	
a. T7	primer	site		5’	TAA	TAC	GAC	TCA	CTA	TAG	GG	3’	
b. T3	primer	site		5’	TCC	CTT	TAG	TGA	GGG	TTA	AT	3’	
c. Uni-bio-T7								5’/5Bio/TAA	TAC	GAC	TCA	CTA	TAG	GG	3’	
d. Uni-T3															5’	ATT	AAC	CCT	CAC	TAA	AGG	GA	3’	

	

Cell	lysate	preparation	

Cells	were	cultured	in	appropriate	media	and	40	μl	was	transferred	into	each	well	of	a	384-well	clear	bottom,	
tissue	culture	treated	plate	with	an	automatic	liquid	handler	(for	more	detail	about	determining	the	optimum	
cell	densities,	see	Doc	D02).	Plates	were	incubated	at	37°C,	5%	CO2.		Cells	are	either	treated	with	chemical	or	
genetic	perturbations,	the	details	of	which	are	reported	in	section	6	below.		For	cell	lysis,	media	was	removed	
from	the	wells	without	disturbing	the	cells	and	25	μl/well	of	TCL	Lysis	Buffer	(Qiagen)	was	added.	Plates	were	
sealed	with	adherent	foil	seals	and	incubated	at	room	temperature	for	30	minutes	prior	to	storage	at	-80°C.	

Coupling	barcodes	to	Luminex	beads	

To	 detect	 gene-specific	 sequences,	 Luminex	 beads	were	 coupled	 to	DNA	barcodes	 complementary	 to	 each	
barcode	used	in	our	collection	of	probes.		Because	Luminex	produces	500	distinct	bead	colors	and	the	L1000	
set	 consists	 of	 978	 genes,	 2	 barcodes	 were	 coupled	 to	 beads	 of	 each	 color	 (see	 below);	 this	 was	 done	 in	
separate	batches	-	one	barcode	per	batch	-	and	then	the	pairs	were	mixed	in	a	2:1	ratio	prior	to	use.	Luminex	
magnetic	beads	were	added	in	500	μl	aliquots	to	each	well	of	96	deep-well	plates.		Beads	were	pelleted	and	
resuspended	 in	 62.5	 μl	 binding	 buffer	 (0.1	M	 2-	 [N-morpholino]ethanesulfonic	 acid;	 pH	 4.5),	 to	which	was	
added	 100	 pmol	 capture	 barcode.	 	 6.25	 μl	 of	 freshly	 prepared	 10	mg/ml	 aqueous	 solution	 of	 1-ethyl-3-(3-
dimethylaminopropyl)	 carbodiimide	 hydrochloride	 (Pierce,	 Milwaukee,	 WI,	 USA)	 was	 added	 to	 each	 well	
followed	by	incubation	at	room	temperature	in	the	dark	for	30	minutes.		This	step	was	repeated	and	then	180	
μl	0.02%	Tween-20	was	added.		Beads	were	pelleted	and	washed	in	0.1%	SDS	in	TE,	pH	8.0	buffer.		Beads	were	
stored	in	TE	in	the	dark	at	4°C	for	up	to	one	month.		Mixtures	of	beads	were	freshly	prepared	in	1.5X	TMAC	
buffer	(4.5	mol/l	tetramethylammonium	chloride,	0.15%	N-lauryl	sarcosine,	75	mmol/l	tris-HCl	[pH	8.0],	and	6	
mmol/l	EDTA	[pH	8.0]).	

Ligation-mediated	amplification	

For	 mRNA	 capture,	 20	 μl	 lysate	 was	 transferred	 to	 Turbocapture	 (Qiagen)	 plates	 coated	 with	 oligo	 dT.		
Following	a	60-minute	incubation	at	room	temperature,	unbound	lysate	was	removed	by	inverting	the	plates	
onto	a	highly	absorbent	towel	followed	by	centrifugation	at	1000	rpm	for	one	minute.	First-strand	cDNA	was	
prepared	from	the	mRNA	by	adding	5	μl	master	mix	consisting	of	#	units	M-MLV	reverse	transcriptase	and	#	
umol/l	of	each	dNTP.		Plates	were	incubated	at	37°C	for	90	minutes.	Probes	were	annealed	to	the	first-strand	
cDNA	using	5ul	Probe	Anneal	master	mix,	which	contains	100	femtomole	of	each	probe	in	1X	Taq	ligase	buffer	
(New	England	BioLabs,	 Inc.).	Denaturation	was	accomplished	by	 incubating	the	plates	at	95°C	 for	2	minutes	
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and	then	decreasing	the	temperature	from	70°C	to	40°C	over	a	6-hour	period.	Plates	were	then	inverted	onto	
an	absorbent	towel	and	spun	at	1,000	RPM	for	1	minute	to	remove	unbound	probe.	

To	ligate	juxtaposed	probe	pairs,	5	μl	mix	containing	2.5	units	Taq	DNA	ligase	(New	England	Biolabs)	in	ligase	
buffer	was	added,	plates	were	sealed,	and	incubation	proceeded	at	45°C	for	1	hour	followed	by	65°C	for	10	
minutes.	 The	plate	wells	were	emptied	as	described	above,	 and	 the	 resulting	 amplification	 templates	were	
subject	to	PCR	using	T3	and	5’-biotinylated	T7	universal	primers.	PCR	was	initiated	by	adding	15	μl	master	mix,	
containing	1.5	umole	of	each	primer,	2.4	nmol	of	each	dNTP,	and	4.8e-4	units	of	HotStarTaq	in	reaction	buffer.		
Plates	were	sealed		and	loaded	into	a	Thermo	Electron	MBS	384	Satellite	Thermal	Cycler.		Initial	denaturation	
was	performed	at	95°C	for	15	minutes,	and	then	the	plates	were	subjected	to	29	cycles	as	follows,	one	minute	
per	 step:	 	 92°C	 (denature),	 60°C	 (anneal),	 72°C	 (elongation).	 The	 resulting	 amplicons	 were	 gene-specific,	
barcoded,	and	biotinylated.	

Hybridization	of	amplicon	to	bead	

Because	a	sequence	complementary	to	the	barcode	on	each	probe	has	also	been	coupled	to	a	Luminex	bead,	
the	 amplicons	 (and	 hence	 the	 gene-specific	 sequence)	 can	 be	 identified	 by	 hybridization	 to	 the	 beads.	 	 A	
volume	 of	 5	 μl	 of	 PCR	 amplicon	was	 transferred	 to	 a	well	 containing	 30	 μl	 of	 L1000	 bead	mix	 (about	 350	
beads/region/well).	 The	 plate	 was	 sealed	 and	 incubated	 at	 95°C	 for	 2	 minutes	 to	 denature	 the	 DNA.		
Incubation	 continued	at	45°C	 for	18	hrs.	 	 Beads	were	pelleted,	washed,	 and	 stained	with	20	μl	of	 10	ng/ul	
streptavidin	R-phycoerythrin	conjugate	(Molecular	Probes)	in	1×	TMAC	buffer	(3	mol/l	tetramethylammonium	
chloride,	0.1%	N-lauryl	sarcosine,	50	mmol/l	tris-HCl	[pH	8.0],	4	mmol/l	EDTA	[pH	8.0])	at	45°C	for	ten	minutes.		

Tag	Duo	dual	detection	and	peak	deconvolution	

The	 Luminex	 FlexMap	3D	platform	 is	 capable	 of	 detecting	 500	different	 bead	 colors	while	 the	 L1000	 assay	
needs	to	measure	~1,000	mRNA	transcripts.	One	option	would	be	to	read	these	in	2	different	detection	sets,	
each	 of	 500.	 However,	 that	 detection	 strategy	 would	 introduce	 inevitable	 batch	 effects	 and	 also	 reduce	
throughput	of	detection	by	half.	

Therefore	we	devised	a	strategy	that	allowed	two	different	transcripts	to	be	identified	using	a	single	bead	
color.	The	978	landmarks	were	divided	into	pairs	and	barcodes	representing	each	gene	were	coupled	to	beads	
of	the	same	color	(one	gene	per	bead).	Genes	coupled	to	the	same	bead	type	(color)	in	two	separate	batches	
were	combined	in	a	ratio	of	2:1	prior	to	use.		When	the	beads	are	hybridized	with	the	sample	templates	and	
analyzed	by	the	Luminex	scanner,	two	values	are	obtained	from	each	bead:		one	indicating	the	color	of	the	
bead	and	the	other	indicating	the	intensity	of	the	signal,	which	is	a	reflection	of	the	expression	of	the	gene.		
Identification	of	the	bead	color	associates	the	intensity	to	the	correct	gene	pair	and	signal	intensity	provides	a	
measure	of	the	abundance	of	the	transcripts	of	the	two	genes.	Deconvolution	of	the	composite	fluorescent	
intensity	signal	into	its	component	gene	expression	values	is	done	computationally	as	described	in	8.	Data	Pre-
Processing	–	Raw	Data	to	Signatures	(see	also	Figure	1B).	To	make	it	easier	to	resolve	the	peaks,	rather	than	
pairing	genes	at	random,	during	design	of	the	L1000	system,	we	optimized	pairing	of	genes	to	maximize	the	
average	difference	in	their	expression	levels	across	the	training	GEO	compendium.	
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Detection	

Hybridization	 of	 amplicon	 to	 complimentary	 barcodes	 was	 detected	 using	 a	 Luminex	 FlexMap	 3D	 flow	
cytometer,	 which	 detects	 both	 bead	 color	 (i.e.,	 transcript	 identity)	 and	 the	 biotin	 label	 on	 the	 probe	 (i.e.	
transcript	abundance;	as	measured	by	the	phycoerythrin	channel).		Analysis	was	done	using	a	sample	volume	
of	40	μl.	

Invariant	genes	as	controls	for	data	QC	and	normalization	

We	developed	a	set	of	internal	controls	to	assess	quality,	to	provide	real-time	feedback	during	the	scanning	
process,	and	to	use	in	normalization.	Importantly,	rather	than	using	a	single	“housekeeping”	gene	(e.g.	
GAPDH),	we	adopted	an	approach	that	utilizes	control	values	across	the	entire	spectrum	of	gene	expression.	
We	adapted	the	approach	described	in	the	Illumina	BeadChip	studio	(Illumina,	n.d.)	by	defining	a	set	of	genes	
that	are	rank	invariant	across	all	samples.	To	identify	these	genes,	we	analyzed	human	gene	expression	
profiles	from	DSGEO	and	selected	genes	whose	expression	is	relatively	invariant	(coefficient	of	variation	<	10%)	
across	a	variety	of	tissue	types	and	experimental	conditions.	To	further	minimize	the	variance,	rather	than	
picking	single	genes	as	invariants,	we	grouped	the	genes	into	10	sets	of	8	genes	each	based	on	their	level	of	
expression	across	all	samples.	The	10	gene	sets	were	ordered	by	increasing	levels	of	expression,	with	the	first	
level	corresponding	to	genes	with	the	lowest	expression	and	the	tenth	level	to	genes	most	highly	expressed.	
Because	these	gene	sets	exhibit	a	consistent	expression	pattern,	they	can	be	used	to	adjust	the	data	for	non-
biological	variation.	Importantly,	in	addition	to	being	useful	for	data	normalization,	the	invariant	genes	provide	
a	simple	quality	check	in	real	time	as	detection	occurs,	which	is	valuable	in	a	high-throughput	process. 

5.	OPTIMIZATION	AND	VALIDATION	OF	L1000	

The	 L1000	 assay	 is	 optimized	 for	 the	 rapid	 measurement	 of	 endogenous	 gene-expression	 of	 selected	
transcripts.	 In	 addition,	 substantial	 automation	was	 introduced	 into	 the	 assay	 protocol	 so	 as	 to	 enable	 the	
massive	scale-up	in	data	generated	with	minimal	personnel	needs—a	laboratory	team	of	~4	generated	most	
of	the	1	M	profiles	over	a	48	month	period.	

Given	the	notably	different	technological	approach	to	building	the	compendium,	we	evaluated	the	operating	
characteristics	of	the	platform	to	establish	reproducibility,	sensitivity	and	stability	of	the	platform.	

Reproducibility	of	L1000—using	reference	mRNA	

Samples	 of	 purified	 total	 RNA	 from	 six	 human	 cancer	 cell	 lines,	 purchased	 from	 Life	 Technologies,	 were	
subjected	to	L1000	profiling.	L1000	expression	profiles	were	generated	for	six	cell	lines	in	3	independent	LMA	
batches,	each	with	12	technical	replicates,	for	a	total	of	216	total	profiles	(6	cell	line	x	12	replicates	x	3	batches	
=	216).	Within	each	cell	 line,	we	computed	 the	Spearman	correlation	between	all	pairwise	combinations	of	
replicates	 (data	 level	3,	 see	below),	excluding	 the	comparison	of	each	 replicate	 to	 itself.	Three	examples	of	
paired	 comparisons	 and	 the	 full	 spectrum	of	 correlations	 are	 shown	 in	 Figure	 S1C.	We	 then	 computed	 the	
median	 correlation	 between	 each	 replicate	 and	 all	 others,	 yielding	 36	 values	 per	 cell	 line;	 and	 finally	
summarized	using	the	median	of	medians	so	as	to	derive	one	value	per	cell	line.	These	analyses	showed	that	in	
general	the	L1000	assay	has	very	high	technical	reproducibility.	
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Reproducibility	of	L1000—using	reference	mRNA	and	cross	platform	analysis	

Samples	of	purified	total	RNA	from	six	human	cancer	cell	 lines	were	purchased	from	Life	Technologies.	One	
gene-expression	profile	per	sample	was	generated	using	the	Affymetrix	GeneChip	HG-U133	Plus	2.0	Array,	the	
Illumina	Human	HT-12	v4	Expression	BeadChip	Array	and	mRNA-seq	(Illumina	Hi-Seq)	by	Expression	Analysis,	a	
genomics	contract	research	organization.	The	L1000	samples	were	profiled	 in	multiple	replicates.	Data	were	
normalized	within	platform	(level	3,	see	below	for	details).	For	each	cell	line,	we	selected	the	L1000	replicate	
with	 highest	 technical	 quality	 (by	 LISS	 goodness	 of	 fit,	 see	 below)	 for	 comparison	 with	 the	 other	 three	
platforms.	We	then	performed	ComBat	batch	correction	to	adjust	for	cross-platform	differences	(Johnson,	Li,	
and	Rabinovic	2007),	and	subjected	the	data	to	hierarchical	clustering	in	the	space	of	the	952	genes	commonly	
measured	by	all	four	platforms.	We	observe	that	the	data	cluster	by	cell	line	and	not	by	platform,	suggesting	
that	the	cross-platform	differences	are	smaller	than	the	biological	differences	between	cell	lines.		

Measurement	of	L1000	using	shRNAs	

The	 fidelity	 of	 L1000	 depends	 on	 being	 able	 to	 quantify	 endogenous	 levels	 of	 intended	 landmark	 genes	
accurately	and	specifically.	In	synthesizing	landmark	gene-specific	oligonucleotide	probes	we	followed	several	
computational	procedures	that	maximized	matches	to	the	target	DNA	sequence	while	minimizing	non-specific	
hybridization.	However,	as	sequence-based	QC	methods	are	imperfect	and	measurement	of	a	transcript	might	
degrade	in	a	multiplexed	gene	assay	(e.g	due	to	cross	hybridization),	we	designed	an	experiment	to	empirically	
confirm	probe	performance.		

To	assess	the	specificity	of	L1000	landmark	probe	measurements,	we	procured	shRNAs	that	target	landmark	
genes	from	The	RNAi	Consortium	(TRC).	We	restricted	this	experiment	to	shRNAs	that	had	been	validated	to	
down-regulate	their	intended	target	through	RT-PCR	assays	conducted	by	TRC.	We	plated	MCF7	and	PC3	cells	
onto	384-well	plates	and	used	standard	arrayed	lentiviral	protocols	to	infect	the	cells	with	these	shRNAs,	each	
of	which	targets	a	specific	landmark	gene,	and	then	profiled	the	cells	by	L1000.	

The	 resulting	 L1000	 signature	was	used	 to	 calculate	 the	 targeted	 landmark	 gene	down-regulation	and	 rank	
relative	 to	 all	 other	 shRNAs	 in	 the	 experiment.	 For	 each	 gene	 in	 each	 sample,	 we	 computed	 differential	
expression	values	(z-scores)	by	comparing	the	gene’s	expression	value	in	the	given	sample	to	that	same	gene’s	
expression	 values	 in	 all	 other	 samples	 in	 the	 cohort	 and	 then	 collapsed	 replicate	 samples	 (DSLM-KD).	 The	
resulting	 dataset	 contains,	 as	 columns,	 an	 individual	 shRNA	 targeting	 a	 landmark	 gene	performed	 in	 either	
MCF7	or	 the	PC3	cancer	cell	 line.	Rows	are	replicate-collapsed	z-scores	 (level	5,	 see	below)	of	all	measured	
landmark	genes.		

A	probe	designed	against	a	landmark	gene	was	progressed	if	its	z-score	when	targeted	by	an	shRNA	was	-2.0	
or	lower.	When	the	initial	probe	design	showed	non-specific	reactivity,	failed	to	correlate	with	reference	
mRNA	standards	or	failed	to	register	adequate	knockdown,	we	redesigned	the	probe	sequence	and	retested.	
After	a	few	cycles	of	iteration	between	design	and	empirical	testing,	we	were	able	to	show	that	846	of	the	955	
targeted	landmark	genes	(89%)	were	down-regulated	by	at	least	one	targeting	shRNA	(z-scores	less	than	-2).	
However,	a	low	z-score	doesn't	in	itself	imply	specificity—for	example,	a	sample	corrupted	by	dead	cells	might	
have	yielded	low	mRNA	across	the	board,	leading	to	many	genes	with	low	z-scores.	To	guard	against	non-
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specific	reduction	of	z-scores,	we	compared	the	distribution	of	targeted	gene	z-scores	to	non-targeted	gene	z-
scores	and	observed	that	the	former	was	significantly	left-shifted,	indicating	that	the	observed	down-
regulation	is	largely	specific	to	the	targeted	genes	(Figure	1C,	middle	panel).	For	each	targeted	gene,	we	
computed	the	rank	of	its	z-score	in	the	experiment	in	which	it	was	targeted	relative	to	all	other	experiments	in	
the	dataset	where	it	was	not	targeted.	We	observe	that	841	of	955	genes	(88%)	rank	in	the	top	1%	and	907	of	
955	(95%)	rank	in	the	top	5%	(Figure	1C,	bottom	panel).	These	results	indicate	that	the	large	majority	of	L1000	
probes	are	specifically	measured. 

Definition	of	Recall	(R)	

An	 absolute	measure	 of	 similarity	 (e.g.	 Spearman	 correlation)	 between	 samples	 or	 genes	 does	 not	 in	 itself	
convey	 how	 uncommon	 that	 similarity	 is.	 Hence,	 in	 addition	 to	 computing	 the	 similarity	 (sim)	 between	
designated	samples	or	genes,	 it	 is	also	useful	 to	compare	 this	 similarity	value	 to	a	 reference	distribution	of	
similarity	 values	 (SIMnull),	which	 can	 aid	 in	 interpretation	of	 sim.	 To	 that	 end,	we	 compute	 recall	 (R)	 as	 the	
fraction	of	SIMnull	 that	 is	 lower	 than	sim.	High	R	 values	correspond	 to	unusually	high	values	of	sim.	 Thus,	R	
provides	 an	 assessment	 of	 how	well	 a	 particular	 pair	 of	 samples	 or	 genes	match	 each	 other	 relative	 to	 an	
appropriate	null.		

Reproducibility	of	L1000—comparisons	to	RNA-seq	from	GTEx	

We	sought	to	compare	expression	profiles	generated	using	L1000	with	those	generated	using	Affymetrix	and	
RNA-seq,	 the	most	widely	 employed	 platforms	 for	 gene	 expression	 profiling.	 In	 conjunction	with	 the	NIH’s	
Genotype	 Tissue	 Expression	 (GTEx)	 project	 (http://commonfund.nih.gov/GTEx/index),	 we	 profiled	 3,176	
samples	on	L1000	and	obtained	from	GTEx	the	RNA-seq	(Illumina	TrueSeq	RNA	sequencing)	data	for	different	
aliquots	 of	 these	 same	 samples	 (DSGEO-RNA-seq	 and	 DSGEO-L1000).	 The	 data	 were	 quantile	 normalized	
independently	 by	 platform	 (level	 3,	 see	 below)	 and	 then	 batch-corrected	 using	 the	 ComBat	 algorithm,	 an	
empirical	 Bayes-based	 method	 commonly	 used	 to	 remove	 batch	 effects	 across	 gene	 expression	 datasets	
(Johnson,	Li,	and	Rabinovic	2007).	

A	small	subset	of	these	samples	were	also	profiled	on	Affymetrix,	and	Figure	1E,	top	panel,	shows	comparisons	
of	the	platforms	with	each	other	for	a	single	such	sample.	We	observe	that	L1000	measurements	and	inferred	
expression	values	are	as	similar	with	RNA-seq	as	RNA-seq	is	with	Affymetrix.	

To	more	thoroughly	compare	L1000	to	RNA-seq,	we	then	computed	sample	self-correlations	(using	Spearman	
rank	correlation)	 for	 the	3,176	samples	 in	 the	space	of	 the	970	genes	directly	measured	by	both	platforms.	
There	are	8	L1000	landmark	genes	that	were	not	included	in	the	DSGEO-RNA-seq.	Level	3	L1000	data	were	used,	
and	 the	GTEx	RNA-seq	data	were	quantile	normalized,	 log2	scaled	1+RPKM	values.	The	overlaid	histograms	
(Figure	 1E,	 bottom	 left)	 show	 the	 distributions	 of	 the	 self-	 and	 non-self-correlations	 (correlations	 between	
different	samples)	for	all	3,176	samples.	We	observe	that	the	3,176	samples	have	a	median	self-correlation	of	
0.84,	and	that	this	distribution	is	notably	right-shifted	relative	to	the	non-self-correlations.	We	then	computed	
the	recall	(R)	for	each	sample	and	we	observed	that	3,103	of	the	3,176	samples	(98%)	have	a	R	below	0.01,	
and	all	but	5	samples	(99.84%)	have	a	R	above	0.95,	indicating	the	the	expression	profiles	generated	on	L1000	
are	 highly	 similar	 with	 their	 RNA-seq-derived	 equivalents	 (Figure	 S1D).	 For	 each	 L1000	 sample,	 R	 was	
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computed	 using	 the	 distribution	 of	 correlations	 between	 the	 given	 L1000	 sample	 and	 all	 other	 RNA-seq	
samples	as	SIMnull.	

6.	EVALUATING	GENE	INFERENCE	

Gene	inference	model	training	

Using	 the	 978	 landmark	 genes	 as	 independent	 variables,	we	 trained	 an	 ordinary	 least	 squares	 (OLS)	 linear	
regression	 model	 on	 the	 12k	 sample	 DSGEO	 dataset,	 resulting	 in	 DSGEO-OLS,	 a	 matrix	 of	 linear	 coefficients	
between	each	landmark	gene	and	each	inferred	feature.	Code	is	available	as	above.	

The	DSGEO-OLS	based	inference	model	reports	on	the	22,268	features	(probe	sets)	measured	on	the	Affymetrix	
U133A	chip,	which	map	to	13,210	unique	genes	(based	on	NCBI	Entrez	Gene	as	of	July	27,	2016)	.	The	L1000	
assay	directly	measures	978	probe	set	ids	(corresponding	to	978	unique	genes)	and		DSGEO-OLS	inference	model	
applied	 to	 the	 L1000	 measurements	 infers	 the	 remaining	 21,290	 probe	 sets.	 These	 21,290	 probe	 sets	
correspond	 	 to	 12,688	 unique	 genes,	 of	 which	 456	 genes	 overlap	 with	 landmark	 genes—some	 genes	 are	
measured	on	multiple	Affymetrix	U133A	probe	set	ids.	Taken	together,	applying	the	DSGEO-OLS	model	to	a	new	
L1000	sample	generates	value	as	below.	Gene	breakdown	of	features	produced	by	infer_ols:	

● Measured:	978	
● Measured	and	inferred	(L1000	has	a	probe	set	for	both):	456	
● All	inferred	(including	the	456	that	also	have	a	landmark	probe	set):	12,688	
● Inferred	only:	12,232	
● Measured	plus	inferred	(all	genes	reported	by	L1000):	13,210	

	
Technical	note	on	redundancy	in	probe	sets	

To	make	the	output	of	L1000-based	DSGEO-OLS	inference	more	generalizable,	we	converted	it	to	entrez	gene	IDs.	
This	was	done	by	comparing	each	of	the	inferred	probe	sets	to	its	measured	equivalent,	where	possible,	using	
a	test	dataset	of	GTEx	RNA-seq	expression	profiles	(DSGTEx-RNA-seq),	described	in	more	detail	below.		This	RNA-
seq	 dataset	 contains	measurements	 for	 970	 of	 the	 978	 landmark	 genes	 and	 11,350	 of	 the	 12,232	 inferred	
genes	(corresponding	to	17,996	probesets),	for	a	total	of	12,320	genes	common	to	both	platforms.	This	cross-
platform	comparison	resulted	in	a	reduction	of	the	feature	space	of	DSGEO-OLS		from	22,268	probesets	to	12,328	
genes	-	the	12,320	genes	common	with	DSGTEx-RNA-seq	as	well	as	the	8	landmarks	that	were	not	common.	

Identifying	well	inferred	genes	

We	 sought	 to	 assess	 the	 inference	 quality	 of	 the	 12,232	 features	 corresponding	 to	 inferred-only	 genes	 in	
DSGEO-OLS.	 For	 this	 test,	 we	 used	 a	 compendium	 of	 8,555	 RNA-seq	 profiles,	 generated	 as	 part	 of	 the	 GTEx	
project.	We	applied	the	DSGEO-OLS	inference	model	on	DSGTEx-RNA-seq-lmonly	which	resulted	in	DSGTEx-RNA-seq-INF.		

To	assess	inference	performance,	we	computed	the	correlation	of	every	inferred	feature	in	DSGTEx-rnase-INF	to	its	
corresponding	gene	in	DSGTEx-RNA-seq.	We	then	analyzed	these	data	to	identify	genes	with	statistically	significant	
inferred	 to	 measured	 correlation,	 as	 these	 genes	 represent	 the	 most	 reliable	 inference	 predictions.	 To	
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generate	a	null	distribution	of	correlations,	we	computed	the	correlation	between	every	inferred	probeset	in	
DSGTEx-RNA-seq-INF	and	every	non-matched	gene	 in	DSGTEx-RNA-seq.	We	then	computed	p-values	 for	every	 inferred	
gene	 by	 computing	 the	 percentage	 of	 the	 null	 distribution	with	 higher	 correlation	 than	 the	 given	 inferred	
gene.	We	observed	that	9,196	of	the	11,350	inferred	genes	(81%)	correlated	with	p-value	less	than	or	equal	to	
0.05.	 This	 set	 of	 9,196	 inferred	 genes,	 plus	 the	 978	 landmarks,	 are	 referred	 to	 as	 the	 Best	 Inferred	Genes	
(BING)	and	are	presented	in	Table	S3.	

Gene	space	summary	

The	 L1000	 assay	 directly	measures	 978	 genes	 and	 infers	 11,350	more,	 for	 a	 total	 of	 12,328	 genes.	 Of	 the	
11,350	inferred	genes,	9,196	are	considered	well	inferred,	based	on	the	analysis	described	above.	All	datasets	
are	provided	in	the	full	12,328	gene	space.	Table	S3	indicates	which	genes	are	measured	or	well-inferred.	

7.	GENERATION	OF	THE	FIRST	MILLION	L1000	PROFILES	-	EXPERIMENTAL	DESIGN	

Overview 

L1000	 combines	 locus-specific	 ligation-mediated	 amplification	with	 an	 optically	 addressed	microsphere	 and	
flow	cytometric	detection	system	to	measure	selected	landmark	genes.	The	result	is	a	1,000-plex	assay	at	very	
modest	 cost	 which	 has	 allowed	 for	 the	 large	 scale-up	 reported	 in	 this	 study.	 However,	 equally	 important	
enablers	were	process	improvements	and	automation,	including:	

1. 384-well	 plates:	 Increased	 sample	 throughput	 as	 opposed	 to	 experiments	 performed	 on	 cartridges,	
glass	slides,	etc. 

2. Crude	 cell	 lysates:	 While	 other	 plate-based	 formats	 for	 expression	 screening	 are	 available	 (e.g	
Affymetrix	96-well	plates,	HTG	plate	format),	they	require	extensive	upstream	sample	preparation.	In	
contrast,	L1000	input	works	with	whole	cell	lysate	without	the	need	for	mRNA	purification. 

3. Detection	 by	 high	 speed	 flow	 cytometer:	 The	 FlexMAP	 3D	 detection	 instrument	 detects	 500	 bead	
colors	in	a	high-throughput	flow	cytometer. 

Control	perturbations	

The	table	below	describes	the	control	types	for	compound	and	genetic	experiments.	The	number	of	control	
experiments	typically	accounted	for	between	16	and	32	wells	on	a	384	well	plate.	

	 Compound	Experiments	 Genetic	Experiments	

Positive	Controls	 ● Compounds	known	to	give	robust,	
reproducible	signatures	(e.g.,	
trichostatin-a)	

● Reagents	targeting	landmark	
genes	

● Reagents	targeting	well-
annotated	genes	

Negative	Controls	 ● Untreated	cells	
● Vehicle	treatment	only	(DMSO)	

● Untreated	cells	
● Vector	treatment	only	
● Reagents	targeting	non-
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human	genes	(GFP,	RFP,	
Luciferase,	etc.)	

	

Replicates	

All	perturbational	profiles	were	generated	 in	 triplicate	 (minimum	of	3	 independent	 treatments	of	cells	with	
reagent	or	control).	Note	that	a	small	number	of	signatures	result	from	fewer	than	3	replicates	in	cases	where	
one	replicate	failed	due	to	malfunctioning	equipment	or	other	forms	of	technical	error.	

Cell	Types	

An	 important	 goal	 of	 the	 CMap/LINCS	 undertaking	 is	 the	 collection	 of	 data	 that	 span	 different	 types	 of	
perturbations	(e.g.	genetic	and	pharmacologic)	and	that	embrace	biological	complexity	and	diversity	(i.e.	are	
not	 optimized	 to	 one	 particular	model	 or	 cell	 type).	 	 In	 that	 regard,	 it	would	 be	 of	 value	 to	 have	 a	 set	 of	
perturbations	applied	to	a	standard	set	of	cell	types	(as	opposed	to	different	cell	lines	that	are	each	exposed	
to	a	different	set	of	perturbations).		The	current	CMap	dataset	contains	data	generated	systematically	on	a	set	
of	9	core	cancer	cell	 lines	and	sparse	data	on	68	other	cell	 lines	representing	a	mix	of	cancer,	 immortalized	
normal,	 and	 primary	 lines	 across	 a	 diversity	 of	 tissue	 types.	 To	 ensure	 that	we	 are	 able	 to	 generate	 high-
quality	 L1000	data	 on	 a	 given	 cell	 line,	we	 generate	 baseline	 data	 for	 that	 cell	 line	 and	 assess	 the	 optimal	
seeding	density.	We	typically	 test	a	 range	of	densities	and	select	 the	one	that	yields	 the	most	 robust	signal	
while	minimizing	dramatic	expression	changes.	

Selection	of	compound	dose	

The	 selection	 of	 appropriate	 dose	 is	 always	 a	 topic	 of	 intense	 debate.	 	We	 believe	 that	 there	 is	 no	 single	
“correct”	dose	for	any	given	small	molecule,	and	in	fact	the	range	of	different	cellular	effects	of	a	compound	
at	different	concentrations	can	be	of	interest.		In	time,	a	full-scale	CMap	effort	might	indeed	include	profiling	
across	a	diversity	of	concentrations.		For	this	initial	effort,	however,	we	believed	that	that	community	would	
be	best	served	by	profiling	a	single	dose	for	a	large	number	of	pharmacologic	perturbations	in	a	large	number	
of	 cell	 types	 (as	 opposed	 to	 a	 limited	 number	 of	 perturbations	 studied	 in	 detailed	 dose	 response).	 	 We	
therefore	adopted	the	following	practical	strategy.		When	possible,	we	used	the	concentration	reported	to	be	
effective	in	cell	culture,	or	the	concentration	at	which	the	compound	scored	in	a	primary	screen.	Where	this	
information	 was	 unavailable,	 we	 used	 a	 concentration	 of	 10	 μM	 (as	 is	 standard	 practice	 in	 most	 high-
throughput	small-molecule	screens).	A	subset	of	our	data	has	been	generated	at	multiple	doses	and	in	future	
profiling	efforts	will	expand	the	number	of	doses	for	many	additional	compounds.		

Selection	of	treatment	duration	

As	with	dose,	there	is	 likely	no	single	“correct”	treatment	time	for	compounds	or	genetic	perturbations.	We	
therefore	selected	a	small	number	of	timepoints	across	which	data	were	generated	systematically	such	that	
the	dataset	was	more	or	less	standardized	along	this	dimension.	For	compounds,	the	treatment	times	were	6	
and/or	24	hours	(many	compounds	were	profiled	at	both	timepoints).	For	genetic	reagents,	we	largely	profiled	
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at	96	hours,	though	a	subset	of	reagents	were	also	profiled	at	other	timepoints	to	explore	their	effects.	

Cell	culture	methods	for	small-molecule	perturbations			

Compounds	were	obtained	at	1,000X	final	concentration	in	DMSO	in	384-well	plates	from	the	Broad	Institute’s	
Compound	 Management	 Platform	 and	 applied	 to	 freely	 cycling	 human	 cells	 also	 in	 384-well	 plates	 in	
accordance	with	protocols	developed	for	the	Connectivity	Map.		

For	treatment,	cells	were	plated	into	384-well	plates	at	their	optimized	seeding	densities	6	or	24	hours	prior	to	
treatment	using	a	 robotic	 liquid	handler.	 Stock	 compounds	 (1,000x)	were	pinned	 into	 the	 cell	 culture	plate	
using	 the	CyBio	pintool.	When	treating	 large	batches	of	plates,	we	use	an	 intermediate	working	stock	plate	
(100-fold)	diluted	in	cell	culture	medium,	and	then	transfer	the	diluted	stocks	to	the	cell	culture	plates	using	
Cybio	384-well	tips	(another	10-fold	dilution).	Treated	cells	were	incubated	for	6	or	24	hours,	and	then	lysed	
by	 removal	 of	 the	 culture	media	 and	addition	of	 TCL	 lysis	 buffer	 using	 a	 liquid	handling	 system.	Cell	 lysate	
plates	were	sealed	using	a	plate	sealer,	 incubated	at	room	temperature	for	30	minutes	and	then	frozen	at	-
80°C	until	ready	for	L1000	profiling.		

Cell	culture	methods	for	genetic	perturbation	experiments	

Cell	 culture	 and	 lentiviral	 transfections	 for	 cDNA	 and	 shRNA	 treatments	 were	 performed	 according	 to	 the	
protocols	 from	 The	 RNAi	 Consortium	 (TRC),	 as	 described	 in	Moffat	 et	 al.	 2006.	 CRISPR	 Cas9	 infection	 and	
activity	 assays	 were	 performed	 according	 to	 Doench	 et	 al.	 2014.	 CRISPR	 sgRNA	 cell	 culture	 and	 lentiviral	
transfections	were	also	performed	according	to	Moffat	et	al.	2006.	

8.	DATA	PRE-PROCESSING	-	RAW	DATA	TO	SIGNATURES	

Data	processing	-	overview	

The	L1000	automated	data	processing	pipeline	captures	raw	data	from	Luminex	scanners	as	 it	 is	generated,	
deconvolutes	978	transcripts	from	only	500	Luminex	bead	colors,	normalizes	the	data	based	on	80	invariant	
control	 genes,	 infers	 the	 expression	 of	 the	 non-measured	 transcripts,	 determines	 differentially	 expressed	
genes	 following	a	perturbation	 compared	 to	 controls,	 and	generates	 composite	 signatures	 across	biological	
replicates.	Along	the	way	the	data	are	subjected	to	rigorous	quality	control	filters	at	both	the	sample	and	plate	
level.	

Level	1	-	Raw	(LXB)	

Level	1	data	comprises	the	bead	identity	and	raw	fluorescent	intensity	(FI)	values	measured	for	every	bead	
detected	by	the	Luminex	scanner.	The	FI	is	proportional	to	the	amount	of	amplicon	bound	to	the	bead,	and	
hence	also	proportional	to	the	transcript	abundance	of	the	genes	that	particular	bead	is	interrogating. 

Level	2	-	Deconvolute	(GEX)	

The	raw	FI	values	associated	with	each	bead	color	are	analyzed	in	a	peak	deconvolution	step	to	associate	the	
expression	levels	with	the	appropriate	genes.	This	step	is	necessary	because	each	bead	color	is	associated	with	
two	genes	rather	than	one.	To	facilitate	the	analysis,	separate	bead	batches	that	identify	each	gene	are	mixed	
in	a	2:1	ratio	for	use	in	the	assay.	To	deconvolute	the	composite	fluorescent	intensity	signal	into	its	two	
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component	expression	values	and	associate	them	with	the	appropriate	genes,	we	construct	a	histogram	of	FI	
values.		This	yields	a	distribution	that	generally	consists	of	two	peaks,	a	larger	one	that	designates	expression	
of	the	gene	for	which	a	larger	proportion	of	beads	are	present,	and	a	smaller	peak	representing	the	other	
gene.	Using	the	k-means	clustering	algorithm,	the	distribution	is	partitioned	into	two	distinct	clusters,	such	
that	the	ratio	of	cluster	membership	is	as	close	as	possible	to	2:1,	and	the	median	expression	value	for	each	
cluster	is	then	assigned	as	the	expression	value	of	the	appropriate	gene. 

	Level	3	-	Normalization	(NORM)	

In	order	to	eliminate	artifacts	(non-biological	sample	variation)	from	the	data,	we	use	a	rescaling	procedure	
called	L1000	Invariant	Set	Scaling,	or	LISS,	 involving	80	control	transcripts	(8	each	at	10	levels	of	 low	to	high	
expression)	that	we	empirically	found	to	be	invariant	in	expression	across	the	DSGEO.	The	80	genes	are	used	to	
construct	a	calibration	curve	for	each	sample.	Each	curve	is	computed	using	the	median	expression	of	the	8	
invariant	genes	at	each	of	 the	10	pre-defined	 invariant	 levels.	We	then	 loess-smoothed	the	data	and	fit	 the	
following	power	law	function	using	non-linear	least	squares	regression:		

𝑦 = 𝑎𝑥! + 𝑐	

where	x	 is	the	unscaled	data	and	a,	b,	and	c	are	constants	estimated	empirically.	 	The	entire	sample	is	then	
rescaled	using	 the	obtained	model.	 LISS	 therefore	serves	as	a	method	to	both	adjust	 for	 technical	variation	
and	to	convert	between	measured	Luminex	intensity	and	more	traditional	Affymetrix	log2-expression	values.	

After	applying	LISS,	we	standardize	the	shape	of	the	expression	profile	distributions	on	each	plate	by	applying	
quantile	 normalization,	 or	 QNORM.	 This	 is	 done	 by	 first	 sorting	 each	 profile	 by	 expression	 level,	 and	 then	
normalizing	 the	 data	 by	 setting	 the	 highest-ranking	 value	 in	 each	 profile	 to	 the	median	 of	 all	 the	 highest	
ranking	values,	the	next	highest	value	to	the	median	of	the	next	highest	values,	and	so	on	down	to	the	data	for	
the	lowest	expression	level.		

Normalization	yields	the	expression	values	of	the	978	landmark	genes.	To	obtain	expression	values	for	all	the	
remaining	 genes	 in	 the	 transcriptome,	 we	 assume	 that	 an	 unmeasured	 gene	 x	 can	 be	 predicted	 from	 the	
measured	landmark	genes	li	via	linear	regression:	

𝑥 = 𝑤! + 𝑤!𝑙!

!"#

!!!

	

where	the	wi	constitute	the	model	weights	and	have	been	estimated	using	DSGEO.	These	weights	are	provided	
in	the	dataset	DSGEO-OLS.	Repeating	this	procedure	for	all	unmeasured	genes	gives	predicted	measurements	of	
all	12,328	genes	reported	(measured	plus	inferred)	by	the	L1000	assay.	

Level	4	-	Differential	Expression	(ZSPC)	

To	obtain	a	measure	of	relative	gene	expression,	we	use	a	robust	z-scoring	procedure	to	generate	differential	
expression	 values	 from	 normalized	 profiles.	 We	 compute	 the	 differential	 expression	 of	 gene	 x	 in	 the	 ith	
sample	on	the	plate	as:	
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𝑧! =
𝑥! −median(𝑋)
1.4826 ⋅MAD(𝑋)	

where	X	 is	 the	vector	of	normalized	gene	expression	of	gene	x	 across	all	 samples	on	 the	plate,	MAD	 is	 the	
median	 absolute	deviation	of	X,	 and	 the	 factor	 of	 1.4826	 is	 a	 scaling	 constant	 to	 rescale	 the	data	 as	 if	 the	
standard	deviation	were	used	instead	of	the	median	absolute	deviation.	

Level	5	-	Replicate-consensus	signatures	(MODZ)	

L1000	 experiments	 are	 typically	 done	 in	 3	 or	 more	 biological	 replicates.	 We	 derive	 a	 consensus	 replicate	
signature	 by	 applying	 the	 moderated	 z-score	 (MODZ)	 procedure	 as	 follows.	 First	 a	 pairwise	 Spearman	
correlation	matrix	 is	computed	between	the	replicate	signatures	 in	the	space	of	 landmark	genes	with	trivial	
self-correlations	 being	 ignored	 (set	 to	 0).	 Then	weights	 for	 each	 replicate	 are	 computed	 as	 the	 sum	 of	 its	
correlations	to	the	other	replicates,	normalized	such	that	all	weights	sum	to	1.	Finally	the	consensus	signature	
is	 given	 by	 the	 linear	 combination	 of	 the	 replicate	 signatures	with	 the	 coefficients	 set	 to	 the	weights.	 This	
procedure	serves	to	mitigate	the	effects	of	uncorrelated	or	outlier	replicates,	and	can	be	thought	of	as	a	'de-
noised'	representation	of	the	given	experiment's	transcriptional	consequences.	

9.	CMAP	QUERY	METHODOLOGY	

Overview	of	Queries	

The	fundamental	unit	of	CMap	analysis	 is	the	query.	A	query	(q)	consists	of	a	set	of	genes	corresponding	to	
any	biological	state	of	interest.	Each	gene	in	the	query	carries	a	sign	indicating	if	 it	 is	up-regulated	or	down-
regulated.	Thus	each	query	yields	a	pair	of	mutually	exclusive	gene	lists	(qup,	qdown).	The	query	is	compared	to	
each	signature	 in	 the	CMap	reference	database	 (Touchstone)	using	 the	similarity	metric	described	below	to	
assess	connectivity	viz.	the	degree	to	which	the	up-regulated	query	genes	(qup)	appear	toward	the	top	of	the	
rank-ordered	 signature	 and	 the	 down-regulated	 query	 genes	 (qdown)	 appear	 toward	 the	 bottom	 of	 the	
signature	(positive	connectivity)	or	vice-versa	(negative	connectivity).			The	result	of	a	query	is	a	rank	ordered	
list	of	CMap	signatures	ordered	by	their	connectivity	scores.	

Computing	similarities	-	Weighted	Connectivity	Score	(WTCS)	

The	 weighted	 connectivity	 score	 (WTCS)	 represents	 a	 non-parametric,	 similarity	 measure	 based	 on	 the	
weighted	Kolmogorov-Smirnov	enrichment	statistic	(ES)	described	previously	(Subramanian	et	al.	2005).	WTCS	
is	 a	 composite,	 bi-directional	 version	 of	 ES.	 For	 a	 given	 query	 gene	 set	 pair	 (qup,	 qdown)	 and	 a	 reference	
signature	r,	WTCS	is	computed	as	follows:	

𝑤!,! =
𝐸𝑆!" − 𝐸𝑆!!"#)/2, 𝑖𝑓 sgn(𝐸𝑆!") ≠ sgn(𝐸𝑆!!"#)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	

	

Where	ESup	 is	the	enrichment	of	qup	 in	r	and	ESdown	 is	the	enrichment	of		qdown	 in	r.	WTCS	ranges	between	-1	
and	1.	 It	will	 be	positive	 for	 signatures	 that	 are	positively	 related	and	negative	 for	 those	 that	 are	 inversely	
related,	and	near	zero	for	signatures	that	are	unrelated.	A	null	(0)	score	is	assigned	for	cases	when	both	ESup	
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and	ESdown	are	the	same	sign.	

Normalization	of	Connectivity	Scores	

To	 allow	 for	 comparison	 of	 connectivity	 scores	 across	 cell	 types	 and	 perturbation	 types,	 the	 scores	 are	
normalized	to	account	for	global	differences	in	connectivity	that	might	occur	across	these	covariates.	Given	a	
vector	of	WTCS	values	w	resulting	from	a	query,	we	normalize	the	values	within	each	cell	line	and	perturbagen	
type	to	obtain	normalized	connectivity	scores	(NCS)	as	follows:	

𝑁𝐶𝑆!,! =
𝑤!,!/𝜇!,!!

𝑤!,!/𝜇!,!!
if  sgn(𝑤!,!) > 0

otherwise
	

where	NCSc,t	,	wc,t	,	𝜇!,!! 	and	𝜇!,!! 	are	the	normalized	connectivity	scores,	raw	weighted	connectivity	scores,	and	
signed	means	of	 the	 raw	weighted	connectivity	 scores	 (the	mean	of	positive	and	negative	values	evaluated	
separately)	within	 the	 subset	of	Touchstone	 signatures	 corresponding	 to	 cell	 line	c	 and	perturbagen	 type	 t,	
respectively.	

Overall,	 this	 procedure	 is	 similar	 to	 that	 used	 in	 Gene	 Set	 Enrichment	 Analysis,	 with	 the	 addition	 of	
bidirectional	gene	sets	(i.e	up	and	down)	as	queries.	

Comparison	to	reference	queries	-	computation	of	τ	

While	meaningful	comparisons	can	be	made	between	the	NCS	values	of	reference	signatures	w.r.t	query	q,	it	
is	also	useful	to	assess	if	the	connectivity	between	q	and	a	particular	signature	r	is	significantly	different	from	
that	 observed	 between	 r	 and	 other	 queries.	 This	 is	 done	 by	 comparing	 each	 observed	 NCS	 value	 ncsq,r	
between	the	query	q	and	a	reference	signature	r	to	a	distribution	of	NCS	values	representing	the	similarities	
between	a	reference	compendium	of	queries	(Qref)	and	r.	This	procedure	results	in	a	measure	we	refer	to	as	τ	
that	 ranges	 [-100,	+100]	and	 represents	 the	percentage	of	queries	 in	Qref	with	a	 lower	|NCS|	 than	|ncsq,r|,	
adjusted	to	retain	the	sign	of	ncsq,r	:	

𝜏!,! = sgn(𝑛𝑐𝑠!,!)
100
𝑁 [|𝑛𝑐𝑠!,!| < |𝑛𝑐𝑠!,!|]

!

!!!

	

where	ncsq,r	is	the	normalized	connectivity	score	for	signature	r	with	respect	to	query	q,	ncsi,r	is	the	normalized	
connectivity	score	for	signature	r	relative	to	the	i-th	query	in	Qref,	and	N	is	the	number	of	queries	in	Qref	Our	
standard	 practice	 is	 that	 Qref	 be	 comprised	 of	 queries	 obtained	 from	 exemplar	 signatures	 of	 Touchstone	
perturbagens	 that	 match	 the	 cell	 line	 and	 perturbation	 type	 of	 signature	 r.	 In	 principle	 any	 arbitrary	
compendium	of	gene	sets	(as	long	as	they	are	large	enough)	could	be	used.	

Summarization	Across	Cell	Lines	

When	examining	query	results,	it	is	often	convenient	to	obtain	a	perturbagen-centric	measure	of	connectivity	
that	summarizes	the	results	observed	in	individual	cell	types.	This	can	be	particularly	helpful	when	searching	
for	connections	that	persist	across	cell	lines	or	when	one	is	unsure	which	cell	line	to	examine.	Given	a	vector	
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of	normalized	connectivity	 scores	 for	perturbagen	p,	 relative	 to	query	q,	across	all	 cell	 lines	 in	which	p	was	
profiled,	a	cell-summarized	connectivity	score	is	obtained	using	a	maximum	quantile	statistic:	

𝑁𝐶𝑆!,! =
𝑄!!(𝒏𝒄𝒔!,!)
𝑄!"(𝒏𝒄𝒔!,!)

if  |𝑄!!(𝒏𝒄𝒔!,!)| >= |𝑄!"(𝒏𝒄𝒔!,!)|
otherwise

	

where	ncsp,c	is	a	vector	of	normalized	connectivity	scores	for	perturbagen	p,	relative	to	query	q,	across	all	cell	
lines	in	which	p	was	profiled,	𝑄!!  and	𝑄!"are	upper	and	lower	quantiles	respectively.	This	procedure	compares	
the	𝑄!!  and	𝑄!" quantiles	 of	ncsp,c	 and	 retains	whichever	 is	 of	 higher	 absolute	magnitude.	 Thus,	maximum	
quantile	 is	more	 sensitive	 to	 signal	 in	 a	 subset	 of	 the	 cell	 lines	 than	measures	 of	 central	 tendency	 such	 as	
mean	or	median.	In	the	analyses	presented	here,	we	used	𝑄!! = 67,𝑄!" = 33	

10.	FEASIBILITY	OF	QUERYING	A	MILLION	PROFILE	COMPENDIUM		

When	making	data	at	scale,	 it	 is	 important	to	assess	the	fidelity	of	L1000	signatures	relative	to	existing	data	
generated	 in	other	 labs	and	on	other	platforms.	This	was	done	by	assembling	a	collection	of	external	 (non-
L1000)	gene	sets	from	GEO	and	MSigDB	and,	based	on	their	annotations,	computationally	determining	the	list	
of	 CMap	 perturbagens	 and/or	 perturbagen	 sets	 to	 which	 they	 were	 expected	 to	 connect.	 Specifically,	 we	
scanned	the	descriptions	 for	7,578	gene	sets	and	 looked	 for	valid	CMap	perturbagen	names.	 If	 there	was	a	
match,	 we	 associated	 that	 gene	 set	 with	 the	 matching	 given	 perturbagen	 (p).	 Gene	 sets	 representing	
compounds	 were	 associated	 with	 that	 same	 compound	 in	 CMap	 and	 gene	 sets	 representing	 genetic	
perturbations	were	associated	with	either	the	knockdown	and/or	overexpression	of	the	same	gene	in	CMap,	
where	possible.	Of	the	7,578	gene	sets,	1,143	matched	at	least	one	CMap	perturbagen.	These	1,143	gene	sets	
correspond	to	102	unique	compounds	and	357	unique	genes.	One	such	example	is	described: 

● Gene	set	id:	520CC8E2438AA44B4884A7CB 
● GEO	series:	GSE10433 
● Gene	set	description:	skin,	1	week	isotretinoin	treatment	vs	skin,	no	treatment 
● Associated	perturbagen:	isotretinoin 

We	 repeated	 this	 procedure	 systematically	 and	 observed	 that	 909	 of	 the	 1,143	 gene	 sets	 (80%)	 recovered	
their	expected	connection	at	an	FDR	≤	0.25,	and	|τ|	≥	90.	Full	results	as	well	as	gene	set	source	information	
are	available	in	Table	S5.	

GEO	gene	sets	were	derived	by	comparing	the	treatment	versus	control	samples	within	each	experiment	and	
selecting	the	top	and	bottom	100	BING	genes	by	signal	to	noise.	MSigDB	gene	sets	were	simply	downloaded	
as-is	and	then	subset	to	BING	space.	Some	MSigDB	gene	sets	were	two-sided,	meaning	there	was	both	an	up	
and	down	set,	and	some	were	one-sided,	meaning	there	was	just	a	single	gene	set	with	no	directionality.	 In	
the	latter	case,	the	single-sided	gene	set	was	queried	as	the	‘up’	gene	set	by	convention.	

p-values	were	 computed	 relative	 to	 a	 distribution	 of	 aggregated	NCS	 values	 between	 a	 collection	 of	 1,000	
randomly-generated,	two-sided	gene	sets	and	Touchstone.	For	each	true	query	(q)	/	TS	pert	(p)	combination,	
we	computed	the	p-value,	as	the	fraction	of	random	queries	that	had	a	higher	aggregated	NCS	to	p	than	did	q.	
We	then	applied	Benjamini-Hochberg	p-value	adjustment	(using	the	p.adjust	method	in	R	version	3.2.1)	across	
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all	 true	queries	Q	 to	obtain	 the	FDR.	 τ	was	 computed	 relative	 to	 the	distribution	of	 aggregated	NCS	values	
between	 all	 true	 queries	 Q	 and	 all	 Touchstone	 perturbagens.	 Because	 the	 Q	 gene	 sets	 were	 identified	
computationally	 and	 their	 annotations	 and	 definitions	were	 not	 always	 consistent	 (i.e.	 convention	was	 not	
always	 treatment	 vs.	 control),	 and	 because	 for	 many	 of	 these	 gene	 sets	 the	 expected	 directionality	 of	
connection	is	unclear,	we	used	an	absolute	τ	rather	than	considering	a	specific	direction.	

11.	DISCOVERING	OFF-TARGET	EFFECTS	OF	SHRNAS	

The	CMap	dataset	includes	signatures	for	13,187	shRNAs	targeting	3,799	genes	across	9	cell	lines	with	multiple	
hairpins	(typically	3)	per	gene.		This	large	compendium	allows	us	to	systematically	examine	both	the	intended	
biological	 effects	 of	 shRNAs	 as	 well	 as	 their	 off-target	 effects.	 Examination	 of	 global	 distributions	 of	
correlations	 between	 shRNA	 signatures	 revealed	 that	while	 the	 correlations	 between	 signatures	 of	 shRNAs	
targeting	the	same	gene	were	higher	than	a	null	distribution	constructed	by	sampling	random	pairs	of	shRNAs,	
the	 correlation	 between	 signatures	 of	 hairpins	 that	 shared	 the	 same	 6-mer	 seed	 sequence	were	markedly	
higher.	Figure	3A	shows	data	from	the	A549	cell	line.	Similar	patterns	were	observed	in	all	cell	lines	profiled.	

In	 an	 effort	 to	 mitigate	 the	 strong	 off-target	 effects	 of	 shRNAs,	 we	 developed	 an	 algorithm	 to	 produce	 a	
Consensus	Gene	Signature	(CGS)	that	reflects	the	consistent	(and	therefore	on-target)	gene	expression	effects	
of	 shRNAs.	 To	 generate	 a	 consensus	 gene	 signature	 (CGS),	we	 first	 create	 a	 pairwise	 Spearman	 correlation	
matrix	 between	 all	 shRNA	 signatures	 targeting	 the	 same	 gene,	 explicitly	 setting	 self-correlations	 to	 0.	 Each	
shRNA	signature	is	then	assigned	a	weight	given	by	the	sum	of	its	correlations	to	the	other	signatures,	with	the	
weights	normalized	to	sum	to	1.	The	CGS	is	computed	as	the	linear	combination	of	the	shRNA	signatures,	with	
coefficients	set	to	the	weights.	

12.	CHARACTERIZING	SMALL-MOLECULE	FUNCTION 

Assessing	recovery	of	expected	connections		

We	 sought	 to	 assess	 the	 degree	 to	 which	 each	 perturbagen	 profiled	 in	 L1000	 recovered	 its	 expected	
connections	 to	other	perturbagens	 in	Touchstone	 by	 leveraging	 annotations	 compiled	 from	various	 sources	
(see	13.	Defining	and	Analyzing	Perturbagen	Classes).	First,	the	annotations	were	used	to	construct	a	pairwise	
binary	association	matrix	 for	all	perturbagens	 in	Touchstone.	A	pair	of	perturbagens	were	considered	 to	be	
associated	 if	 they	 shared	 at	 least	 one	 type	 of	 annotation.	 For	 example	 a	 pair	 of	 small-molecules	 were	
associated	if	they	shared	the	same	MoA.	Similarly	a	compound	and	a	genetic	perturbagen	could	be	associated	
if	 they	 shared	 the	 same	 gene	 target.	We	 retained	 1,902	 small-molecule,	 994	 genetic	 over-expression,	 and	
1,634	CGS	perturbagens	after	excluding	those	that	had	too	few	(<10)	or	too	many	(>3,000)	connection	pairs.	
Then	 for	 each	 perturbagen	 p,	we	 partitioned	 all	 associated	 perturbagen-pairs	 into	 a	 collection	 of	 expected	
connection	pairs	 (Ep)	whose	members	were	associated	with	p	and	and	a	collection	of	background	pairs	 (Bp)	
whose	members	were	not	associated	with	p.	Finally,	ROC	analysis	was	performed	wherein	the	connectivities	
between	members	 of	Ep	 were	 compared	 to	 that	 between	members	 of	Bp	 at	 different	 threshold	 values	 for	
connectivity	τ	ranging	(0,	100).	At	each	threshold	we	computed	true	positive	rates	(TPR)	as	the	fraction	of	Ep	
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that	 were	 connected,	 and	 false	 positive	 rates	 (FPR)	 as	 the	 fraction	 of	 Bp	 that	 were	 connected,	 thereby	
generating	an	ROC	curve	from	which	an	AUC	was	derived.	

Target	ID	Analysis	

For	this	analysis,	we	evaluated	926	of	the	1,902	drugs	used	in	the	ROC	analysis	above.	These	drugs	were	each	
annotated	 as	 targeting	 at	 least	 one	 gene	 for	which	we	have	 a	 CGS	 in	 CMap-L1000v1,	 and	 collectively	 they	
target	283	unique	genes.	We	subjected	each	drug’s	level-5	signature	to	connectivity	analysis	and	recorded	the	
rank	of	 its	 target	 amongst	 all	 other	CGS	 in	 each	 cell	 line.	We	 found	 that	 143	of	 the	283	genes	 (51%)	were	
amongst	 the	 top	100	connections	 to	at	 least	one	of	 their	 targeting	compounds	 in	at	 least	one	cell	 line.	Full	
results	are	available	in	Table	S7.	

We	 also	 explored	 whether	 failure	 to	 recover	 expected	 connections	might	 be	 explained	 at	 least	 in	 part	 by	
cellular	 context.	 To	 address	 this,	 we	 selected	 25	 compounds	 lacking	 strong	 connections	 to	 their	 expected	
direct	targets	in	the	9	core	cell	types,	and	we	re-profiled	them	in	additional	39	cell	lines.	We	then	computed	
the	correlation	of	the	compound’s	TAS	with	the	gene	target’s	baseline	expression	(TAS-GEX	correlation)	across	
the	48	total	cell	lines	(9	core	plus	39	additional).	For	each	of	the	25	compound-target	pairs,	we	re-ranked	the	
target	and	all	genes	more	connected	to	the	compound	by	TAS-GEX	correlation	with	the	compound.	In	12/25	
cases	(48%),	the	target	gene	exhibited	a	dramatic	shift	in	rank	and	ranked	within	or	just	outside	of	the	top	100	
(highlighted	in	Table	S7).	

To	 further	 explore	 the	 known	 relationship	 between	 a	 compound’s	 gene	 expression	 signature	 and	 cell	 line	
genotype,	we	profiled	the	MDM2	inhibitor	AMG-232	in	a	panel	of	ten	MCF10A	isogenic	cell	lines.	We	observed	
AMG-232	had	a	dramatic	reduction	in	TAS	only	in	the	cell	line	in	which	TP53,	which	is	negatively	regulated	by	
MDM2,	was	 homozygously	 deleted	 compared	 to	 the	other	 9	 cell	 lines,	which	were	 all	TP53	wild-type.	 This	
result	may	 indicate	 the	 utility	 of	 a	more	 general	 screening	 approach	 by	which	 the	 potential	 target(s)	 of	 a	
compound	could	be	identified	by	generating	L1000	profiles	across	a	diversity	of	genetic	backgrounds.	

13.	DEFINING	AND	ANALYZING	PERTURBAGEN	CLASSES	(PCLS)	

Overview	of	PCLs	

In	order	to	define	perturbational	classes	we	first	obtained	annotations	for	as	many	Touchstone	perturbagens	
as	possible.	For	compounds,	mechanism	of	action	and	gene	 target	annotations	were	collated	 from	multiple	
sources	(Corsello	et	al.,	2017).	For	genes,	family	and	pathway	annotations	were	obtained	from	HGNC	as	of	July	
2016.	Annotations	for	both	compounds	and	genes	were	manually	regularized.	We	next	grouped	perturbagens	
by	 shared	 annotation	 to	 generate	 candidate	 classes.	 For	 example,	 all	 compounds	 that	 share	 the	 same	
mechanism	of	action	were	assigned	to	the	same	class.		

For	each	perturbagen	member	of	a	candidate	class,	we	assessed	whether	it	sufficiently	recovered	its	expected	
connections	 to	 other	 perturbagens	 in	 at	 least	 one	 cell	 line	 via	 ROC	 analysis	 (more	 detail	 below).	 The	 class	
definition	 was	 refined	 to	 include	 only	 those	 members	 that	 passed	 this	 criterion.	 Finally,	 the	 classes	 were	
assessed	 for	 sufficient	 interconnectivity.	We	 required	 that	 classes	 had	 at	 least	 3	members	 and	 exhibited	 a	
median	pairwise	τ	of	at	 least	80	in	one	or	more	cell	 lines.	Those	classes	that	passed	this	filter	were	codified	
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into	perturbagen	classes	(PCLs).	This	process	resulted	in	171	PCLs	(92	compound,	60	LoF,	and	17	GoF	classes)	
corresponding	to	930	unique	perturbagens.	PCLs	ranged	in	size	from	3	to	44	members,	with	an	average	size	of	
5.8	members.	PCLs	were	required	to	contain	only	perturbagens	of	the	same	type	and	although	perturbagens	
were	 allowed	 to	 belong	 to	more	 than	 one	 PCL,	most	 PCLs	 are	 completely	 distinct,	with	 a	median	 pairwise	
overlap	of	zero	members.	95%	of	PCL	members	belong	to	just	one	PCL.	

The	majority	of	PCLs	show	strong	inter-member	connectivity	in	multiple	cell	types	with	132	PCLs	(77%)	having	
a	 cell-summarized	 median	 pairwise	 τ	 >=	 80.	 24	 PCLs	 (14%)	 had	 significantly	 stronger	 connectivity	 in	 a	
particular	cell	type	than	in	cell-summarized	mode,	indicating	that	for	these	PCLs	the	connectivity	was	driven	
by	 cell	 context.	 Some	 examples	 include	 PPAR	 receptor	 agonists	 in	 HT29	 and	 PC3	 cell	 lines	 and	 estrogen-
receptor	agonists	and	antagonists	in	MCF7.		

Compound	 PCLs	 were	 also	 assessed	 for	 structural	 similarity.	 The	 2D	 structural	 similarity	 of	 all	 pairwise	
combinations	of	compounds	within	each	PCL	was	measured	using	Tanimoto	coefficient	calculated	from	binary	
fingerprints,	 which	 were	 obtained	 from	 SMILES	 strings	 representing	 structures	 of	 the	 compounds	 in	 PCLs.	
SMILES	 strings	were	 converted	 to	 binary	 fingerprints	 using	 the	Open	Babel	 implementation	of	 the	Daylight	
fingerprint	standard	(O'Boyle	et	al.	2011).	We	found	that	the	vast	majority	of	PCLs	were	structurally	diverse.	
All	but	one	PCL	had	a	median	pairwise	Tanimoto	below	0.8.	Detailed	 information	on	all	PCLs	 is	available	 in	
Supplementary	Table	S8.		

Computing	Connectivity	to	PCLs	

Connectivity	of	a	query	to	PCLs	is	computed	using	the	same	approach	described	earlier	for	summarization	of	
connectivities	 to	 a	 perturbagen	 across	 cell	 lines.	 Given	 a	 vector	 of	 normalized	 connectivity	 scores	 for	 the	
members	of	a	PCL	p,	 relative	 to	query	q,	 in	a	given	cell	 line,	we	apply	 the	maximum	quantile	procedure	 to	
obtain	 a	 summarized	NCS	 value	 (NCSPCL).	We	 then	 compute	 a	 PCL-level	 τ	 from	NCSPCL	 by	 comparison	 to	 a	
reference	distribution	comprised	of	PCL-aggregated	scores	corresponding	to	the	Qref	queries	described	above.	
This	ensures	 that	 τ	 is	 always	 computed	 relative	 to	an	equivalent	background	distribution	and	keeps	 it	on	a	
scale	comparable	to	that	of	individual	perturbagens.		

Selectivity	of	PCL	Connections	

We	define	the	PCL	selectivity	s	of	a	query	q	as	the	fraction	of	PCLs	whose	connectivity	to	q	is	less	than	a	given	
threshold	τth.	The	fewer	the	number	of	PCLs	connected	to	by	q,	the	higher	its	selectivity.	

𝑠! =
1
𝑁 [|𝜏!| < 𝜏!!]

!
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Where	sq	is	the	PCL	selectivity	of	query	q,	N	is	the	number	of	PCLs,	τi	is	the	connectivity	of	q	to	the	ith	PCL	and	
τth	is	the	connectivity	threshold.	
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PCL	validation	

In	 order	 to	 test	 the	 accuracy	 of	 PCL	 connections,	 we	 profiled	 137	 holdout	 compounds	 known	 to	 share	 a	
mechanism	with	one	or	more	of	54	small-molecule	PCLs,	but	which	were	not	used	in	the	construction	of	the	
PCL	 itself.	We	 subjected	 the	 resulting	 signatures	 to	 connectivity	 analyses	 as	 described	 above	 and	observed	
that	 for	 41/54	 classes	 (76%),	 the	 test	 compounds	 connected	 to	 their	 designated	 PCL	 in	multiple	 cell	 types	
(Figure	 4B).	 For	 an	 additional	 7/54	 (13%),	 a	 selective	 connection	 was	 observed	 in	 a	 single	 cell	 type.	 The	
remaining	6/54	(11%)	did	not	reconnect	at	a	threshold	of	τ	>90.	Thus,	48	of	the	54	assessed	PCLs	(89%)	were	
considered	validated	in	that	they	successfully	connected	to	their	corresponding	holdout	compound(s).	

Unexpected	Connections	Between	Drugs	and	PCLs	

We	assessed	whether	a	validated	PCL	had	strong,	selective,	but	unexpected	connections	to	3,333	annotated	
small	molecule	compounds.	To	focus	on	unexpected	connections,	we	identified	all	compounds	that	connected	
to	 a	 validated	 PCL	 at	 τ	 ≥	 98	 of	which	 the	 given	 compound	was	 not	 a	member	 and	whose	members’	 gene	
targets	did	not	overlap	with	 the	given	compounds’	gene	targets.	For	each	compound,	we	computed	 its	PCL	
selectivity	 as	 the	 fraction	 of	 the	 171	 PCLs	 to	 which	 it	 failed	 to	 connect	 with	 τ	 ≥	 90	 and	 considered	 only	
compounds	with	selectivity	of	at	least	0.9.	We	identified	225	novel	connections	between	drugs	and	validated	
PCLs,	corresponding	to	132	drugs	(3.9%	of	total	assessed).	We	applied	the	same	analysis	to	2,418	unannotated	
but	transcriptionally	active	compounds	and	identified	194	strong,	selective	connections	corresponding	to	111	
compounds	(4.6%	of	total	assessed).	

HDAC	Inhibitor	PCL	Clustering	

We	 performed	 hierarchical	 clustering	 on	 the	 22	members	 of	 the	 HDAC	 inhibitor	 PCL	 in	 the	 space	 of	 their	
pairwise	 connectivities	 to	 each	 other	 across	 9	 cell	 lines	 using	 spearman	 correlation	 as	 the	 similarity	metric	
with	complete	linkage.	 	Hierarchical	clustering	of	pairwise	connectivities	of	the	HDAC	inhibitor	PCL	members	
reveals	 substructure	within	 the	 class.	 The	 pan-HDAC	 inhibitors	 generally	 cluster	 together,	 distinct	 from	 the	
more	 isoform-selective	 compounds,	 suggesting	 that	 gene	 expression	 can	 be	 used	 to	 further	 stratify	
compounds	within	the	same	class	(Fass	et	al.	2010;	Bradner	et	al.	2010;	Butler	et	al.	2010;	Kwon	et	al.	1998;	
Arts	et	al.	2009;	Haggarty	et	al.	2003;	Bantscheff	et	al.	2011;	Oehme	et	al.	2013;	Balasubramanian	et	al.	2008)	

14.	CELLULAR	CONTEXT 

A	common	question	with	respect	to	perturbational	signatures	is	the	extent	to	which	they	are	consistent	across	
different	cellular	contexts.	To	 investigate	 this,	we	 first	 restricted	our	analysis	 to	 the	cell	 lines	 in	which	each	
perturbagen	 gave	 a	 signature	 whose	 transcriptional	 activity	 score	 (TAS)	 was	 greater	 than	 95%	 of	 that	 of	
negative	controls	and	considered	only	perturbagens	that	had	high-TAS	signatures	 in	at	 least	three	cell	 lines.	
Using	these	thresholds,	we	analyzed	1,399	of	2,429	compounds,	1,088	of	2,160	cDNAs,	and	3,926	of	13,187	
shRNAs.	

We	 then	 computed	 the	 pairwise	 similarity	 (using	WTCS)	 between	 signatures	 of	 the	 same	 perturbagen	 in	
different	cell	lines,	yielding	an	N	x	N	matrix	of	similarity	values,	where	N	is	the	number	of	cell	lines	in	which	the	
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perturbagen	gave	a	high-TAS	signature.	Next	we	determined	the	median	WTCS	between	each	cell	line	and	all	
others,	 yielding	 a	 vector	 of	N	median	WTCS	 values	 (WTCSmed).	We	 then	 computed	 the	median	 of	medians	
(MoM)	and	range	of	WTCSmed,	yielding	WTCSMoM	and	WTCSrange,	metrics	which	indicate	the	aggregate	similarity	
and	the	variability	 thereof	between	signatures	of	 the	same	perturbagen	 in	different	cell	 lines.	Perturbagens	
that	 give	a	 single	 signature	across	multiple	 cell	 types	 should	have	high	WTCSMoM	 and	 low	WTCSrange	 values,	
respectively.	To	estimate	significance,	we	computed	WTCSMoM	and	WTCSrange	for	1,000	random	combinations	
of	N	high-TAS	signatures	for	values	of	N	between	3	and	9.	For	a	perturbagen	to	be	considered	as	giving	a	single	
signature,	we	required	that	 its	WTCSMoM	be	greater	than	95%	and	 its	WTCSrange	be	 less	than	95%	of	 its	size-
matched	null.	

Using	 these	 thresholds,	we	 found	 that	26%	of	 compounds,	 8%	of	 cDNAs,	 and	34%	of	 shRNAs	 gave	a	 single	
signature	across	multiple	cell	lines.	The	comparatively	larger	proportion	of	shRNAs	that	give	a	single	signature	
may	be	attributed	to	the	higher	transcriptional	activity	of	shRNAs.		We	observe	that	for	about	36%	of	genes	
with	at	least	3	high-TAS	shRNAs,	the	majority	of	those	shRNAs	were	flagged	as	single-signature	reagents.	This	
is	not	notably	different	from	the	34%	rate	at	which	shRNAs	give	single	signatures	in	general,	suggesting	that	
whether	or	not	an	shRNA	gives	a	single	signature	is	more	dependent	on	the	shRNA	itself	(and	possibly	its	off-
target	effects)	than	it	 is	on	the	specific	gene	the	shRNA	is	targeting.	cDNAs	least	frequently	gave	a	common	
signature.	Possibly	 the	high	multiplicity	of	 signatures	 from	cDNAs	 results	 from	a	proportionately	higher	on-
target	effect	which	may	be	more	cell	context	dependent	relative	to	other	perturbagen	types.	

Amongst	those	perturbagens	that	were	identified	as	having	a	single	signature,	we	observed	many	that	target	
core	 biological	 processes	 such	 as	 heat	 shock	 response,	 cell	 cycle,	 and	HDAC	 and	 topoisomerase	 inhibition,	
among	 others.	 These	 results	 suggest	 that	 the	 transcriptional	 response	 to	 perturbing	 each	 of	 these	
fundamental	pathways	is	conserved	across	cell	contexts.		

We	 also	 observed	 a	 number	 of	 classes	 of	 perturbagens	 whose	 members	 tended	 to	 give	 multiple	 unique	
signatures.	For	example,	23	of	32	EGFR	inhibitors	were	identified	as	having	multiple	signatures	and	31	of	34	
serotonin	 receptor	 antagonists	 gave	 multiple	 signatures,	 one	 extreme	 example	 being	 pindolol,	 whose	
signature	in	HCC515	was	strongly	dissimilar	to	its	signature	in	other	cell	 lines.	These	results	suggest	that	the	
transcriptional	response	to	perturbing	these	and	other	pathways	may	be	context-	and/or	reagent-dependent.			

Neuronal	cell	line	comparison	

To	extend	this	analysis	to	include	specialized	primary	cell	types,	we	considered	768	compounds	that	had	been	
profiled	in	both	neural	progenitor	cells	(NPC)	and	differentiated	neurons	(NEU)	as	well	as	the	9	core	cancer	cell	
lines.	For	each	compound,	we	computed	the	similarity,	using	WTCS,	between	all	pairwise	combinations	of	cell	
lines	and	converted	to	τ	using	the	pairwise	similarities	between	all	768	compounds	in	all	11	cell	lines	as	
reference	(Qref).	We	observed	that	189	of	the	768	compounds	(25%)	connected	with	τ	≥	90	when	comparing	
NPC	to	NEU.	For	each	pairwise	combination	of	the	11	cell	lines	(NPC,	NEU	+	9	core)	we	computed	the	fraction	
of	the	189	compounds	that	self-connected	above	90.	We	then	computed	the	average	fraction	that	self-
connected	when	considering	NPC	to	cancer	(34%),	NEU	to	cancer	(25%)	and	cancer	to	cancer	(50%).	This	
suggests	that	the	neuronal	lines	are	more	different	from	the	cancer	lines	than	the	cancer	lines	are	from	each	
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other,	at	least	in	the	space	of	these	189	compounds.	Therefore,	expanding	the	cell	line	set	into	neuronal	cell	
types	may	be	beneficial.	 

15.	IDENTIFYING	BIOACTIVE	SUBSETS	OF	SMALL-MOLECULE	SCREENING	LIBRARIES	

The	sections	and	table	below	describe	the	various	analytical	methods	used	to	analyze	L1000	signatures.	The	
methods	can	be	broadly	grouped	into	two	categories	-	characterization	and	connectivity.	The	characterization	
methods	enable	nuanced	analyses	of	L1000	signatures	in	and	of	themselves,	while	the	connectivity	methods	
provide	a	framework	by	which	external	gene	sets	or	L1000	signatures	can	be	queried	against	Touchstone,	and	
by	which	an	analyst	can	derive	connectivities	to	individual	perturbagens	and	perturbagen	classes	(PCLs).		

Replicate	Correlation	(CC)	

Each	L1000	experiment	consists	of	multiple	biological	replicates.	To	derive	an	aggregate	measure	of	replicate	
reproducibility,	 we	 compute	 the	 75th	 quantile	 of	 the	 Spearman	 correlations	 between	 all	 pairwise	
combinations	of	replicate	level	4	profiles	for	a	given	experiment.		

Signature	Strength	(SS)	

We	compute	signature	strength	(SS)	as	the	number	of	differentially	expressed	genes	within	a	signature.	That	
is,	the	number	of	landmark	genes	with	absolute	z-score	greater	than	or	equal	to	2.		The	z-scores	are	adjusted	
to	offset	shrinkage	of	z-scores	that	occurs	with	increasing	number	of	replicates.	This	allows	SS	values	derived	
from	signatures	of	different	numbers	of	replicates	to	be	compared	with	each	other	

SS = [|𝑧𝑎!| >= 2]
!"#
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𝑧𝑎 = 𝐳 ⋅ 𝑛rep	

Where	z,	nrep	are	a	vector	of	moderated	z-scores	and	the	number	of	replicates,	respectively.	

Transcriptional	Activity	Score	(TAS)	

The	transcriptional	activity	score	(TAS)	is	computed	as	the	geometric	mean	of	SS	and	CC	for	a	signature.	TAS	is	
scaled	by	the	square	root	of	the	number	of	landmark	genes	(978)	so	the	final	score	ranges	between	0	and	1.	

TAS = SS ⋅max(CC, 0)/978	

Where	SS	and	CC	are	the	signature	strength	and	replicate	correlation	for	the	given	signature,	respectively.	

Analysis	of	unannotated	small-molecule	screening	libraries	

We	 began	 with	 a	 collection	 of	 16,527	 unannotated	 small	 molecules	 for	 which	 we	 had	 generated	 L1000	
profiles.	 These	 compounds	were	derived	 from	a	 variety	 of	 sources,	 including	 the	Broad	 Institute’s	 diversity	
oriented	 synthesis	 (DOS)	 library	 and	 the	 NIH's	 Molecular	 Libraries	 Probe	 Production	 Centers	 Network	
(MLPCN).	 We	 focused	 on	 the	 2,418	 compounds	 whose	 75th	 quantile	 of	 TAS	 was	 as	 least	 0.2	 and	 whose	
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signatures	 had	 a	median	 pairwise	WTCS	 of	 at	 least	 0.3	 across	 cell	 lines,	 indicating	 a	 robust	 transcriptional	
response	 in	at	 least	a	subset	of	cell	 lines.	We	termed	these	compounds	Discovery,	and	attempted	to	assign	
functional	annotations	via	comparison	with	annotated	drugs	and	genes	 in	the	L1000	Touchstone	 (reference)	
part	of	the	data.	

To	obtain	a	high-level	view	of	these	Discovery	compounds	relative	to	known	drugs,	we	ran	t-SNE	analysis	on	
the	Discovery	signatures	and	those	of	every	compound	belonging	to	a	PCL.	t-SNE	is	a	non-linear	dimensionality	
reduction	 and	 visualization	 technique	 that	 attempts	 to	 preserve	 local-structure	 from	 high-dimensional	
datasets	ensuring	that	samples	that	are	similar	in	the	high	dimensional	space	are	plotted	close	together	in	the	
embedding	 (van	 der	 Maaten	 2008).	 t-SNE	 was	 run	 on	 consensus	 signatures	 across	 cell	 types	 for	 each	
perturbagen	in	landmark	space,	with	initial	dimensions	set	to	50	and	a	perplexity	of	30.	 

In	 addition,	we	 performed	 query	 analysis	 on	 these	 compounds’	 signatures	 to	 derive	 their	 connectivities	 to	
Touchstone	 perturbagens	 and	 PCLs.	 We	 found	 that	 111	 Discovery	 compounds	 had	 strong	 and	 selective	
connections	to	PCLs	(τ	>=	98;	PCL	specificity	>=	0.9).		

Discovery	of	a	selective	CSNK1A1	inhibitor	

We	 observed	 that	 the	 unannotated	Discovery	 compound	 BRD-1868	 connected	 to	 the	 shRNA-based	 CGS	 of	
CSNK1A1	 with	 τ	 ≥	 90	 in	 both	 A375	 and	 HA1E.	 We	 separately	 generated	 CRISPR	 signatures	 of	 CSNK1A1	
knockout	 and	 observed	 that	 BRD-1868	 ranked	 in	 the	 top	 2%	 by	WTCS	 similarity	 to	 the	CSNK1A1	 knockout	
signature	relative	to	all	Discover	compounds	in	two	additional	cell	lines	(MCF7	and	HT29).	

16.	USING	L1000	TO	ASSESS	ALLELE	FUNCTION	

A	series	of	variant	alleles	of	genes	frequently	mutated	in	primary	lung	adenocarcinomas	were	overexpressed	
in	 human	 cell	 lines	 as	 detailed	 in	 (Berger	 et	 al.	 2016)	 and	 subjected	 to	 L1000	 profiling.	 Connectivites	 to	
perturbagens	 in	 Touchstone	 were	 computed	 using	 queries	 derived	 for	 each	 allele.	 The	 differences	 or	
similarities	in	connections	to	specific	perturbagens	between	wildtype	and	mutant	alleles	were	examined.	

17.	USING	CMAP	TO	INTERPRET	CLINICAL	TRIAL	RESULTS	

In	the	first	studies,	21	patients	with	melanoma	were	treated	with	the	RAF	inhibitor	dabrafenib	or	vemurafenib	
and	9	patients	were	treated	with	dabrafenib	plus	the	MEK	inhibitor	trametinib	(Carlino	et	al.	2013;	Long	et	al.	
2014).	Biopsies	were	obtained	prior	 to	treatment	and	at	 the	time	of	 relapse,	and	 in	 four	patients,	early	on-
treatment	biopsies	were	also	obtained.	The	authors	performed	expression	profiling	on	the	Illumina	beadchip	
platform,	 and	we	 used	 those	 data	 (GSE50509,	 GSE61992).	 In	 order	 to	 evaluate	 the	 transcriptional	 changes	
induced	by	in	vivo	drug	treatment,	we	focused	on	the	four	patients	across	the	two	datasets	who	had	matched	
pre-treatment,	early	on-treatment,	and	relapse	biopsies	performed.	Gene	expression	results	were	obtained	as	
series	 matrix	 files	 from	 GEO	 and	 the	 log2	 fold	 change	 in	 each	 gene	 was	 calculated	 for	 each	 sequential	
comparison	 (early	 on-treatment	 versus	 pre-treatment	 and	 relapse	 versus	 early	 on-treatment).	 Genes	were	
mapped	 to	 CMap	best	 inferred	 gene	 (BING)	 space	 and	 the	 top	 100	 genes	 up-	 and	 down-regulated	 in	 each	
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comparison	 were	 used	 to	 perform	 CMap	 queries.	 Results	 are	 shown	 for	 connections	 within	 the	 A375	
melanoma	cell	line	given	contextual	relevance.	
	
In	 the	 second	 study,	 patients	with	 solid	 tumors	were	 treated	with	 the	 pan-CDK	 inhibitor	 PHA-793887	 in	 a	
phase	 I	 clinical	 trial.	 Seven	 patients	 from	 that	 trial	were	 subjected	 to	 gene	 expression	 profiling	 of	 biopsies	
obtained	pre-treatment	and	on-treatment	using	an	Agilent	microarray	platform	(Massard	et	al.	2011;	Locatelli	
et	al.	2010).	Gene	expression	data	was	obtained	as	a	GEO	series	matrix	(GSE18553).	The	log2	fold	change	in	
each	gene	was	calculated	between	the	early	on-treatment	and	pre-treatment	biopsies.	Genes	were	mapped	
to	CMap	L1000	landmark	gene	space	and	the	top	50	genes	up-	and	down-regulated	in	each	comparison	were	
used	 to	perform	CMap	queries.	 Connectivity	 results	were	 reviewed	at	 the	 cell-summarized	 level	 to	 identify	
consistent	connections	across	multiple	cell	types.	There	was	no	obvious	correlation	between	medication	dose	
administered	or	primary	tumor	type	with	the	CDK4	shRNA	connection,	although	the	number	of	samples	was	
small.	
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