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Abstract

Therapeutic vaccines targeting mutant tumor antigens (“neoantigens”) are an increasingly
popular form of personalized cancer immunotherapy. Vaxrank is a computational tool for
selecting neoantigen vaccine peptides from tumor mutations, tumor RNA data, and patient
HLA type. Vaxrank is freely available at www.github.com/hammerlab/vaxrank| under the
Apache 2.0 open source license and can also be installed from the Python Package Index.

1 Introduction

Mutated cancer proteins recognized by T-cells have become known as “neoantigens” and are
considered an essential component of a tumor-specific immune response (Finnigan et al.,
2015; |Gubin et al., 2015} Schumacher and Schreiber] 2015)). Therapeutic vaccination against
neoantigens is an emerging experimental cancer therapy that attempts to mobilize an
antigen-specific immune response against mutated tumor proteins (Ttreci et al., [2016}
Zhang et al.,2017). Since few tumor mutations are shared between patients, neoantigen
vaccines must be personalized therapies. A common approach for achieving personalization
is high-throughput sequencing of tumor and normal patient samples followed by in-silico
prioritization of mutated peptides that are likely to be presented on the surface of tumor
cells by MHC (major histocompatibility complex) molecules.

Vaxrank is a tool for selecting mutated peptides for personalized therapeutic cancer
vaccination. Vaxrank determines which peptides should be used in a vaccine from
tumor-specific somatic mutations, tumor RNA sequencing data, and a patient’s HLA type.
These peptides can then be synthesized and combined with an adjuvant to attempt to elicit
an anti-tumor T-cell response in a patient.

The sequence of each mutated protein is determined by assembling variant RNA reads.
Mutant protein sequences are ranked using a scoring system which seeks to satisfy two
objectives: choosing mutations that are abundant in the tumor and choosing those whose
translated amino acid sequences contain likely MHC ligands. Additionally, Vaxrank
considers surrounding non-mutated residues in a peptide to prioritize vaccine peptide
candidates and to improve the odds of successful synthesis.

Vaxrank was designed for and is currently being used in the Personalized Genomic
Vaccine Phase I clinical trial at the Icahn School of Medicine at Mount Sinai
(NCT02721043) (Rubinsteyn et all [20164).
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Figure 1: Users provide tumor mutations, tumor RNA sequence data, and patient HLA
type. These are used to determine mutant protein sequences and rank them according to
expression and predicted MHC affinity.

2 Running Vaxrank

To generate a Vaxrank vaccine report, the user must provide one or more files containing
somatic variants (in VCF, MAF, or JSON format), aligned tumor RNA-seq reads (as an
indexed BAM), and the HLA alleles to be used for MHC binding prediction:

vaxrank
--vcf somatic-variants.vcf
--bam tumor-rna.bam
--mhc-predictor netmhc
--mhc-alleles H2-Kb,H2-Db
--mhc-peptide-lengths 8-10
--vaccine-peptide-length 21
--min-alt-rna-reads 3
--output-pdf-report vaccine-peptides.pdf

The --mhc-predictor argument controls which program is used to predict the affinity
between a peptide-MHC pair. Vaxrank supports the use of locally installed instances of
NetMHC (Andreatta and Nielsen) 2016)), NetMHCpan (Nielsen et al., [2007)),

NetMHCcons (Karosiene et al., [2012)), MHCflurry (Rubinsteyn et al., [2016b), or a variety of
web-based predictors through IEDB (Vita et al) 2015). The -~-min-alt-rna-reads
argument controls the minimum number of RNA reads supporting a variant required to
include that variant in the output report. In addition to quantifying tumor expression of a
mutations, the RNA reads are used to phase adjacent variants when reconstructing the
mutated coding sequence. A more complete list of options for input data, filtering, and
output formats can be seen by running vaxrank --help. Vaxrank’s output can be
formatted as PDF, plain-text, HTML, or an Excel spreadsheet. The output lists variants in
ranked order along with vaccine peptide(s) containing that variant, predicted MHC ligands,
number of supporting RNA reads, and sequence properties that affect manufacturability.

3 Ranking Mutations

A patient’s coding mutations are ranked according to a score that combines each mutation’s
degree of expression and aggregate affinity of overlapping mutant peptides for that patient’s
MHC alleles.
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RankingScore = ExpressionScore - TotalBindingScore

EzpressionScore = \/ # RNA reads supporting variant allele
TotalBindingScore = Z Z BindingScore(s, a)

s€subsequences a€alleles

The BindingScore function is, by default, a logistic transformation of the peptide-MHC
binding affinity that loosely approximates the probability of T-cell response (Sette et al.,
1994). Alternatively, binding predictions can be scored using an affinity threshold
(commonly < 500nM) or a threshold on the percentile rank of the affinity. Only
subsequences which overlap mutant residues and do not occur in the reference proteome are
considered as part of the TotalBindingScore.

4 Manufacturability

Vaxrank was designed under the assumption that its output will be used to make long
peptides, due to their favorable immunological properties (Rosalia et al., [2013).
Unfortunately, long peptides are also more difficult to synthesize using traditional solid
phase chemistry (Bodanszky| [1988). To avoid known difficulties in synthesis, Vaxrank
selects a window of amino acids around each mutation that minimizes the following
undesirable properties:

total number of cysteine residues

maz(0, mean hydrophobicity of 7 residues at C-terminus)
maz (0, mean hydrophobicity of any 7 amino acid window)
glutamine, glutamic acid, or cysteine at N-terminus
cysteine at C-terminus

proline at C-terminus

asparagine at N-terminus

® N o TR W N

total number of asparagine-proline bonds

Manufacturability optimization does not affect the ranking of mutations but is only used for
selecting which surrounding residues should be included. In cases where a mutation spans a
“difficult” sequence (e.g. long hydrophobic stretch), minimizing these criteria may fail to
salvage manufacturability.
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