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Abstract

Therapeutic vaccines targeting mutant tumor antigens (“neoantigens”) are an increasingly
popular form of personalized cancer immunotherapy. Vaxrank is a computational tool for
selecting neoantigen vaccine peptides from tumor mutations, tumor RNA data, and patient
HLA type. Vaxrank is freely available at www.github.com/hammerlab/vaxrank under the
Apache 2.0 open source license and can also be installed from the Python Package Index.

1 Introduction

Mutated cancer proteins recognized by T-cells have become known as “neoantigens” and are
considered an essential component of a tumor-specific immune response (Finnigan et al.,
2015; Gubin et al., 2015; Schumacher and Schreiber, 2015). Therapeutic vaccination against
neoantigens is an emerging experimental cancer therapy that attempts to mobilize an
antigen-specific immune response against mutated tumor proteins (Türeci et al., 2016;
Zhang et al., 2017). Since few tumor mutations are shared between patients, neoantigen
vaccines must be personalized therapies. A common approach for achieving personalization
is high-throughput sequencing of tumor and normal patient samples followed by in-silico
prioritization of mutated peptides that are likely to be presented on the surface of tumor
cells by MHC (major histocompatibility complex) molecules.

Vaxrank is a tool for selecting mutated peptides for personalized therapeutic cancer
vaccination. Vaxrank determines which peptides should be used in a vaccine from
tumor-specific somatic mutations, tumor RNA sequencing data, and a patient’s HLA type.
These peptides can then be synthesized and combined with an adjuvant to attempt to elicit
an anti-tumor T-cell response in a patient.

The sequence of each mutated protein is determined by assembling variant RNA reads.
Mutant protein sequences are ranked using a scoring system which seeks to satisfy two
objectives: choosing mutations that are abundant in the tumor and choosing those whose
translated amino acid sequences contain likely MHC ligands. Additionally, Vaxrank
considers surrounding non-mutated residues in a peptide to prioritize vaccine peptide
candidates and to improve the odds of successful synthesis.

Vaxrank was designed for and is currently being used in the Personalized Genomic
Vaccine Phase I clinical trial at the Icahn School of Medicine at Mount Sinai
(NCT02721043) (Rubinsteyn et al., 2016a).
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Figure 1: Users provide tumor mutations, tumor RNA sequence data, and patient HLA
type. These are used to determine mutant protein sequences and rank them according to
expression and predicted MHC affinity.

2 Running Vaxrank

To generate a Vaxrank vaccine report, the user must provide one or more files containing
somatic variants (in VCF, MAF, or JSON format), aligned tumor RNA-seq reads (as an
indexed BAM), and the HLA alleles to be used for MHC binding prediction:

vaxrank

--vcf somatic-variants.vcf

--bam tumor-rna.bam

--mhc-predictor netmhc

--mhc-alleles H2-Kb,H2-Db

--mhc-peptide-lengths 8-10

--vaccine-peptide-length 21

--min-alt-rna-reads 3

--output-pdf-report vaccine-peptides.pdf

The --mhc-predictor argument controls which program is used to predict the affinity
between a peptide-MHC pair. Vaxrank supports the use of locally installed instances of
NetMHC (Andreatta and Nielsen, 2016), NetMHCpan (Nielsen et al., 2007),
NetMHCcons (Karosiene et al., 2012), MHCflurry (Rubinsteyn et al., 2016b), or a variety of
web-based predictors through IEDB (Vita et al., 2015). The --min-alt-rna-reads
argument controls the minimum number of RNA reads supporting a variant required to
include that variant in the output report. In addition to quantifying tumor expression of a
mutations, the RNA reads are used to phase adjacent variants when reconstructing the
mutated coding sequence. A more complete list of options for input data, filtering, and
output formats can be seen by running vaxrank --help. Vaxrank’s output can be
formatted as PDF, plain-text, HTML, or an Excel spreadsheet. The output lists variants in
ranked order along with vaccine peptide(s) containing that variant, predicted MHC ligands,
number of supporting RNA reads, and sequence properties that affect manufacturability.

3 Ranking Mutations

A patient’s coding mutations are ranked according to a score that combines each mutation’s
degree of expression and aggregate affinity of overlapping mutant peptides for that patient’s
MHC alleles.
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RankingScore = ExpressionScore · TotalBindingScore

ExpressionScore =
√
# RNA reads supporting variant allele

TotalBindingScore =
∑

s∈subsequences

∑
a∈alleles

BindingScore(s, a)

The BindingScore function is, by default, a logistic transformation of the peptide-MHC
binding affinity that loosely approximates the probability of T-cell response (Sette et al.,
1994). Alternatively, binding predictions can be scored using an affinity threshold
(commonly ≤ 500nM) or a threshold on the percentile rank of the affinity. Only
subsequences which overlap mutant residues and do not occur in the reference proteome are
considered as part of the TotalBindingScore.

4 Manufacturability

Vaxrank was designed under the assumption that its output will be used to make long
peptides, due to their favorable immunological properties (Rosalia et al., 2013).
Unfortunately, long peptides are also more difficult to synthesize using traditional solid
phase chemistry (Bodanszky, 1988). To avoid known difficulties in synthesis, Vaxrank
selects a window of amino acids around each mutation that minimizes the following
undesirable properties:

1. total number of cysteine residues

2. max(0, mean hydrophobicity of 7 residues at C-terminus)

3. max(0, mean hydrophobicity of any 7 amino acid window)

4. glutamine, glutamic acid, or cysteine at N-terminus

5. cysteine at C-terminus

6. proline at C-terminus

7. asparagine at N-terminus

8. total number of asparagine-proline bonds

Manufacturability optimization does not affect the ranking of mutations but is only used for
selecting which surrounding residues should be included. In cases where a mutation spans a
“difficult” sequence (e.g. long hydrophobic stretch), minimizing these criteria may fail to
salvage manufacturability.

Funding: This work has been supported by the Icahn Institute and the Parker Institute
for Cancer Immunotherapy.
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