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Abstract

Deep learning, which describes a class of machine learning algorithms, has
recently showed impressive results across a variety of domains. Biology and
medicine are data rich, but the data are complex and often ill-understood.
Problems of this nature may be particularly well-suited to deep learning
techniques. We examine applications of deep learning to a variety of
biomedical problems -- patient classification, fundamental biological processes,
and treatment of patients -- to predict whether deep learning will transform
these tasks or if the biomedical sphere poses unique challenges. We find that
deep learning has yet to revolutionize or definitively resolve any of these
problems, but promising advances have been made on the prior state of the
art. Even when improvement over a previous baseline has been modest, we
have seen signs that deep learning methods may speed or aid human
investigation. More work is needed to address concerns related to
interpretability and how to best model each problem. Furthermore, the limited
amount of labeled data for training presents problems in some domains, as can
legal and privacy constraints on work with sensitive health records.
Nonetheless, we foresee deep learning powering changes at the bench and
bedside with the potential to transform several areas of biology and medicine.

Introduction to deep learning

Biology and medicine are rapidly becoming data-intensive. A recent
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comparison of genomics with social media, online videos, and other data-
intensive disciplines suggests that genomics alone will equal or surpass other
fields in data generation and analysis within the next decade [1]. The volume
and complexity of these data present new opportunities, but also pose new
challenges. Automated algorithms that extract meaningful patterns could lead
to actionable knowledge and change how we develop treatments, categorize
patients, or study diseases, all within privacy-critical environments.

The term deep learning has come to refer to a collection of new techniques
that, together, have demonstrated breakthrough gains over existing best-in-
class machine learning algorithms across several fields. For example, over the
past five years these methods have revolutionized image classification and
speech recognition due to their flexibility and high accuracy [2]. More recently,
deep learning algorithms have shown promise in fields as diverse as high-
energy physics [3], dermatology [4], and translation among written languages
[5]. Across fields, "off-the-shelf" implementations of these algorithms have
produced comparable or higher accuracy than previous best-in-class methods
that required years of extensive customization, and specialized
implementations are now being used at industrial scales.

Neural networks were first proposed in 1943 [6] as a model for how our brains
process information. The history of neural networks is interesting in its own
right [7]. In neural networks, inputs are fed into a hidden layer, which feeds into
one or more hidden layers, which eventually produce an output layer. The
neural networks used for deep learning have multiple hidden layers. Each layer
essentially performs feature construction for the layers before it. The training
process used often allows layers deeper in the network to contribute to the
refinement of earlier layers. For this reason, these algorithms can automatically
engineer features that are suitable for many tasks and customize those
features for one or more specific tasks. Deep learning does many of the same
things as more familiar approaches. Like a clustering algorithm, it can build
features that describe recurrent patterns in data. Like a regression approach,
deep learning methods can predict some output. However, deep learning
methods combine both of these steps. When sufficient data are available,
these methods construct features tuned to a specific problem and combine
those features into a predictor. Recently, hardware improvements and very
large training datasets have allowed these deep learning techniques to surpass
other machine learning algorithms for many problems.

Neural networks are most widely associated with supervised machine learning,
where the goal is to accurately predict one or more labels associated with each
data point. However, deep learning algorithms can also be used in an
exploratory, "unsupervised" mode, where the goal is to summarize, explain, or
identify interesting patterns in a data set. In a famous and early example,
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scientists from Google demonstrated that a neural network "discovered" that
cats, faces, and pedestrians were important components of online videos [8]
without being told to look for them. What if, more generally, deep learning
could solve the challenges presented by the growth of data in biomedicine?
Could these algorithms identify the "cats" hidden in our data - the patterns
unknown to the researcher - and suggest ways to act on them? In this review,
we examine deep learning's application to biomedical science and discuss the
unique challenges that biomedical data pose for deep learning methods.

Several important advances make the current surge of work done in this area
possible. Easy-to-use software packages have brought the techniques of the
field out of the specialist's toolkit to a broad community of computational
scientists. Additionally, new techniques for fast training have enabled their
application to larger datasets [9]. Dropout of nodes, edges, and layers makes
networks more robust, even when the number of parameters is very large. New
neural network approaches are also well-suited for addressing distinct
challenges. For example, neural networks structured as autoencoders or as
adversarial networks require no labels and are now regularly used for
unsupervised tasks. In this review, we do not exhaustively discuss the different
types of deep neural network architectures. A recent book from Goodfellow et
al. [10] covers these in detail. Finally, the larger datasets now available are
also sufficient for fitting the many parameters that exist for deep neural
networks. The convergence of these factors currently makes deep learning
extremely adaptable and capable of addressing the nuanced differences of
each domain to which it is applied.

Will deep learning transform the study of human disease?

With this review, we ask the question: what is needed for deep learning to
transform how we categorize, study, and treat individuals to maintain or restore
health? We choose a high bar for "transform." Andrew Grove, the former CEO
of Intel, coined the term Strategic Inflection Point to refer to a change in
technologies or environment that requires a business to be fundamentally
reshaped [11]. Here, we seek to identify whether deep learning is an innovation
that can induce a Strategic Inflection Point in the practice of biology or
medicine.

There are already a number of reviews focused on applications of deep
learning in biology [12–16], healthcare [17], and drug discovery [18–21]. Under
our guiding question, we sought to highlight cases where deep learning
enabled researchers to solve challenges that were previously considered
infeasible or makes difficult, tedious analyses routine. We also identified
approaches that researchers are using to sidestep challenges posed by
biomedical data. We find that domain-specific considerations have greatly
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influenced how to best harness the power and flexibility of deep learning.
Model interpretability is often critical. Understanding the patterns in data may
be just as important as fitting the data. In addition, there are important and
pressing questions about how to build networks that efficiently represent the
underlying structure and logic of the data. Domain experts can play important
roles in designing networks to represent data appropriately, encoding the most
salient prior knowledge and assessing success or failure. There is also great
potential to create deep learning systems that augment biologists and clinicians
by prioritizing experiments or streamlining tasks that do not require expert
judgment. We have divided the large range of topics into three broad classes:
Disease and Patient Categorization, Fundamental Biological Study, and
Treatment of Patients. Below, we briefly introduce the types of questions,
approaches and data that are typical for each class in the application of deep
learning.

Disease and patient categorization

A key challenge in biomedicine is the accurate classification of diseases and
disease subtypes. In oncology, current "gold standard" approaches include
histology, which requires interpretation by experts, or assessment of molecular
markers such as cell surface receptors or gene expression. One example is the
PAM50 approach to classifying breast cancer where the expression of 50
marker genes divides breast cancer patients into four subtypes. Substantial
heterogeneity still remains within these four subtypes [22,23]. Given the
increasing wealth of molecular data available, a more comprehensive
subtyping seems possible. Several studies have used deep learning methods
to better categorize breast cancer patients: denoising autoencoders, an
unsupervised approach, can be used to cluster breast cancer patients [24], and
convolutional neural networks (CNNs) can help count mitotic divisions, a
feature that is highly correlated with disease outcome in histological images
[25]. Despite these recent advances, a number of challenges exist in this area
of research, most notably the integration of molecular and imaging data with
other disparate types of data such as electronic health records (EHRs).

Fundamental biological study

Deep learning can be applied to answer more fundamental biological
questions; it is especially suited to leveraging large amounts of data from high-
throughput "omics" studies. One classic biological problem where machine
learning, and now deep learning, has been extensively applied is molecular
target prediction. For example, deep recurrent neural networks (RNNs) have
been used to predict gene targets of microRNAs [26], and CNNs have been
applied to predict protein residue-residue contacts and secondary structure
[27–29]. Other recent exciting applications of deep learning include recognition
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of functional genomic elements such as enhancers and promoters [30–32] and
prediction of the deleterious effects of nucleotide polymorphisms [33].

Treatment of patients

Although the application of deep learning to patient treatment is just beginning,
we expect new methods to recommend patient treatments, predict treatment
outcomes, and guide the development of new therapies. One type of effort in
this area aims to identify drug targets and interactions or predict drug response.
Another uses deep learning on protein structures to predict drug interactions
and drug bioactivity [34]. Drug repositioning using deep learning on
transcriptomic data is another exciting area of research [35]. Restricted
Boltzmann machines (RBMs) can be combined into deep belief networks
(DBNs) to predict novel drug-target interactions and formulate drug
repositioning hypotheses [36,37]. Finally, deep learning is also prioritizing
chemicals in the early stages of drug discovery for new targets [21].

Deep learning and patient categorization

In a healthcare setting, individuals are diagnosed with a disease or condition
based on symptoms, the results of certain diagnostic tests, or other factors.
Once diagnosed with a disease, an individual might be assigned a stage based
on another set of human-defined rules. While these rules are refined over time,
the process is evolutionary rather than revolutionary.

We might imagine that deep learning or artificial intelligence methods could
reinvent how individuals are categorized for healthcare. A deep neural network
might identify entirely new categories of health or disease that are only present
when data from multiple lab tests are integrated. As a potential example,
consider the condition Latent Autoimmune Diabetes in Adults (LADA). The
history of this disease classification is briefly reviewed in Stenström et al. [38].

Imagine that a deep neural network operating in the early 1980s had access to
electronic health records with comprehensive clinical tests. It might have
identified a subgroup of individuals with blood glucose levels that indicated
diabetes as well as auto-antibodies, even though the individuals had never
been diagnosed with type 1 diabetes -- the autoimmune form of the disease
that arises in young people. Such a neural network would be identifying
patients with LADA. As no such computational approach existed, LADA was
actually identified by Groop et al. [39]. However, this represents a potential
hope for this area. Perhaps deep neural networks, by reevaluating data without
the context of our assumptions, can reveal novel classes of treatable
conditions.
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Alternatively, imagine that a deep neural network is provided with clinical test
results gleaned from electronic health records. Because physicians may order
certain tests based on their suspected diagnosis, a deep neural network may
learn to "diagnose" patients simply based on the tests that are ordered. For
some objective functions, such as predicting an International Classification of
Diseases (ICD) code, this may offer good performance even though it does not
provide insight into the underlying disease beyond physician activity. This
challenge is not unique to deep learning approaches; however, it is important
for practitioners to be aware of these challenges and the possibility in this
domain of constructing highly predictive classifiers of questionable actual utility.

Our goal in this section is to assess the extent to which deep learning is
already contributing to the discovery of novel categories. Where it is not, we
focus on barriers to achieving these goals. We also highlight approaches that
researchers are taking to address challenges within the field, particularly with
regards to data availability and labeling.

Imaging applications in healthcare

Deep learning methods have transformed the analysis of natural images and
video, and similar examples are beginning to emerge with medical images.
Deep learning has been used to classify lesions and nodules; localize organs,
regions, landmarks and lesions; segment organs, organ substructures and
lesions; retrieve images based on content; generate and enhance images; and
combine images with clinical reports [40,41].

Though there are many commonalities with the analysis of natural images,
there are also key differences. In all cases that we examined, fewer than one
million images were available for training, and datasets are often many orders
of magnitude smaller than collections of natural images. Researchers have
developed subtask-specific strategies to address this challenge.

The first strategy repurposes features extracted from natural images by deep
learning models, such as ImageNet [42], for new purposes. Diagnosing diabetic
retinopathy through color fundus images became an area of focus for deep
learning researchers after a large labeled image set was made publicly
available during a 2015 Kaggle competition [43]. Most participants trained
neural networks from scratch [43–45], but Gulshan et al. [46] repurposed a 48-
layer Inception-v3 deep architecture pre-trained on natural images and
surpassed the state-of-the-art specificity and sensitivity. Such features were
also repurposed to detect melanoma, the deadliest form of skin cancer, from
dermoscopic [47,48] and non-dermoscopic images of skin lesions [4,49,50] as
well as age-related macular degeneration [51]. Pre-training on natural images
can enable very deep networks to succeed without overfitting. For the
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melanoma task, reported performance was competitive with or better than a
board of certified dermatologists [4,47].

Reusing features from natural images is also growing for radiographic images,
where datasets are often too small to train large deep neural networks without
these techniques [52–55]. Rajkomar et al. [54] showed that a deep CNN trained
on natural images boosts performance in radiographic images. However, the
target task required either re-training the initial model from scratch with special
pre-processing or fine-tuning of the whole network on radiographs with heavy
data augmentation to avoid overfitting.

The technique of reusing features from a different task falls into the broader
area of transfer learning (see Discussion). Though we've mentioned numerous
successes for the transfer of natural image features to new tasks, we expect
that a lower proportion of negative results have been published. The analysis
of magnetic resonance images (MRIs) is also faced with the challenge of small
training sets. In this domain, Amit et al. [56] investigated the tradeoff between
pre-trained models from a different domain and a small CNN trained only with
MRI images. In contrast with the other selected literature, they found a smaller
network trained with data augmentation on few hundred images from a few
dozen patients can outperform a pre-trained out-of-domain classifier. Data
augmentation is a different strategy to deal with small training sets. The
practice is exemplified by a series of papers that analyze images from
mammographies [57–61]. To expand the number and diversity of images,
researchers constructed adversarial examples [60]. Adversarial examples are
constructed by applying a transformation that changes training images but not
their content -- for example by rotating an image by a random amount. An
alternative in the domain is to train towards human-created features before
subsequent fine tuning [58], which can help to sidestep this challenge though it
does give up deep learning techniques' strength as feature constructors.

Another way of dealing with limited training data is to divide rich data -- e.g. 3D
images -- into numerous reduced projections. Shin et al. [53] compared various
deep network architectures, dataset characteristics, and training procedures for
computer tomography-based (CT) abnormality detection. They concluded that
networks as deep as 22 layers could be useful for 3D data, even though the
size of training datasets was limited. However, they noted that choice of
architecture, parameter setting, and model fine-tuning needed is very problem-
and dataset-specific. Moreover, this type of task often depends on both lesion
localization and appearance, which poses challenges for CNN-based
approaches. Straightforward attempts to capture useful information from full-
size images in all three dimensions simultaneously via standard neural network
architectures were computationally unfeasible. Instead, two-dimensional
models were used to either process image slices individually (2D), or
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aggregate information from a number of 2D projections in the native space
(2.5D). Roth et al. compared 2D, 2.5D, and 3D CNNs on a number of tasks for
computer-aided detection from CT scans and showed that 2.5D CNNs
performed comparably well to 3D analogs, while requiring much less training
time, especially on augmented training sets [62]. Another advantage of 2D and
2.5D networks is the wider availability of pre-trained models. But reducing the
dimensionality is not always helpful. Nie et al. [63] showed that multimodal,
multi-channel 3D deep architecture was successful at learning high-level brain
tumor appearance features jointly from MRI, functional MRI, and diffusion MRI
images, outperforming single-modality or 2D models. Overall, the variety of
modalities, properties and sizes of training sets, the dimensionality of input,
and the importance of end goals in medical image analysis are provoking a
development of specialized deep neural network architectures, training and
validation protocols, and input representations that are not characteristic of
widely-studied natural images.

Predictions from deep neural networks can be evaluated for use in workflows
that also incorporate human experts. In a large dataset of mammography
images, Kooi et al. [64] demonstrated that deep neural networks outperform the
traditional computer-aided diagnosis system at low sensitivity and perform
comparably at high sensitivity. They also compared network performance to
certified screening radiologists on a patch level and found no significant
difference between the network and the readers. However, using deep
methods for clinical practice is challenged by the difficulty of assigning a level
of confidence to each prediction. Leibig et al. [45] estimated the uncertainty of
deep networks for diabetic retinopathy diagnosis by linking dropout networks
with approximate Bayesian inference. Techniques that assign confidences to
each prediction should aid pathologist-computer interactions and improve
uptake by physicians.

Systems to aid in the analysis of histology slides are also promising use cases
for deep learning [65]. Ciresan et al. [25] developed one of the earliest
approaches for histology slides, winning the 2012 International Conference on
Pattern Recognition's Contest on Mitosis Detection while achieving human-
competitive accuracy. In more recent work, Wang et al. [66] analyzed stained
slides of lymph node slices to identify cancers. On this task a pathologist has
about a 3% error rate. The pathologist did not produce any false positives, but
did have a number of false negatives. The algorithm had about twice the error
rate of a pathologist, but the errors were not strongly correlated. In this area,
these algorithms may be ready to be incorporated into existing tools to aid
pathologists and reduce the false negative rate. Ensembles of deep learning
and human experts may help overcome some of the challenges presented by
data limitations.
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One source of training examples with rich clinical annotations is electronic
health records. Recently, Lee et al. [67] developed an approach to distinguish
individuals with age-related macular degeneration from control individuals.
They trained a deep neural network on approximately 100,000 images
extracted from structured electronic health records, reaching greater than 93%
accuracy. The authors used their test set to evaluate when to stop training. In
other domains, this has resulted in a minimal change in the estimated accuracy
[68], but we recommend the use of an independent test set whenever feasible.

Chest X-rays are a common radiological examination for screening and
diagnosis of lung diseases. Although hospitals have accumulated a large
number of raw radiology images and reports in Picture Archiving and
Communication Systems and their related reports in Radiology Information
Systems, it is not yet known how to effectively use them to learn the correlation
between pathology categories and X-rays. In the last few years, deep learning
methods showed remarkable results in chest X-ray image analysis [69,70].
However, it is both costly and time-consuming to annotate a large-scale fully-
labeled corpus to facilitate data-intensive deep learning models. As an
alternative, Wang et al. [70] proposed to use weakly labeled images. To
generate weak labels for X-ray images, they applied a series of natural
language processing (NLP) techniques to the associated chest X-ray
radiological reports. Specifically, they first extracted all diseases mentioned in
the reports using a state-of-the-art NLP tool, then applied a newly-developed
negation and uncertainty detection tool (NegBio) to filter negative and
equivocal findings in the reports. Evaluation on three independent datasets
demonstrated that NegBio is highly accurate for detecting negative and
equivocal findings (~90% in F-measure, which balances precision and recall
[71]). These highly-accurate results meet the need to generate a corpus with
weak labels, which serves as a solid foundation for the later process of image
classification. The resulting dataset consists of 108,948 frontal-view chest X-
ray images from 32,717 patients, and each image is associated with one or
more weakly-labeled pathology category (e.g. pneumonia and cardiomegaly)
or "normal" otherwise. Further, Wang et al. [70] used this dataset with a unified
weakly-supervised multi-label image classification framework, to detect
common thoracic diseases. It showed superior performance over a benchmark
using fully-labeled data.

With the exception of natural image-like problems (e.g. melanoma detection),
biomedical imaging poses a number of challenges for deep learning. Dataset
are typically small, annotations can be sparse, and images are often high-
dimensional, multimodal, and multi-channel. Techniques like transfer learning,
heavy dataset augmentation, multi-view and multi-stream architectures are
more common than in the natural image domain. Furthermore, high model
sensitivity and specificity can translate directly into clinical value. Thus,
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prediction evaluation, uncertainty estimation, and model interpretation methods
are also of great importance in this domain (see Discussion). Finally, there is a
need for better pathologist-computer interaction techniques that will allow
combining the power of deep learning methods with human expertise and lead
to better-informed decisions for patient treatment and care.

Electronic health records

EHR data include substantial amounts of free text, which remains challenging
to approach [72]. Often, researchers developing algorithms that perform well on
specific tasks must design and implement domain-specific features [73]. These
features capture unique aspects of the literature being processed. Deep
learning methods are natural feature constructors. In recent work, the authors
evaluated the extent to which deep learning methods could be applied on top
of generic features for domain-specific concept extraction [74]. They found that
performance was in line with, but lower than the best domain-specific method
[74]. This raises the possibility that deep learning may impact the field by
reducing the researcher time and cost required to develop specific solutions,
but it may not always lead to performance increases.

In recent work, Yoon et al.[75] analyzed simple features using deep neural
networks and found that the patterns recognized by the algorithms could be re-
used across tasks. Their aim was to analyze the free text portions of pathology
reports to identify the primary site and laterality of tumors. The only features
the authors supplied to the algorithms were unigrams and bigrams, counts for
single words and two-word combinations in a free text document. They subset
the full set of words and word combinations to the 400 most common. The
machine learning algorithms that they employed (naïve Bayes, logistic
regression, and deep neural networks) all performed relatively similarly on the
task of identifying the primary site. However, when the authors evaluated the
more challenging task, evaluating the laterality of each tumor, the deep neural
network outperformed the other methods. Of particular interest, when the
authors first trained a neural network to predict primary site and then
repurposed those features as a component of a secondary neural network
trained to predict laterality, the performance was higher than a laterality-trained
neural network. This demonstrates how deep learning methods can repurpose
features across tasks, improving overall predictions as the field tackles new
challenges. The Discussion further reviews this type of transfer learning.

Several authors have created reusable feature sets for medical terminologies
using natural language processing and neural embedding models, as
popularized by Word2vec [76]. A goal of learning terminologies for different
entities in the same vector space is to find relationships between different
domains (e.g. drugs and the diseases they treat). It is difficult for us to provide
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a strong statement on the broad utility of these methods. Manuscripts in this
area tend to compare algorithms applied to the same data but lack a
comparison against overall best-practices for one or more tasks addressed by
these methods. Techniques have been developed for free text medical notes
[77], ICD and National Drug Codes, and claims data [78]. Methods for neural
embeddings learned from electronic health records have at least some ability
to predict disease-disease associations and implicate genes with a statistical
association with a disease [79]. However, the evaluations performed did not
differentiate between simple predictions (i.e. the same disease in different sites
of the body) and non-intuitive ones. While promising, a lack of rigorous
evaluations of the real-world utility of these kinds of features makes current
contributions in this area difficult to evaluate. To examine the true utility,
comparisons need to be performed against leading approaches (i.e. algorithms
and data) as opposed to simply evaluating multiple algorithms on the same
potentially limited dataset.

Identifying consistent subgroups of individuals and individual health trajectories
from clinical tests is also an active area of research. Approaches inspired by
deep learning have been used for both unsupervised feature construction and
supervised prediction. Early work by Lasko et al. [80], combined sparse
autoencoders and Gaussian processes to distinguish gout from leukemia from
uric acid sequences. Later work showed that unsupervised feature construction
of many features via denoising autoencoder neural networks could dramatically
reduce the number of labeled examples required for subsequent supervised
analyses [81]. In addition, it pointed towards learned features being useful for
subtyping within a single disease. In a concurrent large-scale analysis of EHR
data from 700,000 patients, Miotto et al. [82] used a deep denoising
autoencoder architecture applied to the number and co-occurrence of clinical
events (DeepPatient) to learn a representation of patients. The model was able
to predict disease trajectories within one year with over 90% accuracy and
patient-level predictions were improved by up to 15% when compared to other
methods. Razavian et al. [83] used a set of 18 common lab tests to predict
disease onset using both CNN and long short-term memory (LSTM)
architectures and demonstrated an improvement over baseline regression
models. However, numerous challenges including data integration (patient
demographics, family history, laboratory tests, text-based patient records,
image analysis, genomic data) and better handling of streaming temporal data
with many features, will need to be overcome before we can fully assess the
potential of deep learning for this application area.

Still, recent work has also revealed domains in which deep networks have
proven superior to traditional methods. Survival analysis models the time
leading to an event of interest from a shared starting point, and in the context
of EHR data, often associates these events to subject covariates. Exploring
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this relationship is difficult, however, given that EHR data types are often
heterogeneous, covariates are often missing, and conventional approaches
require the covariate-event relationship be linear and aligned to a specific
starting point [84]. Early approaches, such as the Faraggi-Simon feed-forward
network, aimed to relax the linearity assumption, but performance gains were
lacking [85]. Katzman et al. in turn developed a deep implementation of the
Faraggi-Simon network that, in addition to outperforming Cox regression, was
capable of comparing the risk between a given pair of treatments, thus
potentially acting as recommender system [86]. To overcome the remaining
difficulties, researchers have turned to deep exponential families, a class of
latent generative models that are constructed from any type of exponential
family distributions [87]. The result was a deep survival analysis model capable
of overcoming challenges posed by missing data and heterogeneous data
types, while uncovering nonlinear relationships between covariates and failure
time. They showed their model more accurately stratified patients as a function
of disease risk score compared to the current clinical implementation.

There is a computational cost for these methods, however, when compared to
traditional, non-neural network approaches. For the exponential family models,
despite their scalability [88], an important question for the investigator is
whether he or she is interested in estimates of posterior uncertainty. Given that
these models are effectively Bayesian neural networks, much of their utility
simplifies to whether a Bayesian approach is warranted for a given increase in
computational cost. Moreover, as with all variational methods, future work must
continue to explore just how well the posterior distributions are approximated,
especially as model complexity increases [89].

Challenges and opportunities in patient categorization

Generating ground-truth labels can be expensive or impossible

A dearth of true labels is perhaps among the biggest obstacles for EHR-based
analyses that employ machine learning. Popular deep learning (and other
machine learning) methods are often used to tackle classification tasks and
thus require ground-truth labels for training. For EHRs this can mean that
researchers must hire multiple clinicians to manually read and annotate
individual patients' records through a process called chart review. This allows
researchers to assign "true" labels, i.e. those that match our best available
knowledge. Depending on the application, sometimes the features constructed
by algorithms also need to be manually validated and interpreted by clinicians.
This can be time consuming and expensive [90]. Because of these costs, much
of this research, including the work cited in this review, skips the process of
expert review. Clinicians' skepticism for research without expert review may
greatly dampen their enthusiasm for the work and consequently reduce its
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impact. To date, even well-resourced large national consortia have been
challenged by the task of acquiring enough expert-validated labeled data. For
instance, in the eMERGE consortia and PheKB database [91], most samples
with expert validation contain only 100 to 300 patients. These datasets are
quite small even for simple machine learning algorithms. The challenge is
greater for deep learning models with many parameters. While unsupervised
and semi-supervised approaches can help with small sample sizes, the field
would benefit greatly from large collections of anonymized records in which a
substantial number of records have undergone expert review. This challenge is
not unique to EHR-based studies. Work on medical images, omics data in
applications for which detailed metadata are required, and other applications
for which labels are costly to obtain will be hampered as long as abundant
curated data are unavailable.

Successful approaches to date in this domain have sidestepped this challenge
by making methodological choices that either reduce the need for labeled
examples or that use transformations to training data to increase the number of
times it can be used before overfitting occurs. For example, the unsupervised
and semi-supervised methods that we have discussed reduce the need for
labeled examples [81]. The anchor and learn framework [92] uses expert
knowledge to identify high-confidence observations from which labels can be
inferred. The adversarial training example strategies mentioned above can
reduce overfitting, if transformations are available that preserve the meaningful
content of the data while transforming irrelevant features [60]. While adversarial
training examples can be easily imagined for certain methods that operate on
images, it is more challenging to figure out what an equivalent transformation
would be for a patient's clinical test results. Consequently, it may be hard to
employ adversarial training examples, not to be confused with generative
adversarial neural networks, with other applications. Finally, approaches that
transfer features can also help use valuable training data most efficiently.
Rajkomar et al. trained a deep neural network using generic images before
tuning using only radiology images [54]. Datasets that require many of the
same types of features might be used for initial training, before fine tuning
takes place with the more sparse biomedical examples. Though the analysis
has not yet been attempted, it is possible that analogous strategies may be
possible with electronic health records. For example, features learned from the
electronic health record for one type of clinical test (e.g. a decrease over time
in a lab value) may transfer across phenotypes.

Methods to accomplish more with little high-quality labeled data are also being
applied in other domains and may also be adapted to this challenge, e.g. data
programming [93]. In data programming, noisy automated labeling functions
are integrated. Numerous writers have described data as the new oil [94,95].
The idea behind this metaphor is that data are available in large quantities,
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valuable once refined, and the underlying resource that will enable a data-
driven revolution in how work is done. Contrasting with this perspective,
Ratner, Bach, and Ré described labeled training data as "The New New Oil"
[96]. In this framing, data are abundant and not a scarce resource. Instead,
new approaches to solving problems arise when labeled training data become
sufficient to enable them. Based on our review of research on deep learning
methods to categorize disease, the latter framing rings true.

We expect improved methods for domains with limited data to play an
important role if deep learning is going to transform how we categorize states
of human health. We don't expect that deep learning methods will replace
expert review. We expect them to complement expert review by allowing more
efficient use of the costly practice of manual annotation.

Data sharing is hampered by standardization and privacy considerations

To construct the types of very large datasets that deep learning methods thrive
on, we need robust sharing of large collections of data. This is in part a cultural
challenge. We touch on this challenge in the Discussion section. Beyond the
cultural hurdles around data sharing, there are also technological and legal
hurdles related to sharing individual health records or deep models built from
such records. This subsection deals primarily with these challenges.

EHRs are designed chiefly for clinical, administrative and financial purposes,
such as patient care, insurance and billing [97]. Science is at best a tertiary
priority, presenting challenges to EHR-based research in general and to deep
learning research in particular. Although there is significant work in the
literature around EHR data quality and the impact on research [98], we focus
on three types of challenges: local bias, wider standards, and legal issues.
Note these problems are not restricted to EHRs but can also apply to any large
biomedical dataset, e.g. clinical trial data.

Even within the same healthcare system, EHRs can be used differently
[99,100]. Individual users have unique documentation and ordering patterns,
with different departments and different hospitals having different priorities that
code patients and introduce missing data in a non-random fashion [101].
Patient data may be kept across several "silos" within a single health system
(e.g. separate nursing documentation, registries, etc.). Even the most basic
task of matching patients across systems can be challenging due to data entry
issues [102]. The situation is further exacerbated by the ongoing introduction,
evolution, and migration of EHR systems, especially where reorganized and
acquired healthcare facilities have to merge. Further, even the ostensibly least-
biased data type, laboratory measurements, can be biased based by both the
healthcare process and patient health state [103]. As a result, EHR data can be
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less complete and less objective than expected.

In the wider picture, standards for EHRs are numerous and evolving.
Proprietary systems, indifferent and scattered use of health information
standards, and controlled terminologies makes combining and comparison of
data across systems challenging [104]. Further diversity arises from variation in
languages, healthcare practices, and demographics. Merging EHR gathered in
different systems (and even under different assumptions) is challenging [105].

Combining or replicating studies across systems thus requires controlling for
both the above biases and dealing with mismatching standards. This has the
practical effect of reducing cohort size, limiting statistical significance,
preventing the detection of weak effects [106], and restricting the number of
parameters that can be trained in a model. Further, rules-based algorithms
have been popular in EHR-based research, but because these are developed
at a single institution and trained with a specific patient population, they do not
transfer easily to other healthcare systems [107]. Genetic studies using EHR
data are subject to even more bias, as the differences in population ancestry
across health centers (e.g. proportion of patients with African or Asian
ancestry) can affect algorithm performance. For example, Wiley et al. [108]
showed that warfarin dosing algorithms often under-perform in African
Americans, illustrating that some of these issues are unresolved even at a
treatment best practices level. Lack of standardization also makes it
challenging for investigators skilled in deep learning to enter the field, as
numerous data processing steps must be performed before algorithms are
applied.

Finally, even if data were perfectly consistent and compatible across systems,
attempts to share and combine EHR data face considerable legal and ethical
barriers. Patient privacy can severely restrict the sharing and use of EHR [109].
Here again, standards are heterogeneous and evolving, but often EHR data
can often not be exported or even accessed directly for research purposes
without appropriate consent. In the United States, research use of EHR data is
subject both to the Common Rule and the Health Insurance Portability and
Accountability Act (HIPPA). Ambiguity in the regulatory language and
individual interpretation of these rules can hamper use of EHR data [110].
Once again, this has the effect of making data gathering more laborious and
expensive, reducing sample size and study power.

Several technological solutions have been proposed in this direction, allowing
access to sensitive data satisfying privacy and legal concerns. Software like
DataShield [111] and ViPAR [112], although not EHR-specific, allows querying
and combining of datasets and calculation of summary statistics across remote
sites by "taking the analysis to the data". The computation is carried out at the
remote site. Conversely, the EH4CR project [104] allows analysis of private

.CC-BY 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted May 28, 2017. . https://doi.org/10.1101/142760doi: bioRxiv preprint 

https://doi.org/10.1101/142760
http://creativecommons.org/licenses/by/4.0/


data by use of an inter-mediation layer that interprets remote queries across
internal formats and datastores and returns the results in a de-identified
standard form, thus giving real-time consistent but secure access. Continuous
Analysis [113] can allow reproducible computing on private data. Using such
techniques, intermediate results can be automatically tracked and shared
without sharing the original data. While none of these have been used in deep
learning, the potential is there.

Even without sharing data, algorithms trained on confidential patient data may
present security risks or accidentally allow for the exposure of individual level
patient data. Tramer et al. [114] showed the ability to steal trained models via
public application programming interfaces (APIs). Dwork and Roth [115]
demonstrate the ability to expose individual level information from accurate
answers in a machine learning model. Attackers can use similar attacks to find
out if a particular data instance was present in the original training set for the
machine learning model [116], in this case, whether a person's record was
present. This presents a potential hazard for approaches that aim to generate
data. Choi et al. propose generative adversarial neural networks as a tool to
make sharable EHR data [117]; however, the authors did not take steps to
protect the model from such attacks.

There are approaches to protect models, but they pose their own challenges.
Training in a differentially private manner provides a limited guarantee that an
algorithm's output will be equally likely to occur regardless of the participation
of any one individual. The limit is determined by a single parameter which
provides a quantification of privacy. Simmons et al. [118] present the ability to
perform genome-wide association studies (GWASs) in a differentially private
manner, and Abadi et al. [119] show the ability to train deep learning classifiers
under the differential privacy framework. Federated learning [120] and secure
aggregations [121,122] are complementary approaches that reinforce
differential privacy. Both aim to maintain privacy by training deep learning
models from decentralized data sources such as personal mobile devices
without transferring actual training instances. This is becoming of increasing
importance with the rapid growth of mobile health applications. However, the
training process in these approaches places constraints on the algorithms used
and can make fitting a model substantially more challenging. In our own
experience, it can be trivial to train a model without differential privacy, but
quite difficult to train one within the differential privacy framework. The problem
can be particularly pronounced with small sample sizes.

While none of these problems are insurmountable or restricted to deep
learning, they present challenges that cannot be ignored. Technical evolution in
EHRs and data standards will doubtless ease -- although not solve -- the
problems of data sharing and merging. More problematic are the privacy
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issues. Those applying deep learning to the domain should consider the
potential of inadvertently disclosing the participants' identities. Techniques that
enable training on data without sharing the raw data may have a part to play.
Training within a differential privacy framework may often be warranted.

Discrimination and "right to an explanation" laws

In April 2016, the European Union adopted new rules regarding the use of
personal information, the General Data Protection Regulation [123]. A
component of these rules can be summed up by the phrase "right to an
explanation". Those who use machine learning algorithms must be able to
explain how a decision was reached. For example, a clinician treating a patient
who is aided by a machine learning algorithm may be expected to explain
decisions that use the patient's data. The new rules were designed to target
categorization or recommendation systems, which inherently profile individuals.
Such systems can do so in ways that are discriminatory and unlawful.

As datasets become larger and more complex, we may begin to identify
relationships in data that are important for human health but difficult to
understand. The algorithms described in this review and others like them may
become highly accurate and useful for various purposes, including within
medical practice. However, to discover and avoid discriminatory applications it
will be important to consider interpretability alongside accuracy. A number of
properties of genomic and healthcare data will make this difficult.

First, research samples are frequently non-representative of the general
population of interest; they tend to be disproportionately sick [124], male [125],
and European in ancestry [126]. One well-known consequence of these biases
in genomics is that penetrance is consistently lower in the general population
than would be implied by case-control data, as reviewed in [124]. Moreover,
real genetic associations found in one population may not hold in other
populations with different patterns of linkage disequilibrium (even when
population stratification is explicitly controlled for [127]). As a result, many
genomic findings are of limited value for people of non-European ancestry
[126] and may even lead to worse treatment outcomes for them. Methods have
been developed for mitigating some of these problems in genomic studies
[124,127], but it is not clear how easily they can be adapted for deep models
that are designed specifically to extract subtle effects from high-dimensional
data. For example, differences in the equipment that tended to be used for
cases versus controls have led to spurious genetic findings (e.g. Sebastiani et
al.'s retraction [128]). In some contexts, it may not be possible to correct for all
of these differences to the degree that a deep network is unable to use them.
Moreover, the complexity of deep networks makes it difficult to determine when
their predictions are likely to be based on such nominally-irrelevant features of

.CC-BY 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted May 28, 2017. . https://doi.org/10.1101/142760doi: bioRxiv preprint 

https://doi.org/10.1101/142760
http://creativecommons.org/licenses/by/4.0/


the data (called "leakage" in other fields [129]). When we are not careful with
our data and models, we may inadvertently say more about the way the data
was collected (which may involve a history of unequal access and
discrimination) than about anything of scientific or predictive value. This fact
can undermine the privacy of patient data [129] or lead to severe discriminatory
consequences [130].

There is a small but growing literature on the prevention and mitigation of data
leakage [129], as well as a closely-related literature on discriminatory model
behavior [131], but it remains difficult to predict when these problems will arise,
how to diagnose them, and how to resolve them in practice. There is even
disagreement about which kinds of algorithmic outcomes should be considered
discriminatory [132]. Despite the difficulties and uncertainties, machine learning
practitioners (and particularly those who use deep neural networks, which are
challenging to interpret) must remain cognizant of these dangers and make
every effort to prevent harm from discriminatory predictions. To reach their
potential in this domain, deep learning methods will need to be interpretable.
Researchers need to consider the extent to which biases may be learned by
the model and whether or not a model is sufficiently interpretable to identify
bias. We discuss the challenge of model interpretability more thoroughly in the
discussion section.

Applications of deep learning to longitudinal analysis

Longitudinal analysis follows a population across time, for example,
prospectively from birth or from the onset of particular conditions. In large
patient populations, longitudinal analyses such as the Farmingham Heart Study
[133] and the Avon Longitudinal Study of Parents and Children [134] have
yielded important discoveries about the development of disease and the factors
contributing to health status. Yet, a common practice in EHR-based research is
to take a point in time snapshot and convert patient data to a traditional vector
for machine learning and statistical analysis. This results in loss of information
as timing and order of events can provide insight into a patient's disease and
treatment [135]. Efforts to model sequences of events have shown promise
[136] but require exceedingly large patient sizes due to discrete combinatorial
bucketing. Lasko et al. [80] used autoencoders on longitudinal sequences of
serum urine acid measurements to identify population subtypes. More recently,
deep learning has shown promise working with both sequences (CNNs) [137]
and the incorporation of past and current state (RNNs, LSTMs) [138]. This may
be a particular area of opportunity for deep neural networks. The ability to
recognize relevant sequences of events from a large number of trajectories
requires powerful and flexible feature construction methods -- an area in which
deep neural networks excel.
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Deep learning to study the fundamental
biological processes underlying human disease

The study of cellular structure and core biological processes -- transcription,
translation, signaling, metabolism, etc. -- in humans and model organisms will
greatly impact our understanding of human disease over the long horizon
[139]. Predicting how cellular systems respond to environmental perturbations
and are altered by genetic variation remain daunting tasks. Deep learning
offers new approaches for modeling biological processes and integrating
multiple types of omic data [140], which could eventually help predict how
these processes are disrupted in disease. Recent work has already advanced
our ability to identify and interpret genetic variants, study microbial
communities, and predict protein structures, which also relates to the problems
discussed in the drug development section. In addition, unsupervised deep
learning has enormous potential for discovering novel cellular states from gene
expression, fluorescence microscopy, and other types of data that may
ultimately prove to be clinically relevant.

Progress has been rapid in genomics and imaging, fields where important
tasks are readily adapted to well-established deep learning paradigms. One-
dimensional convolutional and recurrent neural networks are well-suited for
tasks related to DNA- and RNA-binding proteins, epigenomics, and RNA
splicing. Two dimensional CNNs are ideal for segmentation, feature extraction,
and classification in fluorescence microscopy images [16]. Other areas, such as
cellular signaling, are biologically important but studied less-frequently to date,
with some exceptions [141]. This may be a consequence of data limitations or
greater challenges in adapting neural network architectures to the available
data. Here, we highlight several areas of investigation and assess how deep
learning might move these fields forward.

Gene expression

Gene expression technologies characterize the abundance of many thousands
of RNA transcripts within a given organism, tissue, or cell. This characterization
can represent the underlying state of the given system and can be used to
study heterogeneity across samples as well as how the system reacts to
perturbation. While gene expression measurements were traditionally made by
quantitative polymerase chain reaction (qPCR), low-throughput fluorescence-
based methods, and microarray technologies, the field has shifted in recent
years to primarily performing RNA sequencing (RNA-seq) to catalog whole
transcriptomes. As RNA-seq continues to fall in price and rise in throughput,
sample sizes will increase and training deep models to study gene expression
will become even more useful.

.CC-BY 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted May 28, 2017. . https://doi.org/10.1101/142760doi: bioRxiv preprint 

https://doi.org/10.1101/142760
http://creativecommons.org/licenses/by/4.0/


Already several deep learning approaches have been applied to gene
expression data with varying aims. For instance, many researchers have
applied unsupervised deep learning models to extract meaningful
representations of gene modules or sample clusters. Denoising autoencoders
have been used to cluster yeast expression microarrays into known modules
representing cell cycle processes [142] and to stratify yeast strains based on
chemical and mutational perturbations [143]. Shallow (one hidden layer)
denoising autoencoders have also been fruitful in extracting biological insight
from thousands of Pseudomonas aeruginosa experiments [144,145] and in
aggregating features relevant to specific breast cancer subtypes [24]. These
unsupervised approaches applied to gene expression data are powerful
methods for identifying gene signatures that may otherwise be overlooked. An
additional benefit of unsupervised approaches is that ground truth labels, which
are often difficult to acquire or are incorrect, are nonessential. However, the
genes that have been aggregated into features must be interpreted carefully.
Attributing each node to a single specific biological function risks over-
interpreting models. Batch effects could cause models to discover non-
biological features, and downstream analyses should take this into
consideration.

Deep learning approaches are also being applied to gene expression
prediction tasks. For example, a deep neural network with three hidden layers
outperformed linear regression in inferring the expression of over 20,000 target
genes based on a representative, well-connected set of about 1,000 landmark
genes [146]. However, while the deep learning model outperformed existing
algorithms in nearly every scenario, the model still displayed poor
performance. The paper was also limited by computational bottlenecks that
required data to be split randomly into two distinct models and trained
separately. It is unclear how much performance would have increased if not for
computational restrictions.

Epigenetic data, combined with deep learning, may have sufficient explanatory
power to infer gene expression. For instance, a convolutional neural network
applied to histone modifications, termed DeepChrome, [147] improved
prediction accuracy of high or low gene expression over existing methods.
Deep learning can also integrate different data types. For example, Liang et al.
combined RBMs to integrate gene expression, DNA methylation, and miRNA
data to define ovarian cancer subtypes [148]. While these approaches are
promising, many convert gene expression measurements to categorical or
binary variables, thus ablating many complex gene expression signatures
present in intermediate and relative numbers.

Deep learning applied to gene expression data is still in its infancy, but the
future is bright. Many previously untestable hypotheses can now be
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interrogated as deep learning enables analysis of increasing amounts of data
generated by new technologies. For example, the effects of cellular
heterogeneity on basic biology and disease etiology can now be explored by
single-cell RNA-seq and high-throughput fluorescence-based imaging,
techniques we discuss below that will benefit immensely from deep learning
approaches.

Splicing

Pre-mRNA transcripts can be spliced into different isoforms by retaining or
skipping subsets of exons or including parts of introns, creating enormous
spatiotemporal flexibility to generate multiple distinct proteins from a single
gene. This remarkable complexity can lend itself to defects that underlie many
diseases [149]. For instance, in Becker muscular dystrophy, a point mutation in
dystrophin creates an exon splice silencer that induces skipping of exon 31. A
recent study found that quantitative trait loci that affect splicing in
lymphoblastoid cell lines are enriched within risk loci for schizophrenia, multiple
sclerosis, and other immune diseases, implicating mis-splicing as a more
widespread feature of human pathologies than previously thought [150].

Sequencing studies routinely return thousands of unannotated variants, but
which cause functional changes in splicing and how are those changes
manifested? Prediction of a "splicing code" has been a goal of the field for the
past decade. Initial machine learning approaches used a naïve Bayes model
and a 2-layer Bayesian neural network with thousands of hand-derived
sequence-based features to predict the probability of exon skipping [151,152].
With the advent of deep learning, more complex models were built that
provided better predictive accuracy [153,154]. Importantly, these new
approaches can take in multiple kinds of epigenomic measurements as well as
tissue identity and RNA binding partners of splicing factors. Deep learning is
critical in furthering these kinds of integrative studies where different data types
and inputs interact in unpredictable (often nonlinear) ways to create higher-
order features. Moreover, as in gene expression network analysis, interrogating
the hidden nodes within neural networks could potentially illuminate important
aspects of splicing behavior. For instance, tissue-specific splicing mechanisms
could be inferred by training networks on splicing data from different tissues,
then searching for common versus distinctive hidden nodes, a technique
employed by Qin et al. for tissue-specific transcription factor (TF) binding
predictions [155].

A parallel effort has been to use more data with simpler models. An exhaustive
study using readouts of splicing for millions of synthetic intronic sequences
uncovered motifs that influence the strength of alternative splice sites [156].
The authors built a simple linear model using hexamer motif frequencies that
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successfully generalized to exon skipping. In a limited analysis using single
nucleotide polymorphisms (SNPs) from three genes, it predicted exon skipping
with three times the accuracy of an existing deep learning-based framework
[153]. This case is instructive in that clever sources of data, not just more
descriptive models, are still critical.

We already understand how mis-splicing of a single gene can cause diseases
such as Duchenne muscular dystrophy. The challenge now is to uncover how
genome-wide alternative splicing underlies complex, non-Mendelian diseases
such as autism, schizophrenia, Type 1 diabetes, and multiple sclerosis [157].
As a proof of concept, Xiong et al. [153] sequenced five autism spectrum
disorder and 12 control samples, each with an average of 42,000 rare variants,
and identified mis-splicing in 19 genes with neural functions. Such methods
may one day enable scientists and clinicians to rapidly profile thousands of
unannotated variants for functional effects on splicing and nominate candidates
for further investigation. Moreover, these nonlinear algorithms can deconvolve
the effects of multiple variants on a single splice event without the need to
perform combinatorial in vitro experiments. The ultimate goal is to predict an
individual’s tissue-specific, exon-specific splicing patterns from their genome
sequence and other measurements to enable a new branch of precision
diagnostics that also stratifies patients and suggests targeted therapies to
correct splicing defects. However, to achieve this we expect that methods to
interpret the "black box" of deep neural networks and integrate diverse data
sources will be required.

Transcription factors and RNA-binding proteins

Transcription factors and RNA-binding proteins are key components in gene
regulation and higher-level biological processes. TFs are regulatory proteins
that bind to certain genomic loci and control the rate of mRNA production.
While high-throughput sequencing techniques such as chromatin
immunoprecipitation and massively parallel DNA sequencing (ChIP-seq) have
been able to accurately identify targets for TFs, these experiments are both
time consuming and expensive. Thus, there is a need to computationally
predict binding sites and understand binding specificities de novo from
sequence data. In this section we focus on TFs, with the understanding that
deep learning methods for TFs are similar to those for RNA-binding proteins,
though RNA-specific models do exist [158].

ChIP-seq and related technologies are able to identify highly likely binding sites
for a certain TF, and databases such as ENCODE [159] have made freely
available ChIP-seq data for hundreds of different TFs across many
laboratories. In order to computationally predict transcription factor binding
sites (TFBSs) on a DNA sequence, researchers initially used consensus
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sequences and position weight matrices to match against a test sequence
[160]. Simple neural network classifiers were then proposed to differentiate
positive and negative binding sites but did not show meaningful improvements
over the weight matrix matching methods [161]. Later, support vector machines
(SVMs) outperformed the generative methods by using k-mer features
[162,163], but string kernel-based SVM systems are limited by their expensive
computational cost, which is proportional to the number of training and testing
sequences.

With the advent of deep learning, Alipanahi et al. [164] showed that
convolutional neural network models could achieve state of the art results on
the TFBS task and are scalable to a large number of genomic sequences.
Lanchantin et al. [165] introduced several new convolutional and recurrent
neural network models that further improved TFBS predictive accuracy. Due to
the motif-driven nature of the TFBS task, most architectures have been
convolution-based [166]. While many models for TFBS prediction resemble
computer vision and NLP tasks, it is important to note that DNA sequence
tasks are fundamentally different. Thus the models should be adapted from
traditional deep learning models in order to account for such differences. For
example, motifs may appear in either strand of a DNA sequence, resulting in
two different forms of the motif (forward and reverse complement) due to
complementary base pairing. To handle this issue, specialized reverse
complement convolutional models share parameters to find motifs in both
directions [167].

Despite these advances, several challenges remain. First, because the inputs
(ChIP-seq measurements) are continuous and most current algorithms are
designed to produce binary outputs (whether or not there is TF binding at a
particular site), false positives or false negatives can result depending on the
threshold chosen by the algorithm. Second, most methods predict binding of
TFs at sites in isolation, whereas in reality multiple TFs may compete for
binding at a single site or act synergistically to co-occupy it. Fortunately, multi-
task models are rapidly improving at simultaneous prediction of many TFs'
binding at any given site [168]. Third, it is unclear exactly how to define a non-
binding or "negative" site in the training data because the number of positive
binding sites of a particular TF is relatively small with respect to the total
number of base-pairs in a genome (see Discussion).

While deep learning-based models can automatically extract features for TFBS
prediction at the sequence level, they often cannot predict binding patterns for
cell types or conditions that have not been previously studied. One solution
could be to introduce a multimodal model that, in addition to sequence data,
incorporates cell-line specific features such as chromatin accessibility, DNA
methylation, or gene expression. Without cell-specific features, another
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solution could be to use domain adaptation methods where the model trains on
a source cell type and uses unsupervised feature extraction methods to predict
on a target cell type. TFImpute [155] predicts binding in new cell type-TF pairs,
but the cell types must be in the training set for other TFs. This is a step in the
right direction, but a more general domain transfer model across cell types
would be more useful.

Deep learning can also illustrate TF binding preferences. Lanchantin et al. [165]
and Shrikumar et al. [169] developed tools to visualize TF motifs learned from
TFBS classification tasks. Alipanahi et al. [164] also introduced mutation maps,
where they could easily mutate, add, or delete base pairs in a sequence and
see how the model changed its prediction. Though time consuming to assay in
a lab, this was easy to simulate with a computational model. As we learn to
better visualize and analyze the hidden nodes within deep learning models, our
understanding of TF binding motifs and dynamics will likely improve.

Promoters, enhancers, and related epigenomic tasks

Transcriptional control is undoubtedly a vital, early part of the regulation of
gene expression. An abundance of sequence and associated functional data
(e.g. ENCODE [159] and ExAC [170]) exists across species. At the same time,
studies of gene regulation have often focused on the protein (binding) rather
than the promoter level [171], perhaps due to the ill-defined nature of cis-
regulatory elements (CREs). A promoter itself can be seen as an assemblage
of "active" binding sites for transcription factors interspersed by less-
characterized and perhaps functionally silent spacer regions. However, the
sequence signals that control the start and stop of transcription and translation
are still not well understood, compounded by incomplete understanding of
alternative transcripts and the context for these alternatives. Sequence
similarity is poor even between functionally correlated genes. While homologs
might be studied for insight, they may not exist or may be just as poorly
characterized.

Recognizing enhancers presents additional challenges. Enhancers may be up
to one million base pairs upstream or downstream from the affected promoter
on either strand and even within the introns of other genes [172]. They do not
necessarily operate on the nearest gene and may affect multiple genes. Their
activity is frequently tissue- or context-specific. A substantial fraction of
enhancers displays modest or no conservation across species. There is no
universal enhancer sequence signal or marker for enhancers, and some
literature suggests that enhancers and promoters may be just categories along
a spectrum [173]. One study [174] even showed that only 33% of predicted
regulatory regions could be validated, while a class of "weak" predicted
enhancers were strong drivers of expression. Yet there is growing evidence for
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their vast ubiquity, making them possibly the predominant functional non-
coding element. Thus, identifying enhancers is critical yet the search space is
large.

While prior (non-deep learning) approaches have made steady improvements
on promoter prediction, there is little consensus on the best approach and
performance is poor. Typically algorithms will recognize only half of all
promoters, with an accompanying high false positive rate [175]. Methods with
better sensitivity generally do so at the cost of poorer specificity. Conventional
identification of enhancers has leaned heavily on simple conservation or
laborious experimental techniques, with only moderate sensitivity and
specificity. For example, while chromatin accessibility has often been used for
identifying enhancers, this also "recognizes" a wide variety of other functional
elements, like promoters, silencers, and repressors.

The complex nature of CREs and our lack of understanding makes them a
natural candidate for deep learning approaches. Indeed, neural networks were
used for promoter recognition as early as 1996, albeit with mixed results [176].
Since then, there has been much work in applying deep learning to this area,
although little in the way of comparative studies or formal benchmarks. We
therefore focus on a few recent important studies to outline the state of the art
and extant problems.

Basset [177] trained CNNs on DNA accessibility datasets, getting a marked
improvement on previous methods, albeit still with a high false positive rate.
The multi-task architecture resembles DeepSEA [168], which predicted open
chromatin regions and histone modifications in addition to TF binding. As noted
above, predicting DNA accessibility conflates enhancers with other functional
sites. Basset also featured a useful interpretability approach, introducing known
protein binding motifs into sequences and measuring the change in predicted
accessibility.

Umarov et al. [178] demonstrated the use of CNNs in recognizing promoter
sequences, outperforming conventional methods (sensitivity and specificity
exceeding 90%). While some results were achieved over bacterial promoters
(which are considerably simpler in structure), roughly similar performance was
found for human promoters. This work also included a simple method for model
interpretation, randomly substituting bases in a recognized promoter region,
then checking for a change in recognition (see Discussion).

Xu et al. [179] applied CNNs to the detection of enhancers, achieving
incremental improvements in specificity and sensitivity over a previous SVM-
based approach, and much better performance for cell-specific enhancers. A
massive improvement in speed was also achieved. Additionally, they
compared the performance of different CNN architectures, finding that while
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layers for batch normalization improved performance, deeper architectures
decreased performance.

Singh et al. [180] approached the problem of predicting enhancer-promoter
interactions from solely the sequence and location of putative enhancers and
promoters in a particular cell type. Performance was comparative to state-of-
the-art conventional techniques that used the whole gamut of full functional
genomic and non-sequence data.

Given the conflation between different CREs, the study of Li et al. [181] is
particularly interesting. They used a feed-forward neural network to distinguish
classes of CREs and activity states. Active enhancers and promoters could be
easily be distinguished, as could active and inactive elements. Perhaps
unsurprisingly, it was difficult to distinguish between inactive enhancers and
promoters. They also investigated the power of sequence features to drive
classification, finding that beyond CpG islands, few were useful.

In summary, deep learning is a promising approach for identifying CREs, able
to interrogate sequence features that are complex and ill-understood, already
offering marked improvements on the prior state of the art. However, neural
network architectures for this task need to be systematically compared. The
challenges in predicting TF binding -- such as the lack of large gold standard
datasets, model interpretation, and defining negative examples -- are pertinent
to CRE identification as well. Furthermore, the quality and meaning of training
data needs to be closely considered, given that a "promoter" or "enhancer"
may only be putative or dependent on the experimental method or context of
identification. Otherwise we risk building detectors not for CREs but putative
CREs. Most deep learning studies in this area currently predict the 1D location
of enhancers, but modeling 3D chromatin conformations, enhancer-promoter
interactions [180], and enhancer-target gene interactions will be critical for
understanding transcriptional regulation.

Micro-RNA binding

Prediction of microRNAs (miRNAs) in the genome as well as miRNA targets is
of great interest, as they are critical components of gene regulatory networks
and are often conserved across great evolutionary distance [182,183]. While
many machine learning algorithms have been applied to solve these prediction
tasks, they currently require extensive feature selection and optimization. For
instance, one of the most widely adopted tools for miRNA target prediction,
TargetScan, trained multiple linear regression models on 14 hand-curated
features including structural accessibility of the target site on the mRNA, the
degree of site conservation, and predicted thermodynamic stability of the
miRNA-mRNA complex [184]. Some of these features, including structural
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accessibility, are imperfect or empirically derived. In addition, current
algorithms suffer from low specificity [185].

As in other applications, deep learning promises to achieve equal or better
performance in predictive tasks by automatically engineering complex features
to minimize an objective function. Two recently published tools use different
recurrent neural network-based architectures to perform miRNA and target
prediction with solely sequence data as input [185,186]. Though the results are
preliminary and still based on a validation set rather than a completely
independent test set, they were able to predict microRNA target sites with
higher specificity and sensitivity than TargetScan. Excitingly, these tools seem
to show that RNNs can accurately align sequences and predict bulges,
mismatches, and wobble base pairing without requiring the user to input
secondary structure predictions or thermodynamic calculations. Further
incremental advances in deep learning for miRNA and target prediction will
likely be sufficient to meet the current needs of systems biologists and other
researchers who use prediction tools mainly to nominate candidates that are
then tested experimentally.

Protein secondary and tertiary structure

Proteins play fundamental roles in almost all biological processes, and
understanding their structure is critical for basic biology and drug development.
UniProt currently has about 94 million protein sequences, yet fewer than
100,000 proteins across all species have experimentally-solved structures in
Protein Data Bank (PDB). As a result, computational structure prediction is
essential for a majority of proteins. However, this is very challenging, especially
when similar solved structures, called templates, are not available in PDB.
Over the past several decades, many computational methods have been
developed to predict aspects of protein structure such as secondary structure,
torsion angles, solvent accessibility, inter-residue contact maps, disorder
regions, and side-chain packing. In recent years, multiple deep learning
architectures have been applied, including deep belief networks, LSTMs,
CNNs, and deep convolutional neural fields (DeepCNFs) [29,187].

Here we focus on deep learning methods for two representative sub-problems:
secondary structure prediction and contact map prediction. Secondary
structure refers to local conformation of a sequence segment, while a contact
map contains information on all residue-residue contacts. Secondary structure
prediction is a basic problem and an almost essential module of any protein
structure prediction package. Contact prediction is much more challenging than
secondary structure prediction, but it has a much larger impact on tertiary
structure prediction. In recent years, the accuracy of contact prediction has
greatly improved [27,188–190].
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Protein secondary structure can exhibit three different states (alpha helix, beta
strand, and loop regions) or eight finer-grained states. Q3 and Q8 accuracy
pertain to 3-state or 8-state predictions, respectively. Several groups
[28,191,192] initiated the application of deep learning to protein secondary
structure prediction but were unable to achieve significant improvement over
the de facto standard method PSIPRED [193], which uses two shallow
feedforward neural networks. In 2014, Zhou and Troyanskaya demonstrated
that they could improve Q8 accuracy by using a deep supervised and
convolutional generative stochastic network [194]. In 2016 Wang et al.
developed a DeepCNF model that improved Q3 and Q8 accuracy as well as
prediction of solvent accessibility and disorder regions [29,187]. DeepCNF
achieved a higher Q3 accuracy than the standard maintained by PSIPRED for
more than 10 years. This improvement may be mainly due to the ability of
convolutional neural fields to capture long-range sequential information, which
is important for beta strand prediction. Nevertheless, the improvements in
secondary structure prediction from DeepCNF are unlikely to result in a
commensurate improvement in tertiary structure prediction since secondary
structure mainly reflects coarse-grained local conformation of a protein
structure.

Protein contact prediction and contact-assisted folding (i.e. folding proteins
using predicted contacts as restraints) represents a promising new direction for
ab initio folding of proteins without good templates in PDB. Co-evolution
analysis is effective for proteins with a very large number (>1000) of sequence
homologs [190], but otherwise fares poorly for proteins without many sequence
homologs. By combining co-evolution information with a few other protein
features, shallow neural network methods such as MetaPSICOV [188] and
CoinDCA-NN [195] have shown some advantage over pure co-evolution
analysis for proteins with few sequence homologs, but their accuracy is still far
from satisfactory. In recent years, deeper architectures have been explored for
contact prediction, such as CMAPpro [196], DNCON [197] and PConsC [198].
However, blindly tested in the well-known CASP competitions, these methods
did not show any advantage over MetaPSICOV [188].

Recently, Wang et al. proposed the deep learning method RaptorX-Contact
[27], which significantly improves contact prediction over MetaPSICOV and
pure co-evolution methods, especially for proteins without many sequence
homologs. It employs a network architecture formed by one 1D residual neural
network and one 2D residual neural network. Blindly tested in the latest CASP
competition (i.e. CASP12 [199]), RaptorX-Contact ranked first in F1 score (a
widely-used performance metric combining sensitivity and specificity) on free-
modeling targets as well as the whole set of targets. In CAMEO (which can be
interpreted as a fully-automated CASP) [200], its predicted contacts were also
able to fold proteins with a novel fold and only 65-330 sequence homologs.
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This technique also worked well on membrane proteins even when trained on
non-membrane proteins [201]. RaptorX-Contact performed better mainly due to
introduction of residual neural networks and exploitation of contact occurrence
patterns by simultaneously predicting all the contacts in a single protein.

Taken together, ab initio folding is becoming much easier with the advent of
direct evolutionary coupling analysis and deep learning techniques. We expect
further improvements in contact prediction for proteins with fewer than 1000
homologs by studying new deep network architectures. However, it is unclear if
there is an effective way to use deep learning to improve prediction for proteins
with few or no sequence homologs. Finally, the deep learning methods
summarized above also apply to interfacial contact prediction for protein
complexes but may be less effective since on average protein complexes have
fewer sequence homologs.

Morphological phenotypes

A field poised for dramatic revolution by deep learning is bioimage analysis.
Thus far, the primary use of deep learning for biological images has been for
segmentation -- that is, for the identification of biologically relevant structures in
images such as nuclei, infected cells, or vasculature -- in fluorescence or even
brightfield channels [202]. Once so-called regions of interest have been
identified, it is often straightforward to measure biological properties of interest,
such as fluorescence intensities, textures, and sizes. Given the dramatic
successes of deep learning in biological imaging, we simply refer to articles
that review recent advancements [16,202,203]. For deep learning to become
commonplace for biological image segmentation, user-friendly tools need to be
developed.

We anticipate an additional kind of paradigm shift in bioimaging that will be
brought about by deep learning: what if images of biological samples, from
simple cell cultures to three-dimensional organoids and tissue samples, could
be mined for much more extensive biologically meaningful information than is
currently standard? For example, a recent study demonstrated the ability to
predict lineage fate in hematopoietic cells up to three generations in advance of
differentiation [204]. In biomedical research, by far the most common paradigm
is for biologists to decide in advance what feature to measure in images from
their assay system. Although classical methods of segmentation and feature
extraction can produce hundreds of metrics per cell in an image, deep learning
is unconstrained by human intuition and can in theory extract more subtle
features through its hidden nodes. Already, there is evidence deep learning can
surpass the efficacy of classical methods [205], even using generic deep
convolutional networks trained on natural images [206], known as transfer
learning. Recent work by Johnson et al. [207] demonstrated how the use of a
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conditional adversarial autoencoder allows for a probabilistic interpretation of
cell and nuclear morphology and structure localization from fluorescence
images. The proposed model is able to generalize well to a wide range of
subcellular localizations. The generative nature of the model allows it to
produce high-quality synthetic images predicting localization of subcellular
structures by directly modeling the localization of fluorescent labels. Notably,
this approach reduces the modeling time by omitting the subcellular structure
segmentation step.

The impact of further improvements on biomedicine could be enormous.
Comparing cell population morphologies using conventional methods of
segmentation and feature extraction has already proven useful for functionally
annotating genes and alleles, identifying the cellular target of small molecules,
and identifying disease-specific phenotypes suitable for drug screening
[208–210]. Deep learning would bring to these new kinds of experiments --
known as image-based profiling or morphological profiling -- a higher degree of
accuracy, stemming from the freedom from human-tuned feature extraction
strategies.

Single-cell data

Single-cell methods are generating excitement as biologists recognize the vast
heterogeneity within unicellular species and between cells of the same tissue
type in the same organism [211]. For instance, tumor cells and neurons can
both harbor extensive somatic variation [212]. Understanding single-cell
diversity in all its dimensions -- genetic, epigenetic, transcriptomic, proteomic,
morphologic, and metabolic -- is key if treatments are to be targeted not only to
a specific individual, but also to specific pathological subsets of cells. Single-
cell methods also promise to uncover a wealth of new biological knowledge. A
sufficiently large population of single cells will have enough representative
"snapshots" to recreate timelines of dynamic biological processes. If tracking
processes over time is not the limiting factor, single-cell techniques can
provide maximal resolution compared to averaging across all cells in bulk
tissue, enabling the study of transcriptional bursting with single-cell
fluorescence in situ hybridization or the heterogeneity of epigenetic patterns
with single-cell Hi-C or ATAC-seq [213,214]. Joint profiling of single-cell
epigenetic and transcriptional states provides unprecedented views of
regulatory processes [215].

However, large challenges exist in studying single cells. Relatively few cells
can be assayed at once using current droplet, imaging, or microwell
technologies, and low-abundance molecules or modifications may not be
detected by chance due to a phenomenon known as dropout. To solve this
problem, Angermueller et al. [216] trained a neural network to predict the
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presence or absence of methylation of a specific CpG site in single cells based
on surrounding methylation signal and underlying DNA sequence, achieving
several percentage points of improvement compared to random forests or
deep networks trained only on CpG or sequence information. Similar deep
learning methods have been applied to impute low-resolution ChIP-seq signal
from bulk tissue with great success, and they could easily be adapted to single-
cell data [155,217]. Deep learning has also been useful for dealing with batch
effects [218].

Examining populations of single cells can reveal biologically meaningful
subsets of cells as well as their underlying gene regulatory networks [219].
Unfortunately, machine learning methods generally struggle with imbalanced
data -- when there are many more examples of class 1 than class 2 -- because
prediction accuracy is usually evaluated over the entire dataset. To tackle this
challenge, Arvaniti et al. [220] classified healthy and cancer cells expressing 25
markers by using the most discriminative filters from a CNN trained on the data
as a linear classifier. They achieved impressive performance, even for cell
types where the subset percentage ranged from 0.1 to 1%, significantly
outperforming logistic regression and distance-based outlier detection
methods. However, they did not benchmark against random forests, which
tend to work better for imbalanced data, and their data was relatively low
dimensional. Future work is needed to establish the utility of deep learning in
cell subset identification, but the stunning improvements in image classification
over the past 5 years [221] suggest transformative potential.

The sheer quantity of omic information that can be obtained from each cell, as
well as the number of cells in each dataset, uniquely position single-cell data to
benefit from deep learning. In the future, lineage tracing could be revolutionized
by using autoencoders to reduce the feature space of transcriptomic or variant
data followed by algorithms to learn optimal cell differentiation trajectories [222]
or by feeding cell morphology and movement into neural networks [204].
Reinforcement learning algorithms [223] could be trained on the evolutionary
dynamics of cancer cells or bacterial cells undergoing selection pressure and
reveal whether patterns of adaptation are random or deterministic, allowing us
to develop therapeutic strategies that forestall resistance. We are excited to
see the creative applications of deep learning to single-cell biology that emerge
over the next few years.

Metagenomics

Metagenomics, which refers to the study of genetic material -- 16S rRNA
and/or whole-genome shotgun DNA -- from microbial communities, has
revolutionized the study of micro-scale ecosystems within and around us. In
recent years, machine learning has proved to be a powerful tool for
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metagenomic analysis. 16S rRNA has long been used to deconvolve mixtures
of microbial genomes, yet this ignores more than 99% of the genomic content.
Subsequent tools aimed to classify 300-3000 base pair reads from complex
mixtures of microbial genomes based on tetranucleotide frequencies, which
differ across organisms [224], using supervised [225,226] or unsupervised
methods [227]. Then, researchers began to use techniques that could estimate
relative abundances from an entire sample faster than classifying individual
reads [228–231]. There is also great interest in identifying and annotating
sequence reads [232,233]. However, the focus on taxonomic and functional
annotation is just the first step. Several groups have proposed methods to
determine host or environment phenotypes from the organisms that are
identified [234–237] or overall sequence composition [238]. Also, researchers
have looked into how feature selection can improve classification [237,239],
and techniques have been proposed that are classifier-independent [240,241].

How have neural networks been of use? Most neural networks are being used
for phylogenetic classification or functional annotation from sequence data
where there is ample data for training. Neural networks have been applied
successfully to gene annotation (e.g. Orphelia [242] and FragGeneScan [243]).
Representations (similar to Word2Vec [76] in natural language processing) for
protein family classification have been introduced and classified with a skip-
gram neural network [244]. Recurrent neural networks show good performance
for homology and protein family identification [245,246].

One of the first techniques of de novo genome binning used self-organizing
maps, a type of neural network [227]. Essinger et al. [247] used Adaptive
Resonance Theory to cluster similar genomic fragments and showed that it
had better performance than k-means. However, other methods based on
interpolated Markov models [248] have performed better than these early
genome binners. Neural networks can be slow and therefore have had limited
use for reference-based taxonomic classification, with TAC-ELM [249] being
the only neural network-based algorithm to taxonomically classify massive
amounts of metagenomic data. An initial study successfully applied neural
networks to taxonomic classification of 16S rRNA genes, with convolutional
networks providing about 10% accuracy genus-level improvement over RNNs
and random forests [250]. However, this study evaluated only 3000 sequences.

Neural network uses for classifying phenotype from microbial composition are
just beginning. A standard multi-layer perceptron (MLP) was able to classify
wound severity from microbial species present in the wound [251]. Recently,
Ditzler et al. associated soil samples with pH level using MLPs, DBNs, and
RNNs [252]. Besides classifying samples appropriately, internal phylogenetic
tree nodes inferred by the networks represented features for low and high pH.
Thus, hidden nodes might provide biological insight as well as new features for
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future metagenomic sample comparison. Also, an initial study has shown
promise of these networks for diagnosing disease [253].

Challenges remain in applying deep neural networks to metagenomics
problems. They are not yet ideal for phenotype classification because most
studies contain tens of samples and hundreds or thousands of features
(species). Such underdetermined, or ill-conditioned, problems are still a
challenge for deep neural networks that require many training examples. Also,
due to convergence issues [254], taxonomic classification of reads from whole
genome sequencing seems out of reach at the moment for deep neural
networks. There are only thousands of full-sequenced genomes as compared
to hundreds of thousands of 16S rRNA sequences available for training.

However, because RNNs have been applied to base calls for the Oxford
Nanopore long-read sequencer with some success [255] (discussed further in
the next section), one day the entire pipeline, from denoising of through
functional classification, may be combined into one step by using powerful
LSTMs [256]. For example, metagenomic assembly usually requires binning
then assembly, but could deep neural nets accomplish both tasks in one
network? We believe the greatest potential in deep learning is to learn the
complete characteristics of a metagenomic sample in one complex network.

Sequencing and variant calling

While we have so far primarily discussed the role of deep learning in analyzing
genomic data, deep learning can also substantially improve our ability to obtain
the genomic data itself. We discuss two specific challenges: calling SNPs and
indels (insertions and deletions) with high specificity and sensitivity and
improving the accuracy of new types of data such as nanopore sequencing.
These two tasks are critical for studying rare variation, allele-specific
transcription and translation, and splice site mutations. In the clinical realm,
sequencing of rare tumor clones and other genetic diseases will require
accurate calling of SNPs and indels.

Current methods achieve relatively high (>99%) precision at 90% recall for
SNPs and indel calls from Illumina short-read data [257], yet this leaves a large
number of potentially clinically-important remaining false positives and false
negatives. These methods have so far relied on experts to build probabilistic
models that reliably separate signal from noise. However, this process is time
consuming and fundamentally limited by how well we understand and can
model the factors that contribute to noise. Recently, two groups have applied
deep learning to construct data-driven unbiased noise models. One of these
models, DeepVariant, leverages Inception, a neural network trained for image
classification by Google Brain, by encoding reads around a candidate SNP as a
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221x100 bitmap image, where each column is a nucleotide and each row is a
read from the sample library [257]. The top 5 rows represent the reference, and
the bottom 95 rows represent randomly sampled reads that overlap the
candidate variant. Each RGBA (red/green/blue/alpha) image pixel encodes the
base (A, C, T, G) as a different red value, quality score as a green value,
strand as a blue value, and variation from the reference as the alpha value.
The neural network outputs genotype probabilities for each candidate variant.
They were able to achieve better performance than GATK, a leading genotype
caller, even when GATK was given information about population variation for
each candidate variant. Another method, still in its infancy, hand-developed
642 features for each candidate variant and fed these vectors into a fully
connected deep neural network [258]. Unfortunately, this feature set required at
least 15 iterations of software development to fine-tune, which suggests that
these models may not generalize.

Going forward, variant calling will benefit more from optimizing neural network
architectures than from developing features by hand. An interesting and
informative next step would be to rigorously test if encoding raw sequence and
quality data as an image, tensor, or some other mixed format produces the
best variant calls. Because many of the latest neural network architectures
(ResNet, Inception, Xception, and others) are already optimized for and pre-
trained on generic, large-scale image datasets [259], encoding genomic data as
images could prove to be a generally effective and efficient strategy.

In limited experiments, DeepVariant was robust to sequencing depth, read
length, and even species [257]. However, a model built on Illumina data, for
instance, may not be optimal for PacBio long-read data or MinION nanopore
data, which have vastly different specificity and sensitivity profiles and signal-
to-noise characteristics. Recently, Boza et al. used bidirectional recurrent
neural networks to infer the E. coli sequence from MinION nanopore electric
current data with higher per-base accuracy than the proprietary hidden Markov
model-based algorithm Metrichor [255]. Unfortunately, training any neural
network requires a large amount of data, which is often not available for new
sequencing technologies. To circumvent this, one very preliminary study
simulated mutations and spiked them into somatic and germline RNA-seq data,
then trained and tested a neural network on simulated paired RNA-seq and
exome sequencing data [260]. However, because this model was not
subsequently tested on ground-truth datasets, it is unclear whether simulation
can produce sufficiently realistic data to produce reliable models.

Method development for interpreting new types of sequencing data has
historically taken two steps: first, easily implemented hard cutoffs that prioritize
specificity over sensitivity, then expert development of probabilistic models with
hand-developed inputs [260]. We anticipate that these steps will be replaced by
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deep learning, which will infer features simply by its ability to optimize a
complex model against data.

The impact of deep learning in treating disease
and developing new treatments

Given the need to make better, faster interventions at the point of care --
incorporating the complex calculus of a patients symptoms, diagnostics, and
life history -- there have been many attempts to apply deep learning to patient
treatment. Success in this area could help to enable personalized healthcare or
precision medicine [261,262]. Earlier, we reviewed approaches for patient
categorization. Here, we examine the potential for better treatment, which
broadly, may divided into methods for improved choices of interventions for
patients and those for development of new interventions.

Clinical decision making

In 1996, Tu [263] compared the effectiveness of artificial neural networks and
logistic regression, questioning whether these techniques would replace
traditional statistical methods for predicting medical outcomes such as
myocardial infarction [264] or mortality [265]. He posited that while neural
networks have several advantages in representational power, the difficulties in
interpretation may limit clinical applications, a limitation that still remains today.
In addition, the challenges faced by physicians parallel those encountered by
deep learning. For a given patient, the number of possible diseases is very
large, with a long tail of rare diseases and patients are highly heterogeneous
and may present with very different signs and symptoms for the same disease.
Still, in 2006 Lisboa and Taktak [266] examined the use of artificial neural
networks in medical journals, concluding that they improved healthcare relative
to traditional screening methods in 21 of 27 studies.

While further progress has been made in using deep learning for clinical
decision making, it is hindered by a challenge common to many deep learning
applications: it is much easier to predict an outcome than to suggest an action
to change the outcome. Several attempts [84,86] at recasting the clinical
decision-making problem into a prediction problem (i.e. prediction of which
treatment will most improve the patient's health) have accurately predicted
survival patterns, but technical and medical challenges remain for clinical
adoption (similar to those for categorization). In particular, remaining barriers
include actionable interpretability of deep learning models, fitting deep models
to limited and heterogeneous data, and integrating complex predictive models
into a dynamic clinical environment.
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A critical challenge in providing treatment recommendations is identifying a
causal relationship for each recommendation. Causal inference is often framed
in terms of counterfactual question [267]. Johansson et al. [268] use deep
neural networks to create representation models for covariates that capture
nonlinear effects and show significant performance improvements over existing
models. In a less formal approach, Kale et al. [269] first create a deep neural
network to model clinical time series and then analyze the relationship of the
hidden features to the output using a causal approach.

A common challenge for deep learning is the interpretability of the models and
their predictions. The task of clinical decision making is necessarily risk-averse,
so model interpretability is key. Without clear reasoning, it is difficult to
establish trust in a model. As described above, there has been some work to
directly assign treatment plans without interpretability; however, the removal of
human experts from the decision-making loop make the models difficult to
integrate with clinical practice. To alleviate this challenge, several studies have
attempted to create more interpretable deep models, either specifically for
healthcare or as a general procedure for deep learning (see Discussion).

Predicting patient trajectories

A common application for deep learning in this domain is the temporal
structure of healthcare records. Many studies [270–273] have used RNNs to
categorize patients, but most stop short of suggesting clinical decisions.
Nemati et al. [274] used deep reinforcement learning to optimize a heparin
dosing policy for intensive care patients. However, because the ideal dosing
policy is unknown, the model's predictions must be evaluated on counter-
factual data. This represents a common challenge when bridging the gap
between research and clinical practice. Because the ground-truth is unknown,
researchers struggle to evaluate model predictions in the absence of
interventional data, but clinical application is unlikely until the model has been
shown to be effective. The impressive applications of deep reinforcement
learning to other domains [223] have relied on knowledge of the underlying
processes (e.g. the rules of the game). Some models have been developed for
targeted medical problems [275], but a generalized engine is beyond current
capabilities.

Clinical trials efficiency

A clinical deep learning task that has been more successful is the assignment
of patients to clinical trials. Ithapu et al. [276] used a randomized denoising
autoencoder to learn a multimodal imaging marker that predicts future cognitive
and neural decline from positron emission tomography (PET), amyloid
florbetapir PET, and structural magnetic resonance imaging. By accurately
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predicting which cases will progress to dementia, they were able to efficiently
assign patients to a clinical trial and reduced the required sample sizes by a
factor of five. Similarly, Artemov et al. [277] applied deep learning to predict
which clinical trials were likely to fail and which were likely to succeed. By
predicting the side effects and pathway activations of each drug and translating
these activations to a success probability, their deep learning-based approach
was able to significantly outperform a random forest classifier trained on gene
expression changes. These approaches suggest promising directions to
improve the efficiency of clinical trials and accelerate drug development.

Drug repositioning

Drug repositioning (or repurposing) is an attractive option for delivering new
drugs to the market because of the high costs and failure rates associated with
more traditional drug discovery approaches [278,279]. A decade ago, the
concept of the Connectivity Map [280] had a sizeable impact on the field.
Reverse matching disease gene expression signatures with a large set of
reference compound profiles allowed researchers to formulate repurposing
hypotheses at scale using a simple non-parametric test. Since then, several
advanced computational methods have been applied to formulate and validate
drug repositioning hypotheses [281–283]. Using supervised learning and
collaborative filtering to tackle this type of problem is proving successful,
especially when coupling disease or compound omic data with topological
information from protein-protein or protein-compound interaction networks
[284–286].

For example, Menden et al. [287] used a shallow neural network to predict
sensitivity of cancer cell lines to drug treatment using both cell line and drug
features, opening the door to precision medicine and drug repositioning
opportunities in cancer. More recently, Aliper et al. [35] used gene- and
pathway-level drug perturbation transcriptional profiles from the Library of
Network-Based Cellular Signatures [288] to train a fully connected deep neural
network to predict drug therapeutic uses and indications. By using confusion
matrices and leveraging misclassification, the authors formulated a number of
interesting hypotheses, including repurposing cardiovascular drugs such as
otenzepad and pinacidil for neurological disorders.

Drug repositioning can also be approached by attempting to predict novel drug-
target interactions and then repurposing the drug for the associated indication
[289,290]. Wang et al. [291] devised a pairwise input neural network with two
hidden layers that takes two inputs, a drug and a target binding site, and
predicts whether they interact. Wang et al. [36] trained individual RBMs for
each target in a drug-target interaction network and used these models to
predict novel interactions pointing to new indications for existing drugs. Wen et
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al. [37] extended this concept to deep learning by creating a DBN called
DeepDTIs, which is able to predict interactions on the basis of chemical
structure and protein sequence features.

Drug repositioning appears to be an obvious candidate for deep learning both
because of the large amount of high-dimensional data available and the
complexity of the question being asked. However, what is perhaps the most
promising piece of work in this space [35] is more of a proof of concept than a
real-world hypothesis-generation tool; notably, deep learning was used to
predict drug indications but not for the actual repositioning. At present, some of
the most popular state-of-the-art methods for signature-based drug
repurposing [292] do not use predictive modeling. A mature and production-
ready framework for drug repositioning via deep learning is currently missing.

Drug development

Ligand-based prediction of bioactivity

In the biomedical domain, high-throughput chemical screening aims to improve
therapeutic options over a long term horizon [20]. The objective is to discover
which small molecules (also referred to as chemical compounds or ligands)
that specifically affect the activity of a target, such as a kinase, protein-protein
interaction, or broader cellular phenotype. This screening is often one of the
first steps in a long drug discovery pipeline, where novel molecules are
pursued for their ability to inhibit or enhance disease-relevant biological
mechanisms [293]. Initial hits are confirmed to eliminate false positives and
proceed to the lead generation stage [294], where they are evaluated for
absorption, distribution, metabolism, excretion, and toxicity (ADMET) and other
properties. It is desirable to advance multiple lead series, clusters of
structurally-similar active chemicals, for further optimization by medicinal
chemists to protect against unexpected failures in the later stages of drug
discovery [293].

Computational work in this domain aims to identify sufficient candidate active
compounds without exhaustively screening libraries of hundreds of thousands
or millions of chemicals. Predicting chemical activity computationally is known
as virtual screening. This task has been treated variously as a classification,
regression, or ranking problem. In reality, it does not fit neatly into any of those
categories. An ideal algorithm will rank a sufficient number of active
compounds before the inactives, but the rankings of actives relative to other
actives and inactives are less important [295]. Computational modeling also
has the potential to predict ADMET traits for lead generation [296] and how
drugs are metabolized [297].
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Ligand-based approaches train on chemicals' features without modeling target
features (e.g. protein structure). Chemical features may be represented as a list
of molecular descriptors such as molecular weight, atom counts, functional
groups, charge representations, summaries of atom-atom relationships in the
molecular graph, and more sophisticated derived properties [298]. Alternatively,
chemicals can be characterized with the fingerprint bit vectors, textual strings,
or novel learned representations described below. Neural networks have a
long history in this domain [18,21], and the 2012 Merck Molecular Activity
Challenge on Kaggle generated substantial excitement about the potential for
high-parameter deep learning approaches. The winning submission was an
ensemble that included a multi-task multi-layer perceptron network [299]. The
sponsors noted drastic improvements over a random forest baseline, remarking
"we have seldom seen any method in the past 10 years that could consistently
outperform [random forest] by such a margin" [300]. Subsequent work
(reviewed in more detail by Goh et al. [19]) explored the effects of jointly
modeling far more targets than the Merck challenge [301,302], with Ramsundar
et al. [302] showing that the benefits of multi-task networks had not yet
saturated even with 259 targets. Although DeepTox [303], a deep learning
approach, won another competition, the Toxicology in the 21st Century
(Tox21) Data Challenge, it did not dominate alternative methods as thoroughly
as in other domains. DeepTox was the top performer on 9 of 15 targets and
highly competitive with the top performer on the others. However, for many
targets there was little separation between the top two or three methods.

The nuanced Tox21 performance may be more reflective of the practical
challenges encountered in ligand-based chemical screening than the extreme
enthusiasm generated by the Merck competition. A study of 22 ADMET tasks
demonstrated that there are limitations to multi-task transfer learning that are in
part a consequence of the degree to which tasks are related [296]. Some of the
ADMET datasets showed superior performance in multi-task models with only
22 ADMET tasks compared to multi-task models with over 500 less-similar
tasks. In addition, the training datasets encountered in practical applications
may be tiny relative to what is available in public datasets and organized
competitions. A study of BACE-1 inhibitors included only 1547 compounds
[304]. Machine learning models were able to train on this limited dataset, but
overfitting was a challenge and the differences between random forests and a
deep neural network were negligible, especially in the classification setting.
Overfitting is still a problem in larger chemical screening datasets with tens or
hundreds of thousands of compounds because the number of active
compounds can be very small, on the order of 0.1% of all tested chemicals for
a typical target [305]. This is consistent with the strong performance of low-
parameter neural networks that emphasize compound-compound similarity,
such as influence-relevance voter [295,306], instead of predicting compound
activity directly from chemical features.
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Much of the recent excitement in this domain has come from what could be
considered a creative experimentation phase, in which deep learning has
offered novel possibilities for feature representation and modeling of chemical
compounds. A molecular graph, where atoms are labeled nodes and bonds are
labeled edges, is a natural way to represent a chemical structure. Traditional
machine learning approaches relied on preprocessing the graph into a feature
vector, such as a fixed-width bit vector fingerprint [307]. The same fingerprints
have been used by some drug-target interaction methods discussed above
[37]. An overly simplistic but approximately correct view of chemical fingerprints
is that each bit represents the presence or absence of a particular chemical
substructure in the molecular graph. Modern neural networks can operate
directly on the molecular graph as input. Duvenaud et al. [308] generalized
standard circular fingerprints by substituting discrete operations in the
fingerprinting algorithm with operations in a neural network, producing a real-
valued feature vector instead of a bit vector. Other approaches offer trainable
networks that can learn chemical feature representations that are optimized for
a particular prediction task. Lusci et al. [309] applied recursive neural networks
for directed acyclic graphs to undirected molecular graphs by creating an
ensemble of directed graphs in which one atom is selected as the root node.
Graph convolutions on undirected molecular graphs have eliminated the need
to enumerate artificially directed graphs, learning feature vectors for atoms that
are a function of the properties of neighboring atoms and local regions on the
molecular graph [310,311].

Advances in chemical representation learning have also enabled new
strategies for learning chemical-chemical similarity functions. Altae-Tran et al.
developed a one-shot learning network [311] to address the reality that most
practical chemical screening studies are unable to provide the thousands or
millions of training compounds that are needed to train larger multi-task
networks. Using graph convolutions to featurize chemicals, the network learns
an embedding from compounds into a continuous feature space such that
compounds with similar activities in a set of training tasks have similar
embeddings. The approach is evaluated in an extremely challenging setting.
The embedding is learned from a subset of prediction tasks (e.g. activity
assays for individual proteins), and only one to ten labeled examples are
provided as training data on a new task. On Tox21 targets, even when trained
with one task-specific active compound and one inactive compound, the model
is able to generalize reasonably well because it has learned an informative
embedding function from the related tasks. Random forests, which cannot take
advantage of the related training tasks, trained in the same setting are only
slightly better than a random classifier. Despite the success on Tox21,
performance on MUV datasets, which contains assays designed to be
challenging for chemical informatics algorithms, is considerably worse. The
authors also demonstrate the limitations of transfer learning as embeddings
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learned from the Tox21 assays have little utility for a drug adverse reaction
dataset.

These novel, learned chemical feature representations may prove to be
essential for accurately predicting why some compounds with similar structures
yield similar target effects and others produce drastically different results.
Currently, these methods are enticing but do not necessarily outperform classic
approaches by a large margin. The neural fingerprints [308] were narrowly
beaten by regression using traditional circular fingerprints on a drug efficacy
prediction task but were superior for predicting solubility or photovoltaic
efficiency. In the original study, graph convolutions [310] performed comparably
to a multi-task network using standard fingerprints and slightly better than the
neural fingerprints [308] on the drug efficacy task but were slightly worse than
the influence-relevance voter method on an HIV dataset. [295]. Broader recent
benchmarking has shown that relative merits of these methods depends on the
dataset and cross validation strategy [312], though evaluation often uses
auROC (area under the receiver operating characteristic curve), which has
limited utility due to the large active/inactive class imbalance (see Discussion).

We remain optimistic for the potential of deep learning and specifically
representation learning in drug discovery and propose that rigorous
benchmarking on broad and diverse prediction tasks will be as important as
novel neural network architectures to advance the state of the art and
convincingly demonstrate superiority over traditional cheminformatics
techniques. Fortunately, there has recently been much progress in this
direction. The DeepChem software [311,313] and MoleculeNet benchmarking
suite [312] built upon it contain chemical bioactivity and toxicity prediction
datasets, multiple compound featurization approaches including graph
convolutions, and various machine learning algorithms ranging from standard
baselines like logistic regression and random forests to recent neural network
architectures. Independent research groups have already contributed
additional datasets and prediction algorithms to DeepChem. Adoption of
common benchmarking evaluation metrics, datasets, and baseline algorithms
has the potential to establish the practical utility of deep learning in chemical
bioactivity prediction and lower the barrier to entry for machine learning
researchers without biochemistry expertise.

One open question in ligand-based screening pertains to the benefits and
limitations of transfer learning. Multi-task neural networks have shown the
advantages of jointly modeling many targets [301,302]. Other studies have
shown the limitations of transfer learning when the prediction tasks are
insufficiently related [296,311]. This has important implications for
representation learning. The typical approach to improve deep learning models
by expanding the dataset size may not be applicable if only "related" tasks are
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beneficial, especially because task-task relatedness is ill-defined. The massive
chemical state space will also influence the development of unsupervised
representation learning methods [314]. Future work will establish whether it is
better to train on massive collections of diverse compounds, drug-like small
molecules, or specialized subsets.

Structure-based prediction of bioactivity

When protein structure is available, virtual screening has traditionally relied on
docking programs to predict how a compound best fits in the target's binding
site and score the predicted ligand-target complex [315]. Recently, deep
learning approaches have been developed to model protein structure, which is
expected to improve upon the simpler drug-target interaction algorithms
described above that represent proteins with feature vectors derived from
amino acid sequences [37,291].

Structure-based deep learning methods differ in whether they use
experimentally-derived or predicted ligand-target complexes and how they
represent the 3D structure. The Atomic CNN [316] takes 3D crystal structures
from PDBBind [317] as input, ensuring it uses a reliable ligand-target complex.
AtomNet [34] samples multiple ligand poses within the target binding site, and
DeepVS [318] and Ragoza et al. [319] use a docking program to generate
protein-compound complexes. If they are sufficiently accurate, these latter
approaches would have wider applicability to a much larger set of compounds
and proteins. However, incorrect ligand poses will be misleading during
training, and the predictive performance is sensitive to the docking quality
[318].

There are two major options for representing a protein-compound complex. A
3D grid can featurize the input complex [34,319]. Each entry in the grid tracks
the types of protein and ligand atoms in that region of the 3D space or
descriptors derived from those atoms. Both DeepVS [318] and atomic
convolutions [316] offer greater flexibility in their convolutions by eschewing the
3D grid. Instead, they each implement techniques for executing convolutions
over atoms' neighboring atoms in the 3D space. Gomes et al. demonstrate that
currently random forest on a 1D feature vector that describes the 3D ligand-
target structure generally outperforms neural networks on the same feature
vector as well as atomic convolutions and ligand-based neural networks when
predicting the continuous-valued inhibition constant on the PDBBind refined
dataset [316]. However, in the long term, atomic convolutions may ultimately
overtake grid-based methods, as they provide greater freedom to model atom-
atom interactions and the forces that govern binding affinity.

De novo drug design
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Whereas the goal of virtual screening is to find active molecules by predicting
the biochemical activity of hundreds of thousands to millions of chemicals
using existing (virtual) chemical libraries, analogous to robotic high-throughput
"wet lab" screening, de novo drug design aims to directly generate active
compounds [320,321].

De novo drug design attempts to model the typical design-synthesize-test cycle
of drug discovery [320]. It explores the much larger space of an estimated 1060

synthesizable organic molecules with drug-like properties without explicit
enumeration [305]. To test or score structures, algorithms like those discussed
earlier are used. To "design" and "synthesize", traditional de novo design
software relied on classical optimizers such as genetic algorithms.
Unfortunately, this often leads to overfit, "weird" molecules, which are difficult
to synthesize in the lab. Current programs have settled on rule-based virtual
chemical reactions to generate molecular structures [321]. Deep learning
models that generate realistic, synthesizable molecules have been proposed
as an alternative. In contrast to the classical, symbolic approaches, generative
models learned from data would not depend on laboriously encoded expert
knowledge. The challenge of generating molecules has parallels to the
generation of syntactically and semantically correct text [322].

As deep learning models that directly output (molecular) graphs remain under-
explored, generative neural networks for drug design typically represent
chemicals with the simplified molecular-input line-entry system (SMILES), a
standard string-based representation with characters that represent atoms,
bonds, and rings [323]. This allows treating molecules as sequences and
leveraging recent progress in recurrent neural networks. Gómez-Bombarelli et
al. designed a SMILES-to-SMILES autoencoder to learn a continuous latent
feature space for chemicals [314]. In this learned continuous space it was
possible to interpolate between continuous representations of chemicals in a
manner that is not possible with discrete (e.g. bit vector or string) features or in
symbolic, molecular graph space. Even more interesting is the prospect of
performing gradient-based or Bayesian optimization of molecules within this
latent space. The strategy of constructing simple, continuous features before
applying supervised learning techniques is reminiscent of autoencoders trained
on high-dimensional EHR data [81]. A drawback of the SMILES-to-SMILES
autoencoder is that not all SMILES strings produced by the autoencoder's
decoder correspond to valid chemical structures. Recently, the Grammar
Variational Autoencoder, which takes the SMILES grammar into account and is
guaranteed to produce syntactically valid SMILES, has been proposed to
alleviate this issue [324].

Another approach to de novo design is to train character-based RNNs on large
collections of molecules, for example, ChEMBL [325], to first obtain a generic
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generative model for drug-like compounds [323]. These generative models
successfully learn the grammar of compound representations, with 94% [326]
or nearly 98% [323] of generated SMILES corresponding to valid molecular
structures. The initial RNN is then fine-tuned to generate molecules that are
likely to be active against a specific target by either continuing training on a
small set of positive examples [323] or adopting reinforcement learning
strategies [326,327]. Both the fine-tuning and reinforcement learning
approaches can rediscover known, held-out active molecules. The great
flexibility of neural networks, and progress in generative models offers many
opportunities for deep architectures in de novo design (e.g. the adaptation of
Generative Adversarial Networks (GANs) for molecules).

Discussion

Despite the disparate types of data and scientific goals in the learning tasks
covered above, several challenges are broadly important for deep learning in
the biomedical domain. Here we examine these factors that may impede
further progress, ask what steps have already been taken to overcome them,
and suggest future research directions.

Evaluation

There are unique challenges to evaluating deep learning predictions in the
biomedical domain. We focus on TF binding prediction as a representative task
to illustrate some of these issues. The human genome has 3 billion base pairs,
and only a small fraction of them are implicated in specific biochemical
activities. As a result, classification of genomic regions based on their
biochemical activity results in highly imbalanced classification. Class imbalance
also arises in other problems we review, such as virtual screening for drug
discovery. What are appropriate evaluation metrics that account for the label
imbalance? The classification labels are formulated based on continuous value
experimental signals. Practitioners must determine an appropriate procedure
for formulating binary classification labels based on these signals. In addition,
the experimental signals are only partially reproducible across experimental
replicates. An appropriate upper bound for classification performance must
account for the experimental reproducibility.

Evaluation metrics for imbalanced classification

Less than 1% of the genome can be confidently labeled as bound for most
transcription factors. Therefore, it is important to evaluate the genome-wide
recall and false discovery rate (FDR) of classification models of biochemical
activities. Targeted validation experiments of specific biochemical activities
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usually necessitate an FDR of 5-25%. When predicted biochemical activities
are used as features in other models, such as gene expression models, a low
FDR may not be as critical if the downstream models can satisfy their
evaluation criteria. An FDR of 50% in this context may suffice.

What is the correspondence between these metrics and commonly used
classification metrics such as auPRC (area under the precision-recall curve)
and auROC? auPRC evaluates the average precision, or equivalently, the
average FDR across all recall thresholds. This metric provides an overall
estimate of performance across all possible use cases, which can be
misleading for targeted validation experiments. For example, classification of
TF binding sites can exhibit a recall of 0% at 10% FDR and auPRC greater
than 0.6. In this case, the auPRC may be competitive, but the predictions are
ill-suited for targeted validation that can only examine a few of the highest-
confidence predictions. Likewise, auROC evaluates the average recall across
all false positive rate (FPR) thresholds, which is often a highly misleading
metric in class-imbalanced domains [71,328]. For example, consider a
classification model with recall of 0% at FDR less than 25% and 100% recall at
FDR greater than 25%. In the context of TF binding predictions where only 1%
of genomic regions are bound by the TF, this is equivalent to a recall of 100%
for FPR greater than 0.33%. In other words, the auROC would be 0.9967, but
the classifier would be useless for targeted validation. It is not unusual to obtain
a chromosome-wide auROC greater than 0.99 for TF binding predictions but a
recall of 0% at 10% FDR.

Formulation of classification labels

Genome-wide continuous signals are commonly formulated into classification
labels through signal peak detection. ChIP-seq peaks are used to identify
locations of TF binding and histone modifications. Such procedures rely on
thresholding criteria to define what constitutes a peak in the signal. This
inevitably results in a set of signal peaks that are close to the threshold, not
sufficient to constitute a positive label but too similar to positively labeled
examples to constitute a negative label. To avoid an arbitrary label for these
example they may be labeled as "ambiguous". Ambiguously labeled examples
can then be ignored during model training and evaluation of recall and FDR.
The correlation between model predictions on these examples and their signal
values can be used to evaluate if the model correctly ranks these examples
between positive and negative examples.

Formulation of a performance upper bound

Genome-wide signals across experiments can lead to different sets of positive
examples. When experimental replicates do not completely agree, perfect
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recall at a low FDR is not possible. The upper bound on the recall is the
fraction of positive examples that are in agreement across experiments. This
fraction will vary depending on the available experimental data. Reproducibility
for experimental replicates from the same lab is typically higher than
experimental replicates across multiple labs. One way to handle the range of
reproducibility is the use of multiple reproducibility criteria such as
reproducibility across technical replicates, biological replicates from the same
lab, and biological replicates from multiple labs.

Interpretation

As deep learning models achieve state-of-the-art performance in a variety of
domains, there is a growing need to make the models more interpretable.
Interpretability matters for two main reasons. First, a model that achieves
breakthrough performance may have identified patterns in the data that
practitioners in the field would like to understand. However, this would not be
possible if the model is a black box. Second, interpretability is important for
trust. If a model is making medical diagnoses, it is important to ensure the
model is making decisions for reliable reasons and is not focusing on an artifact
of the data. A motivating example of this can be found in Ba and Caruana [329],
where a model trained to predict the likelihood of death from pneumonia
assigned lower risk to patients with asthma, but only because such patients
were treated as higher priority by the hospital. In the context of deep learning,
understanding the basis of a model's output is particularly important as deep
learning models are unusually susceptible to adversarial examples [330] and
can output confidence scores over 99.99% for samples that resemble pure
noise.

As the concept of interpretability is quite broad, many methods described as
improving the interpretability of deep learning models take disparate and often
complementary approaches. Some key themes are discussed below.

Assigning example-specific importance scores

Several approaches ascribe importance on an example-specific basis to the
parts of the input that are responsible for a particular output. These can be
broadly divided into perturbation-based approaches and backpropagation-
based approaches.

Pertubration-based approaches change parts of the input and observe the
impact on the output of the network. Alipanahi et al. [164] and Zhou &
Troyanskaya [168] scored genomic sequences by introducing virtual mutations
at individual positions in the sequence and quantifying the change in the
output. Umarov et al. [178] used a similar strategy, but with sliding windows
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where the sequence within each sliding window was substituted with a random
sequence. Kelley et al. [177] inserted known protein-binding motifs into the
centers of sequences and assessed the change in predicted accessibility.
Ribeiro et al. [331] introduced LIME, which constructs a linear model to locally
approximate the output of the network on perturbed versions of the input and
assigns importance scores accordingly. For analyzing images, Zeiler and
Fergus [332] applied constant-value masks to different input patches. More
recently, marginalizing over the plausible values of an input has been
suggested as a way to more accurately estimate contributions [333].

A common drawback to perturbation-based approaches is computational
efficiency: each perturbed version of an input requires a separate forward
propagation through the network to compute the output. As noted by Shrikumar
et al. [169], such methods may also underestimate the impact of features that
have saturated their contribution to the output, as can happen when multiple
redundant features are present. To reduce the computational overhead of
perturbation-based approaches, Fong and Vedaldi [334] solve an optimization
problem using gradient descent to discover a minimal subset of inputs to
perturb in order to decrease the predicted probability of a selected class. Their
method converges in many fewer iterations but requires the perturbation to
have a differentiable form.

Backpropagation-based methods, in which the signal from a target output
neuron is propagated backwards to the input layer, are another way to interpret
deep networks that sidestep inefficiencies of the perturbastion-basd methods.
A classic example of this is calculating the gradients of the output with respect
to the input [335] to compute a "saliency map". Bach et al. [336] proposed a
strategy called Layerwise Relevance Propagation, which was shown to be
equivalent to the element-wise product of the gradient and input [169,337].
Networks with Rectified Linear Units (ReLUs) create nonlinearities that must be
addressed. Several variants exist for handling this [332,338]. Backpropagation-
based methods are a highly active area of research. Researchers are still
actively identifying weaknesses [339], and new methods are being developed
to address them [169,340,341]. Lundberg and Lee [342] noted that several
importance scoring methods including integrated gradients and LIME could all
be considered approximations to Shapely values [343], which have a long
history in game theory for assigning contributions to players in cooperative
games.

Matching or exaggerating the hidden representation

Another approach to understanding the network's predictions is to find artificial
inputs that produce similar hidden representations to a chosen example. This
can elucidate the features that the network uses for prediction and drop the
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features that the network is insensitive to. In the context of natural images,
Mahendran and Vedaldi [344] introduced the "inversion" visualization, which
uses gradient descent and backpropagation to reconstruct the input from its
hidden representation. The method required placing a prior on the input to
favor results that resemble natural images. For genomic sequence, Finnegan
and Song [345] used a Markov chain Monte Carlo algorithm to find the
maximum-entropy distribution of inputs that produced a similar hidden
representation to the chosen input.

A related idea is "caricaturization", where an initial image is altered to
exaggerate patterns that the network searches for [346]. This is done by
maximizing the response of neurons that are active in the network, subject to
some regularizing constraints. Mordvintsev et al. [347] leveraged
caricaturization to generate aesthetically pleasing images using neural
networks.

Activation maximization

Activation maximization can reveal patterns detected by an individual neuron in
the network by generating images which maximally activate that neuron,
subject to some regularizing constraints. This technique was first introduced in
Ehran et al. [348] and applied in subsequent work [335,346,347,349].
Lanchantin et al. [165] applied activation maximization to genomic sequence
data. One drawback of this approach is that neural networks often learn highly
distributed representations where several neurons cooperatively describe a
pattern of interest. Thus, visualizing patterns learned by individual neurons may
not always be informative.

RNN-specific approaches

Several interpretation methods are specifically tailored to recurrent neural
network architectures. The most common form of interpretability provided by
RNNs is through attention mechanisms, which have been used in diverse
problems such as image captioning and machine translation to select portions
of the input to focus on generating a particular output [350,351]. Deming et al.
[352] applied the attention mechanism to models trained on genomic
sequence. Attention mechanisms provide insight into the model's decision-
making process by revealing which portions of the input are used by different
outputs. In the clinical domain, Choi et al. [353] leveraged attention
mechanisms to highlight which aspects of a patient's medical history were most
relevant for making diagnoses. Choi et al. [354] later extended this work to take
into account the structure of disease ontologies and found that the concepts
represented by the model aligned with medical knowledge. Note that
interpretation strategies that rely on an attention mechanism do not provide
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insight into the logic used by the attention layer.

Visualizing the activation patterns of the hidden state of a recurrent neural
network can also be instructive. Early work by Ghosh and Karamcheti [355]
used cluster analysis to study hidden states of comparatively small networks
trained to recognize strings from a finite state machine. More recently,
Karpathy et al. [356] showed the existence of individual cells in LSTMs that
kept track of quotes and brackets in character-level language models. To
facilitate such analyses, LSTMVis [357] allows interactive exploration of the
hidden state of LSTMs on different inputs.

Another strategy, adopted by Lanchatin et al. [165] looks at how the output of a
recurrent neural network changes as longer and longer subsequences are
supplied as input to the network, where the subsequences begin with just the
first position and end with the entire sequence. In a binary classification task,
this can identify those positions which are responsible for flipping the output of
the network from negative to positive. If the RNN is bidirectional, the same
process can be repeated on the reverse sequence. As noted by the authors,
this approach was less effective at identifying motifs compared to the gradient-
based backpropagation approach of Simonyan et al. [335], illustrating the need
for more sophisticated strategies to assign importance scores in recurrent
neural networks.

Murdoch and Szlam [358] showed that the output of an LSTM can be
decomposed into a product of factors, where each factor can be interpreted as
the contribution at a particular timestep. The contribution scores were then
used to identify key phrases from a model trained for sentiment analysis and
obtained superior results compared to scores derived via a gradient-based
approach.

Miscellaneous approaches

Toward quantifying the uncertainty of predictions, there has been a renewed
interest in confidence intervals for deep neural networks. Early work from
Chryssolouris et al. [359] provided confidence intervals under the assumption
of normally-distributed error. A more recent technique known as test-time
dropout [360] can also be used to obtain a probabilistic interpretation of a
network's outputs.

It can often be informative to understand how the training data affects model
learning. Toward this end, Koh and Liang [361] used influence functions, a
technique from robust statistics, to trace a model's predictions back through the
learning algorithm to identify the datapoints in the training set that had the most
impact on a given prediction. A more free-form approach to interpretability is to
visualize the activation patterns of the network on individual inputs and on
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subsets of the data. ActiVis and CNNvis [362,363] are two frameworks that
enable interactive visualization and exploration of large-scale deep learning
models. An orthogonal strategy is to use a knowledge distillation approach to
replace a deep learning model with a more interpretable model that achieves
comparable performance. Towards this end, Che et al. [364] used gradient
boosted trees to learn interpretable healthcare features from trained deep
models.

Finally, it is sometimes possible to train the model to provide justifications for
its predictions. Lei et al. [365] used a generator to identify "rationales", which
are short and coherent pieces of the input text that produce similar results to
the whole input when passed through an encoder. The authors applied their
approach to a sentiment analysis task and obtained substantially superior
results compared to an attention-based method.

Future outlook

While deep learning certainly lags behind most Bayesian models in terms of
interpretability, one can safely argue that the interpretability of deep learning is
comparable to or exceeds that of many other widely-used machine learning
methods such as random forests or SVMs. While it is possible to obtain
importance scores for different inputs in a random forest, the same is true for
deep learning. Similarly, SVMs trained with a nonlinear kernel are not easily
interpretable because the use of the kernel means that one does not obtain an
explicit weight matrix. Finally, it is worth noting that some simple machine
learning methods are less interpretable in practice than one might expect. A
linear model trained on heavily engineered features might be difficult to
interpret as the input features themselves are difficult to interpret. Similarly, a
decision tree with many nodes and branches may also be difficult for a human
to make sense of.

There are several directions that might benefit the development of
interpretability techniques. The first is the introduction of gold standard
benchmarks that different interpretability approaches could be compared
against, similar in spirit to how datasets like ImageNet and CIFAR spurred the
development of deep learning for computer vision. It would also be helpful if the
community placed more emphasis on domains outside of computer vision.
Computer vision is often used as the example application of interpretability
methods, but it is arguably not the domain with the most pressing need. Finally,
closer integration of interpretability approaches with popular deep learning
frameworks would make it easier for practitioners to apply and experiment with
different approaches to understanding their deep learning models.

Data limitations
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A lack of large-scale, high-quality, correctly labeled training data has impacted
deep learning in nearly all applications we have discussed, from healthcare to
genomics to drug discovery. The challenges of training complex, high-
parameter neural networks from few examples are obvious, but uncertainty in
the labels of those examples can be just as problematic. In genomics labeled
data may be derived from an experimental assay with known and unknown
technical artifacts, biases, and error profiles. It is possible to weight training
examples or construct Bayesian models to account for uncertainty or non-
independence in the data, as described in the TF binding example above. As
another example, Park et al. [366] estimated shared non-biological signal
between datasets to correct for non-independence related to assay platform or
other factors in a Bayesian integration of many datasets. However, such
techniques are rarely placed front and center in any description of methods and
may be easily overlooked.

For some types of data, especially images, it is straightforward to augment
training datasets by splitting a single labeled example into multiple examples.
For example, an image can easily be rotated, flipped, or translated and retain
its label [59]. 3D MRI and 4D fMRI (with time as a dimension) data can be
decomposed into sets of 2D images [367]. This can greatly expand the number
of training examples but artificially treats such derived images as independent
instances and sacrifices the structure inherent in the data. CellCnn trains a
model to recognize rare cell populations in single-cell data by creating training
instances that consist of subsets of cells that are randomly sampled with
replacement from the full dataset [220].

Simulated or semi-synthetic training data has been employed in multiple
biomedical domains, though many of these ideas are not specific to deep
learning. Training and evaluating on simulated data, for instance, generating
synthetic TF binding sites with position weight matrices [167] or RNA-seq reads
for predicting mRNA transcript boundaries [368], is a standard practice in
bioinformatics. This strategy can help benchmark algorithms when the
available gold standard dataset is imperfect, but it should be paired with an
evaluation on real data, as in the prior examples [167,368]. In rare cases,
models trained on simulated data have been successfully applied directly to
real data [368].

Data can be simulated to create negative examples when only positive training
instances are available. DANN [33] adopts this approach to predict the
pathogenicity of genetic variants using semi-synthetic training data from
Combined Annotation-Dependent Depletion [369]. Though our emphasis here
is on the training strategy, it should be noted that logistic regression
outperformed DANN when distinguishing known pathogenic mutations from
likely benign variants in real data. Similarly, a somatic mutation caller has been
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trained by injecting mutations into real sequencing datasets [260]. This method
detected mutations in other semi-synthetic datasets but was not validated on
real data.

In settings where the experimental observations are biased toward positive
instances, such as MHC protein and peptide ligand binding affinity [370], or the
negative instances vastly outnumber the positives, such as high-throughput
chemical screening [306], training datasets have been augmented by adding
additional instances and assuming they are negative. There is some evidence
that this can improve performance [306], but in other cases it was only
beneficial when the real training datasets were extremely small [370]. Overall,
training with simulated and semi-simulated data is a valuable idea for
overcoming limited sample sizes but one that requires more rigorous
evaluation on real ground-truth datasets before we can recommend it for
widespread use. There is a risk that a model will easily discriminate synthetic
examples but not generalize to real data.

Multimodal, multi-task, and transfer learning, discussed in detail below, can
also combat data limitations to some degree. There are also emerging network
architectures, such as Diet Networks for high-dimensional SNP data [371].
These use multiple networks to drastically reduce the number of free
parameters by first flipping the problem and training a network to predict
parameters (weights) for each input (SNP) to learn a feature embedding. This
embedding (e.g. from principal component analysis, per class histograms, or a
Word2vec [76] generalization) can be learned directly from input data or take
advantage of other datasets or domain knowledge. Additionally, in this task the
features are the examples, an important advantage when it is typical to have
500 thousand or more SNPs and only a few thousand patients. Finally, this
embedding is of a much lower dimension, allowing for a large reduction in the
number of free parameters. In the example given, the number of free
parameters was reduced from 30 million to 50 thousand, a factor of 600.

Hardware limitations and scaling

Efficiently scaling deep learning is challenging, and there is a high
computational cost (e.g. time, memory, and energy) associated with training
neural networks and using them to make predictions. This is one of the
reasons why neural networks have only recently found widespread use [372].

Many have sought to curb these costs, with methods ranging from the very
applied (e.g. reduced numerical precision [373–376]) to the exotic and theoretic
(e.g. training small networks to mimic large networks and ensembles
[329,377]). The largest gains in efficiency have come from computation with
graphics processing units (GPUs) [372,378–382], which excel at the matrix and
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vector operations so central to deep learning. The massively parallel nature of
GPUs allows additional optimizations, such as accelerated mini-batch gradient
descent [379,380,383,384]. However, GPUs also have limited memory, making
networks of useful size and complexity difficult to implement on a single GPU
or machine [68,378]. This restriction has sometimes forced computational
biologists to use workarounds or limit the size of an analysis. Chen et al. [146]
inferred the expression level of all genes with a single neural network, but due
to memory restrictions they randomly partitioned genes into two separately
analyzed halves. In other cases, researchers limited the size of their neural
network [27] or the total number of training instances [314]. Some have also
chosen to use standard central processing unit (CPU) implementations rather
than sacrifice network size or performance [385].

While steady improvements in GPU hardware may alleviate this issue, it is
unclear whether advances will occur quickly enough to keep pace with the
growing biological datasets and increasingly complex neural networks. Much
has been done to minimize the memory requirements of neural networks
[329,373–376,386,387], but there is also growing interest in specialized
hardware, such as field-programmable gate arrays (FPGAs) [382,388] and
application-specific integrated circuits (ASICs) [389]. Less software is available
for such highly specialized hardware [388]. But specialized hardware promises
improvements in deep learning at reduced time, energy, and memory [382].
Specialized hardware may be a difficult investment for those not solely
interested in deep learning, but for those with a deep learning focus these
solutions may become popular.

Distributed computing is a general solution to intense computational
requirements and has enabled many large-scale deep learning efforts. Some
types of distributed computation [390,391] are not suitable for deep learning
[392], but much progress has been made. There now exist a number of
algorithms [375,392,393], tools [394–396], and high-level libraries [397,398] for
deep learning in a distributed environment, and it is possible to train very
complex networks with limited infrastructure [399]. Besides handling very large
networks, distributed or parallelized approaches offer other advantages, such
as improved ensembling [400] or accelerated hyperparameter optimization
[401,402].

Cloud computing, which has already seen wide adoption in genomics [403],
could facilitate easier sharing of the large datasets common to biology
[404,405], and may be key to scaling deep learning. Cloud computing affords
researchers flexibility, and enables the use of specialized hardware (e.g.
FPGAs, ASICs, GPUs) without major investment. As such, it could be easier to
address the different challenges associated with the multitudinous layers and
architectures available [406]. Though many are reluctant to store sensitive data
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(e.g. patient electronic health records) in the cloud, secure, regulation-
compliant cloud services do exist [407].

Data, code, and model sharing

A robust culture of data, code, and model sharing would speed advances in
this domain. The cultural barriers to data sharing in particular are perhaps best
captured by the use of the term "research parasite" to describe scientists who
use data from other researchers [408]. A field that honors only discoveries and
not the hard work of generating useful data will have difficulty encouraging
scientists to share their hard-won data. Unfortunately, it's precisely those data
that would help to power deep learning in the domain. Efforts are underway to
recognize those who promote an ecosystem of rigorous sharing and analysis
[409].

The sharing of high-quality, labeled datasets will be especially valuable. In
addition, researchers who invest time to preprocess datasets to be suitable for
deep learning can make the preprocessing code (e.g. Basset [177] and
variationanalysis [258]) and cleaned data (e.g. MoleculeNet [312]) publicly
available to catalyze further research. However, there are complex privacy and
legal issues involved in sharing patient data that cannot be ignored. In some
domains high-quality training data has been generated privately, i.e. high-
throughput chemical screening data at pharmaceutical companies. One
perspective is that there is little expectation or incentive for this private data to
be shared. However, data are not inherently valuable. Instead, the insights that
we glean from them are where the value lies. Private companies may establish
a competitive advantage by releasing data sufficient for improved methods to
be developed.

Code sharing and open source licensing is essential for continued progress in
this domain. We strongly advocate following established best practices for
sharing source code, archiving code in repositories that generate digital object
identifiers, and open licensing [410] regardless of the minimal requirements, or
lack thereof, set by journals, conferences, or preprint servers. In addition, it is
important for authors to share not only code for their core models but also
scripts and code used for data cleaning (see above) and hyperparameter
optimization. These improve reproducibility and serve as documentation of the
detailed decisions that impact model performance but may not be exhaustively
captured in a manuscript's methods text.

Because many deep learning models are often built using one of several
popular software frameworks, it is also possible to directly share trained
predictive models. The availability of pre-trained models can accelerate
research, with image classifiers as an apt example. A pre-trained neural
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network can be quickly fine-tuned on new data and used in transfer learning,
as discussed below. Taking this idea to the extreme, genomic data has been
artificially encoded as images in order to benefit from pre-trained image
classifiers [257]. "Model zoos" -- collections of pre-trained models -- are not yet
common in biomedical domains but have started to appear in genomics
applications [216,411]. Sharing models for patient data requires great care
because deep learning models can be attacked to identify examples used in
training. We discuss this issue as well as recent techniques to mitigate these
concerns in the patient categorization section.

DeepChem [311–313] and DragoNN [411] exemplify the benefits of sharing
pre-trained models and code under an open source license. DeepChem, which
targets drug discovery and quantum chemistry, has actively encouraged and
received community contributions of learning algorithms and benchmarking
datasets. As a consequence, it now supports a large suite of machine learning
approaches, both deep learning and competing strategies, that can be run on
diverse test cases. This realistic, continual evaluation will play a critical role in
assessing which techniques are most promising for chemical screening and
drug discovery. Like formal, organized challenges such as the ENCODE-
DREAM in vivo Transcription Factor Binding Site Prediction Challenge [412],
DeepChem provides a forum for the fair, critical evaluations that are not always
conducted in individual methodological papers, which can be biased toward
favoring a new proposed algorithm. Likewise DragoNN (Deep RegulAtory
GenOmic Neural Networks) offers not only code and a model zoo but also a
detailed tutorial and partner package for simulating training data. These
resources, especially the ability to simulate datasets that are sufficiently
complex to demonstrate the challenges of training neural networks but small
enough to train quickly on a CPU, are important for training students and
attracting machine learning researchers to problems in genomics and
healthcare.

Multimodal, multi-task, and transfer learning

The fact that biomedical datasets often contain a limited number of instances
or labels can cause poor performance of deep learning algorithms. These
models are particularly prone to overfitting due to their high representational
power. However, transfer learning techniques, also known as domain
adaptation, enable transfer of extracted patterns between different datasets
and even domains. This approach consists of training a model for the base
task and subsequently reusing the trained model for the target problem. The
first step allows a model to take advantage of a larger amount of data and/or
labels to extract better feature representations. Transferring learned features in
deep neural networks improves performance compared to randomly initialized
features even when pre-training and target sets are dissimilar. However,
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transferability of features decreases as the distance between the base task and
target task increases [413].

In image analysis, previous examples of deep transfer learning applications
proved large-scale natural image sets [42] to be useful for pre-training models
that serve as generic feature extractors for various types of biological images
[14,206,414,415]. More recently, deep learning models predicted protein sub-
cellular localization for proteins not originally present in a training set [416].
Moreover, learned features performed reasonably well even when applied to
images obtained using different fluorescent labels, imaging techniques, and
different cell types [417]. However, there are no established theoretical
guarantees for feature transferability between distant domains such as natural
images and various modalities of biological imaging. Because learned patterns
are represented in deep neural networks in a layer-wise hierarchical fashion,
this issue is usually addressed by fixing an empirically chosen number of layers
that preserve generic characteristics of both training and target datasets. The
model is then fine-tuned by re-training top layers on the specific dataset in
order to re-learn domain-specific high level concepts (e.g. fine-tuning for
radiology image classification [54]). Fine-tuning on specific biological datasets
enables more focused predictions.

In genomics, the Basset package [177] for predicting chromatin accessibility
was shown to rapidly learn and accurately predict on new data by leveraging a
model pre-trained on available public data. To simulate this scenario, authors
put aside 15 of 164 cell type datasets and trained the Basset model on the
remaining 149 datasets. Then, they fine-tuned the model with one training pass
of each of the remaining datasets and achieved results close to the model
trained on all 164 datasets together. In another example, Min et al. [179]
demonstrated how training on the experimentally validated FANTOM5
permissive enhancer dataset followed by fine-tuning on ENCODE enhancer
datasets improved cell type-specific predictions, outperforming state-of-the-art
results. In drug design, general RNN models trained to generate molecules
from the ChEMBL database have been fine-tuned to produce drug-like
compounds for specific targets [323,326].

Related to transfer learning, multimodal learning assumes simultaneous
learning from various types of inputs, such as images and text. It can capture
features that describe common concepts across input modalities. Generative
graphical models like RBMs, deep Boltzmann machines, and DBNs,
demonstrate successful extraction of more informative features for one
modality (images or video) when jointly learned with other modalities (audio or
text) [418]. Deep graphical models such as DBNs are considered to be well-
suited for multimodal learning tasks because they learn a joint probability
distribution from inputs. They can be pre-trained in an unsupervised fashion on
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large unlabeled data and then fine-tuned on a smaller number of labeled
examples. When labels are available, convolutional neural networks are
ubiquitously used because they can be trained end-to-end with
backpropagation and demonstrate state-of-the-art performance in many
discriminative tasks [14].

Jha et al. [154] showed that integrated training delivered better performance
than individual networks. They compared a number of feed-forward
architectures trained on RNA-seq data with and without an additional set of
CLIP-seq, knockdown, and over-expression based input features. The
integrative deep model generalized well for combined data, offering a large
performance improvement for alternative splicing event estimation. Chaudhary
et al. [419] trained a deep autoencoder model jointly on RNA-seq, miRNA-seq,
and methylation data from The Cancer Genome Atlas to predict survival
subgroups of hepatocellular carcinoma patients. This multimodal approach that
treated different omic data types as different modalities outperformed both
traditional methods (principal component analysis) and single-omic models.
Interestingly, multi-omic model performance did not improve when combined
with clinical information, suggesting that the model was able to capture
redundant contributions of clinical features through their correlated genomic
features. Chen et al. [141] used deep belief networks to learn phosphorylation
states of a common set of signaling proteins in primary cultured bronchial cells
collected from rats and humans treated with distinct stimuli. By interpreting
species as different modalities representing similar high-level concepts, they
showed that DBNs were able to capture cross-species representation of
signaling mechanisms in response to a common stimuli. Another application
used DBNs for joint unsupervised feature learning from cancer datasets
containing gene expression, DNA methylation, and miRNA expression data
[148]. This approach allowed for the capture of intrinsic relationships in
different modalities and for better clustering performance over conventional k-
means.

Multimodal learning with CNNs is usually implemented as a collection of
individual networks in which each learns representations from single data type.
These individual representations are further concatenated before or within fully-
connected layers. FIDDLE [420] is an example of a multimodal CNN that
represents an ensemble of individual networks that take NET-seq, MNase-seq,
ChIP-seq, RNA-seq, and raw DNA sequence as input to predict Transcription
Start Site-seq. The combined model radically improves performance over
separately trained datatype-specific networks, suggesting that it learns the
synergistic relationship between datasets.

Multi-task learning is an approach related to transfer learning. In a multi-task
learning framework, a model learns a number of tasks simultaneously such that

.CC-BY 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted May 28, 2017. . https://doi.org/10.1101/142760doi: bioRxiv preprint 

https://doi.org/10.1101/142760
http://creativecommons.org/licenses/by/4.0/


features are shared across them. DeepSEA [168] implemented multi-task joint
learning of diverse chromatin factors from raw DNA sequence. This allowed a
sequence feature that was effective in recognizing binding of a specific TF to
be simultaneously used by another predictor for a physically interacting TF.
Similarly, TFImpute [155] learned information shared across transcription
factors and cell lines to predict cell-specific TF binding for TF-cell line
combinations. Yoon et al. [75] demonstrated that predicting the primary cancer
site from cancer pathology reports together with its laterality substantially
improved the performance for the latter task, indicating that multi-task learning
can effectively leverage the commonality between two tasks using a shared
representation. Many studies employed multi-task learning to predict chemical
bioactivity [299,302] and drug toxicity [303,421]. Kearnes et al. [296]
systematically compared single-task and multi-task models for ADMET
properties and found that multi-task learning generally improved performance.
Smaller datasets tended to benefit more than larger datasets.

Multi-task learning is complementary to multimodal and transfer learning. All
three techniques can be used together in the same model. For example, Zhang
et al. [414] combined deep model-based transfer and multi-task learning for
cross-domain image annotation. One could imagine extending that approach to
multimodal inputs as well. A common characteristic of these methods is better
generalization of extracted features at various hierarchical levels of abstraction,
which is attained by leveraging relationships between various inputs and task
objectives.

Despite demonstrated improvements, transfer learning approaches pose
challenges. There are no theoretically sound principles for pre-training and
fine-tuning. Best practice recommendations are heuristic and must account for
additional hyper-parameters that depend on specific deep architectures, sizes
of the pre-training and target datasets, and similarity of domains. However,
similarity of datasets and domains in transfer learning and relatedness of tasks
in multi-task learning is difficult to access. Most studies address these
limitations by empirical evaluation of the model. Unfortunately, negative results
are typically not reported. Rajkomar et al. [54] showed that a deep CNN trained
on natural images can boost radiology image classification performance.
However, due to differences in imaging domains, the target task required either
re-training the initial model from scratch with special pre-processing or fine-
tuning of the whole network on radiographs with heavy data augmentation to
avoid overfitting. Exclusively fine-tuning top layers led to much lower validation
accuracy (81.4 versus 99.5). Fine-tuning the aforementioned Basset model
with more than one pass resulted in overfitting [177]. DeepChem successfully
improved results for low-data drug discovery with one-shot learning for related
tasks. However, it clearly demonstrated the limitations of cross-task
generalization across unrelated tasks in one-shot models, specifically nuclear
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receptor assays and patient adverse reactions [311].

In the medical domain, multimodal, multi-task and transfer learning strategies
not only inherit most methodological issues from natural image, text, and audio
domains, but also pose domain-specific challenges. There is a compelling need
for the development of privacy-preserving transfer learning algorithms, such as
Private Aggregation of Teacher Ensembles [122]. We suggest that these types
of models deserve deeper investigation to establish sound theoretical
guarantees and determine limits for the transferability of features between
various closely related and distant learning tasks.

Conclusions

Deep learning-based methods now match or surpass the previous state of the
art in a diverse array of tasks in patient and disease categorization,
fundamental biological study, genomics, and treatment development. Returning
to our central question: given this rapid progress, has deep learning
transformed the study of human disease? Though the answer is highly
dependent on the specific domain and problem being addressed, we conclude
that deep learning has not yet realized its transformative potential or induced a
strategic inflection point. Despite its dominance over competing machine
learning approaches in many of the areas reviewed here and quantitative
improvements in predictive performance, deep learning has not yet definitively
"solved" these problems.

As an analogy, consider recent progress in conversational speech recognition.
Since 2009 there have been drastic performance improvements with error
rates dropping from more than 20% to less than 6% [422] and finally
approaching or exceeding human performance in the past year [423,424]. The
phenomenal improvements on benchmark datasets are undeniable, but greatly
reducing the error rate on these benchmarks did not fundamentally transform
the domain. Widespread adoption of conversational speech technologies will
require solving the problem, i.e. methods that surpass human performance,
and persuading users to adopt them [422]. We see parallels in healthcare,
where achieving the full potential of deep learning will require outstanding
predictive performance as well as acceptance and adoption by biologists and
clinicians. These experts will rightfully demand rigorous evidence that deep
learning has impacted their respective disciplines -- elucidated new biological
mechanisms and improved patient outcomes -- to be convinced that the
promises of deep learning are more substantive than those of previous
generations of artificial intelligence.

Some of the areas we have discussed are closer to surpassing this lofty bar
than others, generally those that are more similar to the non-biomedical tasks
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that are now monopolized by deep learning. In medical imaging, diabetic
retinopathy [46], diabetic macular edema [46], tuberculosis [55], and skin lesion
[4] classifiers are highly accurate and comparable to clinician performance.

In other domains, perfect accuracy will not be required because deep learning
will primarily prioritize experiments and assist discovery. For example, in
chemical screening for drug discovery, a deep learning system that
successfully identifies dozens or hundreds of target-specific, active small
molecules from a massive search space would have immense practical value
even if its overall precision is modest. In medical imaging, deep learning can
point an expert to the most challenging cases that require manual review [55],
though the risk of false negatives must be addressed. In protein structure
prediction, errors in individual residue-residue contacts can be tolerated when
using the contacts jointly for 3D structure modeling. Improved contact map
predictions [27] have led to notable improvements in fold and 3D structure
prediction for some of the most challenging proteins, such as membrane
proteins [201].

Conversely, the most challenging tasks may be those in which predictions are
used directly for downstream modeling or decision-making, especially in the
clinic. As an example, errors in sequence variant calling will be amplified if they
are used directly for GWAS. In addition, the stochasticity and complexity of
biological systems implies that for some problems, for instance predicting gene
regulation in disease, perfect accuracy will be unattainable.

We are witnessing deep learning models achieving human-level performance
across a number of biomedical domains. However, machine learning
algorithms, including deep neural networks, are also prone to mistakes that
humans are much less likely to make, such as misclassification of adversarial
examples [425,426], a reminder that these algorithms do not understand the
semantics of the objects presented. It may be impossible to guarantee that a
model is not susceptible to adversarial examples, but work in this area is
continuing [427,428]. Cooperation between human experts and deep learning
algorithms addresses many of these challenges and can achieve better
performance than either individually [66]. For sample and patient classification
tasks, we expect deep learning methods to augment clinicians and biomedical
researchers.

We are extremely optimistic about the future of deep learning in biology and
medicine. It is by no means inevitable that deep learning will revolutionize these
domains, but given how rapidly the field is evolving, we are confident that its
full potential in biomedicine has not been explored. We have highlighted
numerous challenges beyond improving training and predictive accuracy, such
as preserving patient privacy and interpreting models. Ongoing research has
begun to address these problems and shown that they are not insurmountable.
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Deep learning offers the flexibility to model data in its most natural form, for
example, longer DNA sequences instead of k-mers for transcription factor
binding prediction and molecular graphs instead of pre-computed bit vectors for
drug discovery. These flexible input feature representations have spurred
creative modeling approaches that would be infeasible with other machine
learning techniques. Unsupervised methods are currently less-developed than
their supervised counterparts, but they may have the most potential because of
how expensive and time-consuming it is to label large amounts of biomedical
data. If future deep learning algorithms can summarize very large collections of
input data into interpretable models that spur scientists to ask questions that
they did not know how to ask, it will be clear that deep learning has
transformed biology and medicine.

Methods

Continuous collaborative manuscript drafting

We recognized that deep learning in precision medicine is a rapidly developing
area. Hence, diverse expertise was required to provide a forward-looking
perspective. Accordingly, we collaboratively wrote this review in the open,
enabling anyone with expertise to contribute. We wrote the manuscript in
markdown and tracked changes using git. Contributions were handled through
GitHub, with individuals submitting "pull requests" to suggest additions to the
manuscript.

To facilitate citation, we defined a markdown citation syntax. We supported
citations to the following identifier types (in order of preference): DOIs, PubMed
IDs, arXiv IDs, and URLs. References were automatically generated from
citation metadata by querying APIs to generate Citation Style Language (CSL)
JSON items for each reference. Pandoc and pandoc-citeproc converted the
markdown to HTML and PDF, while rendering the formatted citations and
references. In total, referenced works consisted of 280 DOIs, 5 PubMed
records, 108 arXiv manuscripts, and 39 URLs (webpages as well as
manuscripts lacking standardized identifiers).

We implemented continuous analysis so the manuscript was automatically
regenerated whenever the source changed [113]. We configured Travis CI -- a
continuous integration service -- to fetch new citation metadata and rebuild the
manuscript for every commit. Accordingly, formatting or citation errors in pull
requests would cause the Travis CI build to fail, automating quality control. In
addition, the build process renders templated variables, such as the reference
counts mentioned above, to automate the updating of dynamic content. When
contributions were merged into the master branch, Travis CI deployed the built
manuscript by committing back to the GitHub repository. As a result, the latest
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manuscript version is always available at https://greenelab.github.io/deep-
review. To ensure a consistent software environment, we defined a versioned
conda environment of the software dependencies.

In addition, we instructed the Travis CI deployment script to perform blockchain
timestamping [429,430]. Using OpenTimestamps, we submitted hashes for the
manuscript and the source git commit for timestamping in the Bitcoin
blockchain [431]. These timestamps attest that a given version of this
manuscript (and its history) existed at a given point in time. The ability to
irrefutably prove manuscript existence at a past time could be important to
establish scientific precedence and enforce an immutable record of authorship.

Author contributions

We created an open repository on the GitHub version control platform
(greenelab/deep-review) [432]. Here, we engaged with numerous authors from
papers within and outside of the area. The manuscript was drafted via GitHub
commits by 27 individuals who met the ICMJE standards of authorship. These
were individuals who contributed to the review of the literature; drafted the
manuscript or provided substantial critical revisions; approved the final
manuscript draft; and agreed to be accountable in all aspects of the work.
Individuals who did not contribute in all of these ways, but who did participate,
are acknowledged below. We grouped authors into the following four classes
of approximately equal contributions and randomly ordered authors within each
contribution class. Drafted multiple sub-sections along with extensive editing,
pull request reviews, or discussion: A.A.K., B.K.B., B.T.D., D.S.H., E.F.,
G.P.W., P.A., T.C. Drafted one or more sub-sections: A.E.C., A.S., B.J.L.,
E.M.C., G.L.R., J.I., J.L., J.X., S.W., W.X. Revised specific sub-sections or
supervised drafting one or more sub-sections: A.K., D.D., D.J.H., L.K.W.,
M.H.S.S., Y.P., Y.Q. Drafted sub-sections, edited the manuscript, reviewed pull
requests, and coordinated co-authors: A.G., C.S.G..
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