


Figure 10. Survival curves for clusters in Fig. 9. The highlighted clusters have
different survival probabilities with p = 0.012 under the log-rank survival model.

detail at 3, 4 and 5 local clusters in every local context-specific dataset. Fig. 15 shows
the agreement between the results as measured by the ARI. All the cluster assignments
are relatively consistent given different model sizes with high pairwise ARI values.

In general, the number of clusters tends to saturate for larger sizes of the model.
Because the model asymptotically approaches a Dirichlet process when the number of
global/local clusters is large, the model automatically infers the number of clusters that
is needed to represent the data (see the Methods section for details). However, smaller
sizes of the model are more computationally efficient in real-world scenarios. To infer a
reliable clustering of real-world data, it is necessary to explore several different settings
of the model’s parameters, where stability of the clustering can serve as an indicator of
clustering tendencies in the dataset [13].

To assist with selecting the number of clusters, the package clusternomics also
provides the Deviance Information Criterion (DIC, [14]). DIC is a criterion for model
selection for Bayesian models, combining posterior likelihood with penalty for model
complexity. Number of clusters should be chosen so that the value of DIC is minimized.
Fig. 16 shows the DIC values for the number of global clusters for the breast cancer
dataset. Based on this measure, the optimal number of clusters is 18, which is also the
value where the cluster results become stable.

Case Study: Prognostic Clusters in Lung and Kidney Cancer

To evaluate the general utility of the model, we also examined two additional smaller
cancer datasets from The Cancer Genome Atlas repository:

ˆ Lung cancer samples from 106 patients with 3 contexts: gene expression (12,042
genes), DNA methylation (23,074 loci) and miRNA expression (352 miRNAs)

ˆ Kidney cancer samples from 122 patients with 3 contexts: gene expression (17,899
genes), DNA methylation (24,960 loci) and miRNA expression (329 miRNAs)

The datasets were normalised to zero mean and unit variance for every feature, but the
total size of the data was not reduced. For both datasets we again fit models with 3 to 5
local clusters in each context and varying numbers of global clusters.

In this case, the size of the problem in terms of number of genes and DNA
methylation loci is problematic for the iCluster algorithm. For larger problems with
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Figure 11. Log likelihoods (a) and survival p-values (b) of models with different
numbers of global clusters. The first significant difference in survival corresponds to the
model with the highest log likelihood.

Figure 12. Consistency between global clustering results for different number of global
clusters with 3 context-specific clusters, as measured by the ARI.
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Figure 13. Consistency between local clustering results for different number of global
clusters with 3 context-specific clusters, as measured by the ARI. The ARI values show
several local optima. (a) Gene expression context. (b) DNA methylation context. (c)
miRNA context. (d) RPPA context.

more features it becomes increasingly memory intensive (at least 60 GB of memory were
required to run iCluster on the lung dataset, and the algorithm did not terminate in a
reasonable period of time).

Fig. 17 shows the summary of the results on the lung cancer dataset, using the
clinical survival information. The differences in survival prospects in the clusters are
statistically significant for all clusterings of this dataset. The consistency of results
reveals that there are three versions of stable cluster assignments across the models of
different sizes. Fig. 19 shows similar results for the kidney cancer dataset. Here, the
survival p-values drop below the significance threshold when the cluster assignments
become more stable and consistent. In both cancer datasets, the Clusternomics
algorithm identified clinically relevant clusters.

Methods

The context-dependent clustering model

The context-dependent clustering model explicitly represents both the local clusters
within each dataset (local context), and the global structure that emerges when looking
at the combination of cluster assignments across the individual datasets.

When we consider a local structure within several datasets, each dataset has its own
context-specific set of clusters. When we look at the combination of the context-specific
clusters, we get a combined structure which defines clusters on the global level while
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Figure 14. Average number of occupied clusters across different numbers of global
clusters. The number of clusters is the average of the posterior number of global clusters
that have any samples assigned to them across the MCMC iterations. The figure shows
both the total number of occupied clusters and the number of clusters that have more
than 5 samples assigned to them.

Figure 15. Consistency between global clustering results for different number of local
context-specific clusters, as measured by the ARI. The compared models were trained
with 18 global clusters and 3 to 5 context-specific clusters.

keeping information about cluster membership on the local level. For example, if one
context (dataset) contains two clusters of samples labelled 1 and 2, and second dataset
contains three clusters, labelled A,B and C, we get a combined structure with six
potential global clusters where each cluster corresponds a combination of assignments
on the local level:

(1, A), (2, A), (1, B), (2, B), (1, C), (2, C).

Figure 21 provides a schematic illustration of the concepts. Using this formulation,
we can model groups of data that are joined in one context and separated in another
context, because they correspond to different global clusters.

We use this intuition to develop the context-dependent clustering model, which is
based on a Bayesian probabilistic clustering. The algorithm is based on Dirichlet
mixture models [15] and their infinite generalisation, the Dirichlet process mixture
model [16,17].

The probabilistic model accounts both for probabilities of individual samples
belonging to a specific cluster on the local level, and for the global probabilities of
samples belonging to a global cluster. The global clusters are modelled as a combination
of local clusters, and bound together by a Bayesian hierarchical model. This assures
that a local cluster assignment changes the posterior probabilities of corresponding
global cluster assignments.
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Figure 16. Deviance information criterion (DIC) as a method for selecting number of
clusters. The plot shows the DIC for a range of numbers of global clusters when the
number of local clusters is set to three. The DIC is minimized for 18 global clusters.

Continuing with the two dataset example, when a sample is assigned to cluster 1 in
the first dataset, it increases the posterior probability of the cluster within the first
dataset, but it also increases the probability of global clusters (1, A), (1, B) and (1, C).
This dependence is defined by the Bayesian hierarchical model, and encodes the
objectives stated in the Introduction.

Model description

In this section we introduce two alternative Bayesian probabilistic models for
context-specific clustering. The first model looks explicitly at all possible combinations
of local clusters which define the global combinatorial clusters. The second formulation
of context-dependent clustering only models a restricted set of combinations of local
clusters, that are data-driven.

Both models are asymptotically equivalent (for details see S1 Appendix). The first
formulation of the model provides an intuition that leads to the second formulation of
the model. Because the second formulation uses only a smaller number of local clusters,
it is more computationally efficient than the first formulation, and it was therefore used
to compute the results presented in the Results section.

We introduce the following notation: xn, n = 1, . . . , N , are data items where xn is
composed of a set of observed values coming from contexts c = 1, . . . , C:

xn =
(
x(1)
n , . . . ,x(C)

n

)
For example, for C = 2, xn may represent a tumour sample from patient n with gene

expression values x
(1)
n and DNA copy number states x

(2)
n .

Basic Dirichlet mixture model The basis of the integrative hierarchical model is
standard Bayesian model-based clustering with Dirichlet prior [15]. This basic model is
used to cluster data within each context c.

This clustering model has been previously applied to gene expression studies, see for
example Medvedovic et al. 2002 [18]. Lock and Dunson 2013 [7] used the same model as
the basis of their integrative BCC model.

K(c) is a fixed parameter for the maximum number of clusters in dataset c and z
(c)
n

is an indicator variable which defines the cluster assignment of sample x
(c)
n ,
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Figure 17. Consistency of results and survival p-values for clusters identified in the
Lung cancer dataset, with a range of numbers of global clusters and 3 local clusters.
(a) Consistency of results with respect to the ARI between different settings of numbers
of global clusters. (b) p-values corresponding to the different numbers of global clusters.
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Figure 18. Deviance information criterion (DIC) for selecting number of clusters in
the Lung cancer dataset. The plot shows the DIC for a range of numbers of global
clusters when the number of local clusters is set to three. The DIC is minimized for 53
global clusters.

z
(c)
n ∈

{
1, . . . ,K(c)

}
. The probability of a sample belonging to a cluster k in context c is

π
(c)
k ,

π
(c)
k = p(z

(c)
i = k)

Values π(c) =
(
π
(c)
1 , . . . , π

(c)

K(c)

)
define the weights of each mixture component and

follow a Dirichlet distribution with concentration parameter α0

π(c) ∼ Dirichlet
( α0

K(c)
, . . . ,

α0

K(c)

)
We define a finite mixture distribution for samples x

(c)
1 , . . . ,x

(c)
N as

p
(
x(c)
n

)
=

K(c)∑
k=1

π
(c)
k p

(
x(c)
n

∣∣∣θ(c)k

)
where p

(
x
(c)
n

∣∣∣θ(c)k

)
defines a probability distribution for sample x

(c)
n under mixture

component k(c), with parameters θ
(c)
k .

The distributions in the mixture model for each context c are summarised as follows:

π(c) ∼ Dirichlet
( α0

K(c)
, . . . ,

α0

K(c)

)
z(c)n ∼ Categorical(π(c))

θ
(c)
k ∼ H(c)

x(c)
n | z(c)n = k ∼ F (c)

(
x(c)
n

∣∣∣θ(c)k

) (1)

where H(c) is some base prior distribution for parameters of each mixture component;

F (c) is a probability distribution for samples given parameters θ
(c)
k . Note that the

parameters θ(c) and data distribution F (c) depend on the context c and therefore can be
modelled differently for different contexts. In general, we can also use different
concentration parameters αc for each context.
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Figure 19. Consistency of results and survival p-values for clusters identified in the
Kidney cancer dataset, with a range of numbers of global clusters and 3 local clusters.
(a) Consistency of results with respect to the ARI between different settings of numbers
of global clusters. (b) p-values corresponding to the different numbers of global clusters.
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Figure 20. Deviance information criterion (DIC) as a method for selecting number of
clusters in the Kidney cancer dataset. The plot shows the DIC for a range of numbers
of global clusters when the number of local clusters is set to three. The DIC is
minimized for 16 global clusters.

First model formulation: fully combinatorial model

Using the basic model presented in the preceding section we can now construct a
composite model for integrative clustering, which we call Context-Dependent Clustering
(CDC). To keep the notation simple, we first present the model for only two contexts,
c ∈ {1, 2}. We start by specifying two mixture distributions as defined in the previous
section, one for each context. Each context has its own mixture weights π(1) and π(2),
with symmetric Dirichlet priors:

π(1) ∼ Dirichlet
( α1

K(1)
, . . . ,

α1

K(1)

)
π(2) ∼ Dirichlet

( α2

K(2)
, . . . ,

α2

K(2)

)
.

These two mixture distributions form the basis of local clustering within each context.
We link the two distributions together using a third mixture distribution, also with a
Dirichlet prior over the mixture weights ρ. This represents the global mixture
distribution, defined over the outer product of π(1) and π(2):

ρ ∼ Dirichlet
(
γ vec

(
π(1) ⊗ π(2)

))
Here the outer product of π(1) and π(2) is

π(1) ⊗ π(2) = π(1)
(
π(2)

)T

=


π
(1)
1 π

(2)
1 π

(1)
1 π

(2)
2 · · · π

(1)
1 π

(2)
K

π
(1)
2 π

(2)
1 π

(1)
2 π

(2)
2 · · · π

(1)
2 π

(2)
K

...
...

. . .
...

π
(1)
K π

(2)
1 π

(1)
K π

(2)
2 · · · π

(1)
K π

(2)
K


(2)

The vec operation takes a matrix and stacks its columns on top of each other to form
one column vector.
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Figure 21. Illustration of the concepts of global and local clusters. The first dataset
contains two clusters 1 and 2, the second dataset contains three clusters, A,B and C.
The combined structure contains six potential global clusters that correspond to
combinations of assignments on the local context level.

We use the outer product matrix in a vectorised form as the basis for the
(non-symmetric) concentration parameters of the Dirichlet distribution over global
mixture weights ρ. Each element of ρ corresponds to a specific pair of local cluster

probabilities π
(1)
i and π

(2)
j . This effectively creates a mixture model over all possible

combinations of cluster assignments on the level of individual contexts. The prior
probability of a data item being simultaneously assigned into cluster k in the first
context and cluster l in the second context corresponds to the element s in the ρ vector
which originated from the row k and column l in the outer product matrix (2):

p
(
z(1)n = k, z(2)n = l

)
= ρs where s = (k, l)

We also define a composite cluster indicator variable z for each sample that
represents a pair of z(c) values, one for each context c:

zn ∼ Categorical(ρ), zn =
(
z(1)n , z(2)n

)
x(c)
n | z(c)n = k ∼ F (c)

(
x(c)n

∣∣∣ θ(c)k

)
, c ∈ {1, 2}.

By fitting this model to a dataset, we obtain both local clusters on the level of the
original datasets (contexts) and the global composite clusters that represent different
combinations of individual local cluster assignments. Local clusters for context c can be
obtained by taking a projection of the z indicator variable onto the context c.

Going back to the HER2 oncogene example in the Introduction, the model explicitly
represents the local clusters with respect to DNA copy number changes and mRNA
expression, while forming two global clusters with respect to the overall behaviour.

The model satisfies the objectives presented in the Introduction. In the posterior,
assignments into a context-specific cluster affect the posterior distribution of π(c), which
in turn affects the probabilities of all global combinatorial clusters through the
hierarchical model. For example if we look at the outer product matrix (2) which is a

part of the prior for global mixture weights ρ, change in the value of π
(1)
k changes values

of the whole k-th row in the matrix.
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Figure 22. Graphical model representation of the fully combinatorial
context-dependent clustering model.

The model also represents different degrees of dependence by allowing any
combination of cluster assignments across contexts. When there is a single common
cluster structure across the two contexts, the occupied clusters will be concentrated
along the diagonal of the probability matrix (2).

For C > 2, the outer product of
{
π(c)

}C
c=1

generalises into a tensor product. Each
element of ρ represents the probability of a C-tuple of cluster assignments, i.e. a
specific combination of cluster assignments in specific contexts. To summarise the
model, we give a general formulation for C contexts.

π(c) | α0 ∼ Dirichlet
( α0

K(c)
, . . . ,

α0

K(c)

)
ρ | γ,

{
π(1), . . . ,π(c)

}
∼ Dirichlet

γ
 ⊗

c=1,...,C

π(c)




zn | ρ ∼ Categorical(ρ), zn =
(
z(1)n , . . . , z(c)n

)
θ
(c)
k ∼ H(c), k = 1, . . . ,K(c)

x(c)
n | z(c)n = k ∼ F (c)

(
x(c)
n

∣∣∣ θ(c)k

)
(3)

Fig. 22 shows the graphical model for the full context-dependent clustering model.
In general, the number of clusters K(c) can be different for each context c. Given

that the number of clusters in each dataset is O(K), the total length of ρ parameter
vector is O

(
KC

)
because the model represents all possible combinations of cluster

assignments. This yields a very large number of potential combinatorial clusters.
However, only a small number of clusters is actually represented in the data and many
of the clusters remain empty as shown by Rousseau et al. [19]. Also, by using small
values for the concentration parameter γ < 1, we encourage the data to be concentrated
in only a small number of global mixture components.

This model explicitly represents all the possible combinations of cluster assignments,
which may not be desirable in real-world applications, where the model may use some of
the structure to capture technical noise present in the data. Also, although the number
of clusters that are occupied is smaller in the posterior, the model size grows
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exponentially with the number of contexts. In the next section, we look at an
alternative model that circumvents this limitation.

Second model formulation: decoupled combinatorial model

To avoid the large number of potential cluster combinations in the previous model, we
decouple the number of context-specific clusters K(c), c = 1, . . . , C, and the number of
global clusters. First a mixture distribution over S global clusters is defined similarly to
the finite Dirichlet mixture model [15].

ρ | γ0 ∼ Dirichlet
(γ0
S
, . . . ,

γ0
S

)
zn | ρ ∼ Categorical (ρ)

where ρ are the mixture weights and zn are standard cluster assignment indicator
variables. We combine context-specific clusters with the global clusters using the
following method: we specify context mixture distributions and a set of assignment

variables k
(c)
s that associate global cluster s = 1, . . . , S with context-specific clusters:

π(c) | α0 ∼ Dirichlet
( α0

K(c)
, . . . ,

α0

K(c)

)
k(c)s | π(c) ∼ Categorical

(
π(c)

) (4)

In this formulation, k
(c)
s ∈

{
1, . . . ,K(c)

}
assigns the s-th global cluster to a specific

local cluster in context c. One could say that (k
(c)
s )Cs=1 are the coordinates of the global

cluster in terms of the local cluster identifiers. The variables zn then assign samples to
global clusters. This way, data are represented by a mixture of context-specific cluster
combinations. In the previous model (3) the mapping of global clusters to local clusters
was implicit, because each combination of context clusters mapped to a unique global
cluster. In this model, the mapping is probabilistic and forms a part of the model.

Note that compared to the previous model, we also have to specify the number of
potential global clusters S which is no longer determined by the number of clusters
within each context. This circumvents the problem of large dimensionality of the space
of potential cluster combinations across contexts.

To summarise, the complete model can be written as

ρ | γ0 ∼ Dirichlet
(γ0
S
, . . . ,

γ0
S

)
zn | ρ ∼ Categorical (ρ)

π(c) | α0 ∼ Dirichlet
( α0

K(c)
, . . . ,

α0

K(c)

)
k(c)s | π(c) ∼ Categorical

(
π(c)

)
θ
(c)
l |H(c) ∼ H(c)

x(c)
n | zn,

(
k(c)s

)S
s=1

, (θl)
K(c)

l=1 ∼ F (c)
(
x(c)
n | θ

(c)
kzn

)
(5)

Fig. 23 shows the graphical representation of this model.

Inference in the model and implementation

We derived Gibbs sampling inference algorithms for both formulations of the
context-dependent clustering model, details and the inference equations can be found
in S1 Appendix.
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γ0 

ρ  

π(c) 

α0

c = 1,  , C

K
(c)

θk
(c)

H(c)

xn
(c) zn

n = 1,  , N

ks
(c)

S

Figure 23. Graphical model representation of the decoupled context-dependent
integrative clustering model.

For the fully combinatorial version of the model, computational complexity of each

iteration of the Gibbs sampling algorithm is O
(
NC

∏C
c=1K

(c)
)

, additionally

multiplied by the complexity of evaluating the data likelihood F (c) for each context. We
also derived approximate variational inference updates for this version of the model,
which achieves faster convergence than Gibbs sampling. Details on variational inference
in the model are also available in S1 Appendix.

For the decoupled formulation of the model, the computational complexity of each

Gibbs sampling iteration is O
(
NCS + S

∑C
c=1K

(c)
)

, again additionally increased by

the complexity of evaluating data likelihood F (c). Compared to the fully combinatorial
model, complexity of this algorithm is lower for S <

∏C
c=1K

(c) because of the
decoupled representation.

Implementation of the decoupled version of the context-dependent clustering model,
which was used to produce the results presented in the Results section, is available as
the R package clusternomics from CRAN.

Discussion

To summarize, in this paper we proposed a clustering algorithm for integrative analysis
of heterogeneous datasets. We described the probabilistic model behind the algorithm,
which is closely related to the hierarchical Dirichlet process [20]. The proposed
context-dependent clustering algorithm models both the local structure within each
dataset, and the global structure which arises from combinations of dataset-specific
clusters. This form of model enables modelling of heterogeneous related datasets that
do not share the same structure.

We described two representations of the model which are equivalent in their limit.
The first full model makes the assumptions behind the model explicit and represents all
possible combinations of context-specific cluster assignments. Given the number of
clusters in each context K(c), the model is a mixture model over all possible
combinations of cluster assignments in individual contexts.

The second type of representation is the decoupled CDC model which allows us to
specify the number of global clusters S that are identified in the data separately from
the number of context-dependent clusters K(c). For a large number of global clusters S
the model is equivalent to the full model. However, the number of global clusters allows
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us to additionally tune the resulting cluster structure. For smaller numbers of clusters S,
the global and local cluster structures are forced to be more similar and the algorithm
enforces a common cluster structure across all datasets. For larger numbers of global
clusters, the model has more flexibility to model the local structure within each dataset.

We evaluated the proposed model both on simulated data and on a set of real-world
cancer datasets. The simulated data revealed that other algorithms for integrative
clustering do not model situations where there is a varying degree of dependence of
cluster structures across multiple datasets.

We also evaluated the proposed context-dependent clustering model on the breast
cancer dataset which includes four different contexts, and additionally on two datasets
studying lung and kidney cancer. The model successfully identified clinically meaningful
clusters as measured by the survival probabilities for each global cluster. We evaluated
the decoupled clustering model over a number of possible global clusters. Generally, the
best clustering results are obtained when the cluster structure stabilises as measured by
the ARI. Senbabaoglu et al. [13] note that in real-world datasets there may be many
different numbers of clusters that are equally highly plausible. The comparison of
clustering results based on their agreement identifies the model sizes that lead to similar
sets of cluster assignments. Each group then corresponds to an alternative
interpretation of the data.

Overall, the model uses different assumptions about the cluster structure than other
currently used integrative clustering algorithms. By dropping the assumption of a single
common cluster structure, the model identifies both the local structure of individual
datasets, and a global structure that combines the local clusters.

Supporting Information

S1 Appendix

Model and implementation details. Details on the model, implementation,
algorithm setting and MCMC convergence.
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