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Abstract 25 

Background: Metagenomics allows unprecedented access to uncultured environmental 26 

microorganisms. The analysis of metagenomic sequences facilitates gene prediction and annotation, 27 

and enables the assembly of draft genomes, including uncultured members of a community. 28 

However, while several platforms have been developed for this critical step, there is currently no 29 

clear framework for the assembly of metagenomic sequence data. 30 

Results: To assist with selection of an appropriate metagenome assembler we evaluated the 31 

capabilities of nine prominent assembly tools on nine publicly-available environmental 32 

metagenomes, as well as three simulated datasets. Overall, we found that SPAdes provided the 33 

largest contigs and highest N50 values across 6 of the 9 environmental datasets, followed by 34 

MEGAHIT and metaSPAdes. MEGAHIT emerged as a computationally inexpensive alternative to 35 

SPAdes, assembling the most complex dataset using less than 500 GB of RAM and within 10 hours. 36 

Conclusions: We found that assembler choice ultimately depends on the scientific question, the 37 

available resources and the bioinformatic competence of the researcher. We provide a concise 38 

workflow for the selection of the best assembly tool.  39 

Keywords: metagenome assembly; microbial ecology; Ilumina HiSeq; assembler; bioinformatics 40 

 41 

Background 42 

The ‘science’ of metagenomics has greatly accelerated the study of uncultured microorganisms in 43 

their natural environments, providing unparalleled insights into microbial community composition and 44 

putative functionality [1]. Even though shotgun metagenomic sequencing provides comprehensive 45 

access to microbial genomic material, many of the encoded functional genes are substantially longer 46 

(~1000 bp [2]) than the length of reads provided by the sequencing platforms [3] most commonly 47 

used for shotgun metagenomic studies (Illumina HiSeq 3000, 2 x 150 bp; http://www.illumina.com/). 48 

Thus, raw sequence data alone are typically not sufficient for an in-depth analysis of a communities 49 

functional gene repertoire. Moreover, unassembled metagenomic sequence data are fragmented, 50 

noisy, error prone and contain uneven sequencing depths [4]. 51 

To assist in the accurate and thorough analysis of metagenomes, sequence data can be assembled 52 

into larger contiguous segments (contigs) [5]. To this end, numerous metagenome assembly tools 53 

(assemblers) have been developed, the vast majority of which assemble sequences in de novo 54 

fashion. In short, metagenomic sequences are split into predefined segments (k-mers), which are 55 

overlapped into a network, and paths are traversed iteratively to create longer contigs [6]. De novo 56 

assembly is advantageous as it allows for more confident gene prediction than is attainable from 57 

unassembled data [7]. Furthermore, de novo assembled metagenomes facilitate the discovery and 58 

reconstruction of novel genomes and/or genomic elements [8].  59 
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Improvements to assembly quality have greatly expanded the scope of questions that can be 60 

answered using shotgun metagenome sequencing including, for example: determination of microbial 61 

community composition and functional capacity [9], microbial population properties [10], 62 

comparisons of microbial communities from various environments [11], extraction of full genomes 63 

from metagenomes [5] and genomics-informed microorganism isolation [12]. Each of these 64 

questions require researchers to emphasise specific features of the metagenome. Genome-centric 65 

questions [5, 12] require long contigs/scaffolds, while gene-centric questions [9-11] require high 66 

confidence contigs and the assembly of a large proportion of the metagenomic dataset.  67 

Considering the wealth of available assemblers, it is particularly important that researchers 68 

understand assembler performance, especially for investigators who lack appropriate bioinformatic 69 

expertise. Firstly, an assembler needs to produce a high proportion of long contigs (>1000 bp). Long 70 

contigs allow for more accurate interpretation of full genes within a genomic context and facilitate 71 

the reconstruction of single genomes. A good assembler should also utilize most of the raw 72 

sequence data to generate the largest assembly span possible. Furthermore, an assembler needs 73 

an intuitive and user-friendly interface to enable assembly with minimal effort and rapid processing 74 

of the metagenomic data. Finally, tools should be able to assemble metagenomes using the least 75 

computational resources possible. Metagenomic assemblers are consistently being developed, this 76 

requires regular benchmarking, as with other bioinformatic tools [13]. 77 

Here we benchmark eight prominent open-source metagenome assemblers (Velvet v1.2.10 [14], 78 

MetaVelvet v1.2.02 [15], SPAdes v3.9.0 [16], metaSPAdes v3.9.0 [17], Ray Meta v2.3.1 [18], IDBA-79 

UD v1.1.1 [19], MEGAHIT v1.0.6 [20] and Omega v1.4 as well as the commercially-available CLC 80 

Genomics Workbench v8.5.1 (QIAGEN Bioinformatics; 81 

https://www.qiagenbioinformatics.com/products/clc-genomics-workbench/; Supplementary Table 1). 82 

We compare each assemblers performance on nine complex metagenomes from three distinct 83 

environments (i.e., three publicly available metagenomes each from soil, aquatic and human gut 84 

niches) as well as three simulated datasets. While most of the assemblers assessed here have been 85 

tested and reviewed extensively [21-25], in this article we provide an elegant reference framework 86 

which both experienced and inexperienced researchers can use to determine which assembler is 87 

best aligned with their project scope, resources and computational background.  88 

 89 

Methods 90 

Metagenomic datasets 91 

In this study we contrast the assemblies of nine publicly available metagenomic datasets uploaded 92 

to the MG-RAST server (http://metagenomics.anl.gov/), or the sequence read archive (SRA) 93 

(https://www.ncbi.nlm.nih.gov/sra). The metagenomes are from three distinct environments, namely; 94 

soil (Iowa [8], Oklahoma [26], and Permafrost [27]); aquatic (Kolkata Lake (unpublished data), Arctic 95 
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Frost Flower [28] and Tara Ocean [29]) and human gut niches (Scandinavian Gut [30], European 96 

Gut [31] and Infant Gut [32]; Table 1). Each dataset was unique in its complexity and sequencing 97 

was performed at different depths. All metagenomes were sequenced using Illumina short read 98 

technology producing paired-end reads ranging from 100 to 151 bp in length. Most datasets were 99 

sequenced on the Illumina HiSeq 2000 platform, except for the Permafrost metagenome which was 100 

sequenced using an Illumina Genome Analyzer II, and the Kolkata Lake metagenome which 101 

comprised sequences generated by an Illumina MiSeq. This allowed for comparisons of each 102 

assemblers’ performance under different coverage and taxonomic diversity. We opted to exclusively 103 

evaluate metagenomes sequenced using Illumina platforms due to their popularity and applicability 104 

to metagenomic datasets [3]. 105 

Prior to assembling the short read metagenomes, we used Prinseq-lite v0.20.4 [33] for read quality 106 

control. We removed all reads with mean quality scores of less than 20 [-min_qual_mean 20], and 107 

removed all sequences contains any ambiguous bases (N) [-ns_max_n 0]. 108 

After quality filtering, we assessed the level of coverage of each metagenome using Nonpareil, a 109 

statistical program that uses read redundancy to estimate sequence coverage [34].  110 

Evaluation of the metagenome assemblers 111 

Most assemblies were performed on a local server (48 Intel® Xeon® CPU E5-2680 v3 @ 2.50 GHz 112 

processors, 504 GB physical memory, 15 TB disk space) using 8 threads. However, SPAdes, 113 

metaSPAdes and IDBA-UD required more memory, and assembly was performed on the Lengau 114 

cluster of the Centre for High Performance Computing (CHPC) for the Iowa and Oklahoma soil 115 

datasets. SPAdes, metaSPAdes, IDBA-UD and MEGAHIT iteratively analyse k-mer lengths to find 116 

the optimal value, and these assemblers were allowed to optimise their own k-mer lengths. The other 117 

assemblers used k-mer values of 55 (Velvet: 51; MetaVelvet: 51; SPAdes: 33, 55, 71; metaSPAdes: 118 

33, 55, 71; Ray Meta: 55; IDBA-UD: 20, 30, 40, 50, 60, 70, 71; MEGAHIT: 21, 41, 61, 81, 99; CLC 119 

Genomics Workbench: 55). In contrast to the above de Bruijn graph assemblers, Omega uses 120 

overlap-layout-consensus graphs to generate assemblies. Read pairs are first aligned, followed by 121 

read error correction, hash-table construction, overlap graph construction before generating contigs. 122 

We selected a minimum overlap length of 60. To control for k-mer length bias, we compared each 123 

assembler’s performance at k-mer lengths between 50 and 61. Quality of the generated assemblies 124 

were assessed using MetaQUAST. This tool calculates basic assembly statistics, including number 125 

of contigs above various lengths (500 bp, 1 kbp, 5 kbp and 50 kbp), assembly span above various 126 

lengths (500 bp, 1 kbp, 5 kbp and 50 kbp), N50 lengths and L50 lengths. To assess the accuracy 127 

and specificity of each assembler, the included synthetic metagenomes were assessed against their 128 

respective constitutive reference genomes in MetaQUAST. 129 

To assess the volume of sequencing data that was used for each assembly, we mapped back the 130 

short fragment sequencing reads to the constructed metagenomes. This was performed using 131 
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Bowtie 2 [35], using the sensitive setting. Time and memory (RAM) taken to complete assembly 132 

were calculated using an in-house bash script. 133 

All tables and figures were drawn in R v3.4.0 or Microsoft Excel. Figure 1 was generated using the 134 

freely-available tool Nonpareil. Nonpareil estimates the percentage sequence coverage of 135 

metagenomes (as a fraction of 1) using either the forward or reverse sequence reads. These values 136 

are then plotted using a scatter plot function. Figure 2 was generated using the heatmaply package 137 

[36], and clustered using the hclust hierarchical clustering package in R. Values were calculated as 138 

a mean over- or under-representation relative to the average value obtained for all the assemblers 139 

assessed here. This provided ratios of over- or under-performance relative to the average assembly 140 

statistic (-1 to +4). Figure 3 was generated using log-transformed data for each assembly statistic of 141 

relevance to ensure concise representation of the data.  142 

Data availability is provided in Supplementary Tables 1 and 2. A link to each to assembler 143 

benchmarked is provided, as are the accession numbers for all twelve metagenomes assessed. 144 

 145 

Results 146 

Metagenome data and dataset complexity 147 

Using Nonpareil, we confirmed that the soil metagenomes were more complex (less redundant) than 148 

the aquatic and human guts metagenomes, which were the least complex (highly redundant; Figure 149 

1) [37-39]. All the human gut metagenomes came close to sequencing saturation (with at least 75% 150 

of the diversity sequenced; Figure 1). The infant gut metagenome was sequenced to above 90% 151 

estimated average coverage (~94%). However, all the sequencing depths reached were insufficient 152 

to describe the complete spectrum of microbial members in the samples assessed. For example, 153 

the largest metagenome assessed here, the Iowa soil metagenome, only described 48.8% of the 154 

total microbial diversity despite the utilization of 47 Gbp of sequence data.  155 

Estimates of the number of microbial species per gram of soil still vary substantially, with values 156 

ranging from 2000 [41] to more than 830000 [37]. These estimates do not include eukaryotic 157 

microbes, which generally possess much larger genomes and are much more difficult to fully 158 

sequence [42]. We note the published predictions that 2-5 Gbp of sequence data would fully capture 159 

an entire natural microbial community [40]. Based on our analysis, we propose that the sequencing 160 

depth required to provide comprehensive coverage of soil metagenomes should be increased by an 161 

order of magnitude, to ~100 Gbp. This is a function of the extreme taxonomic heterogeneity of soil 162 

microbial communities, and highlights the challenge of assembling low coverage metagenomes. 163 

Strategy and approaches of the current research 164 
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We defined five measures to assess the performance of each metagenomic assembler tested; (1) 165 

ease of use and assembler attributes, (2) quality of assemblies generated and computational 166 

requirements, (3) influence of sequencing depth and coverage, (4) suitability to different 167 

environments and (5) their performance on metagenomes of known composition.  168 

1. Ease of use and assembler attributes 169 

Many researchers entering the field of metagenomics are inexperienced in the use of intricate 170 

bioinformatic tools, and may lack extensive computational resources. To assess the ease of use for 171 

inexperienced computational biologists we evaluated the availability of a web application or graphical 172 

user interface (GUI), ease of installation, availability and completeness of manuals, Message 173 

Passing Interface (MPI) compatibility and programming language.  174 

Eight of the assemblers tested here use command-line interfaces (CLI) and are open-source 175 

freeware (Velvet, MetaVelvet, SPAdes, metaSPAdes, Ray Meta, IDBA-UD, MEGAHIT and Omega). 176 

Only the commercial software CLC Genomics Workbench (Qiagen) implements a GUI 177 

(Supplementary Table 1). CLC is easily installed on most Linux, Windows or MacOS computers, 178 

whereas all other assemblers are limited to Unix-based operating systems. The GUI is intuitive, and 179 

users can assemble simply by using a point-and-click interface. CLC provides substantial support 180 

(via manuals and web based tutorials) and was the most user-friendly assembler tested here. 181 

Unix-based assemblers are inherently more difficult to use and must be installed or compiled from 182 

source code using the CLI. All assemblers that are CLI-based can be downloaded from GitHub, while 183 

some tools (SPAdes, metaSPAdes, Ray Meta, Velvet,  MetaVelvet and Omega) provide download 184 

links from their respective parent websites. All tools, barring SPAdes, metaSPAdes and IDBA-UD, 185 

provide MPI compatibility, allowing parallelization which reduces computational time. All tools 186 

assessed here provide manuals or ‘readme’ files either on their websites or GitHub repositories, 187 

although others, such as IDBA-UD, MetaVelvet and Omega, are not comprehensive and lack 188 

information on installation or implementation. Tools with more complete manuals (MEGAHIT and 189 

Ray Meta) feature extensive wiki pages and frequently asked questions. The number of citations, 190 

websites, programming languages and MPI compatibility of all the tools assessed are provided in 191 

Supplementary Table 1. 192 

2. Benchmarking quality of assemblies generated and computational requirements 193 

Evaluating metagenome assembly quality is challenging without the use of known reference 194 

genomes for diverse microbial communities. We compared assembly quality using many standard 195 

metrics, including the total number of contigs longer than 500 bp, 1 kbp (referred to as long contigs 196 

throughout) and 50 kbp (referred to as ultra-long contigs throughout), maximum contig length, N50 197 

length of the contigs (length of the median contig, representing the length of the smallest contig at 198 
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which half of the assembly is represented), mapping rate and assembly span (total length assembled 199 

using contigs > 500 bp). We used MetaQUAST to evaluate these assembly quality statistics [22]. 200 

We selected the Tara Ocean metagenome [29] for a comparison of each assembler at k-mer lengths 201 

between 50 and 61. We selected this range as the assemblers which automatically optimize k-mer 202 

values generally set sizes within this range. We set the other non-optimizing assemblers to 55. 203 

Compared to the other natural metagenomes, the Tara Ocean metagenomic dataset is of 204 

intermediate complexity and sequencing depth (Figure 1, Supplementary Table 2). This 205 

metagenome was sequenced on an Illumina HiSeq instrument, which is currently the most widely 206 

used shotgun metagenome sequencing technology [3]. This 5.4 Gbp metagenome comprised more 207 

than 27 million high-quality read pairs with a mean read pair length of 200.3 bp (Supplementary 208 

Table 2).  209 

Omega (2691), SPAdes (1415), Ray Meta (1329), IDBA-UD (1166) and metaSPAdes (1124) 210 

provided assemblies with high N50 values (> 1000 bp), while the assemblies generated using CLC, 211 

MEGAHIT, Velvet and MetaVelvet produced N50 statistics below 1000 bp (Figure 2; Table 1). 212 

Overall, the assembly spans varied considerably with SPAdes (275.9 Mbp), MEGAHIT (210.6 Mbp), 213 

metaSPAdes (202.8 Mbp) and IDBA-UD (179.7 Mbp) assembling the largest metagenomes. 214 

Assembly span was correlated with the number of reads mapping back to the assemblies (R2 = 0.83; 215 

Supplementary Figure 3), with SPAdes and metaSPAdes having the highest values (Table 1). Both 216 

IDBA-UD and MEGAHIT mapped back more than 50% of the sequence reads to the assemblies. 217 

SPAdes also produced the most contigs over 1 kbp (70711), while MEGAHIT, IDBA-UD and 218 

metaSPAdes created fewer contigs in that size range, but all were comparable to each other 219 

(between 48640 and 56243 contigs). The largest contig was assembled by SPAdes (197 kbp), 220 

followed by metaSPAdes (142 kbp), Omega (102 kbp) and IDBA-UD (101 kbp). These three 221 

assemblers also produced the most ‘ultra-long’ contigs (> 50 kbp); with 54, 37 and 2 contigs, 222 

respectively.  223 

The computational requirements of an assembly tool should be a major consideration when selecting 224 

an assembler. We evaluated all assemblers in relation to the time taken to assemble the Tara Ocean 225 

metagenome (Supplementary Figure 2; Table 1) using the same number of threads (n=8; 226 

Supplementary Figure 2A). Velvet, MetaVelvet and CLC assembled the metagenome in less than 227 

an hour, while MEGAHIT and Ray Meta were substantially slower, assembling over multiple hours. 228 

IDBA-UD, SPAdes and metaSPAdes required considerably more time to complete assembly, taking 229 

approximately 24 hours, or more. Omega required the most time to assemble the metagenome, 230 

taking approximately 48 hours. In terms of memory requirements, SPAdes was the most ‘memory 231 

expensive’ (157 GB of RAM), followed by Velvet and MetaVelvet (both 109 GB), which is 232 

substantially more RAM than is available on an average desktop computer (16 GB). By contrast, 233 

MEGAHIT (11 GB) and CLC (16 GB) were the most memory efficient assemblers (Figure 2 and 234 

Supplementary Figure 3; Table 1).  235 
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Overall, SPAdes, metaSPAdes, IDBA-UD and MEGAHIT displayed the best performances in 236 

assembling this metagenome of intermediate size and complexity, as they produced very high N50 237 

values, a high proportion of long contigs and the widest assembly spans. While SPAdes was the 238 

best assembler overall, MEGAHIT was the most memory efficient, as it produced an assembly 239 

comparable to the best performing assemblers while using only a fraction of computational 240 

resources. 241 

3. Benchmarking influence of sequencing depth and coverage 242 

Temperate soil communities are generally more diverse than extreme counterparts (e.g., permafrost; 243 

Supplementary Table 3, Figure 1) [11]. Subsequently, high levels of diversity within these biomes 244 

require much deeper sequencing effort. Differences in microorganism abundances and strain level 245 

heterogeneity introduce complications during metagenome assembly, resulting in increased memory 246 

requirements and longer computational run-times, which may challenge assemblers. The two 247 

temperate soil metagenomes assessed here have vastly different sequencing depths, thus providing 248 

us with the scope to assess the influence of sequencing depth on the performance of each 249 

assembler. The Oklahoma soil metagenome [26] had a low sequencing depth (9 Gbp) and estimated 250 

coverage (11%), c.f. the Iowa soil metagenome [8], which had a very high sequencing depth (47 251 

Gbp) and 49% estimated coverage (Figure 1, Supplementary Table 2). We predicted that deeper 252 

sequencing effort would be correlated with an increase in metagenome coverage [34].  253 

All assemblers successfully assembled the Oklahoma metagenome, although SPAdes required 254 

considerably more memory (up to 1 TB RAM, Supplementary Table 3). Nevertheless, SPAdes 255 

produced the best assembly statistics for most categories (9548 long contigs and an assembly span 256 

of 54.3 Mbp; Supplementary Table 3; Figure 3). IDBA-UD and MEGAHIT used less than 500 GB of 257 

RAM and were comparable in performance (3828 and 3416 long contigs, and assembly spans of 258 

17.2 Mbp and 20.2 Mbp, respectively; Supplementary Table 3; Figure 3). It is noteworthy that while 259 

metaSPAdes was one of the best performing assemblers for the Tara Ocean metagenome (Figure 260 

2), it performed poorly here (Supplementary Table 3; Figure 3), suggesting that metaSPAdes is ill-261 

suited to assembling low coverage metagenomes.  262 

The massive Iowa soil metagenome could not be assembled by either SPAdes or IDBA-UD using 263 

our available computing resources (1 TB of RAM). This is in agreement with the methodology 264 

described by the authors who generated this dataset, who digitally normalized and partitioned the 265 

Iowa metagenome to allow for assembly using Velvet [8]. Remarkably, MEGAHIT and CLC 266 

assembled the Iowa metagenome using less than 500 GB of RAM. MEGAHIT performed best across 267 

most categories tested (assembly span of 1036.5 Mbp, largest contig of 104841 bp, and 277623 268 

long contigs; Figure 3), while CLC produced the third-best assembly (assembly span of 432.7 Mbp, 269 

largest contig of 70207 and 114196 long contigs), using less than 64GB of memory. MetaSPAdes 270 

performed comparably to MEGAHIT but had much higher computational resource requirements to 271 
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assembly the Iowa soil metagenome, using up to 1TB of RAM (assembly span of 873.8 Mbp, largest 272 

contig of 188499 bp, and 225046 long contigs). 273 

Overall, we found that sequencing depth greatly influenced the performance of the assemblers, 274 

although the most memory-efficient tools, MEGAHIT and CLC, performed well irrespective of 275 

sequencing coverage. SPAdes and IDBA-UD produced good assemblies for the Oklahoma soil 276 

metagenome, but were extremely expensive in terms of memory and failed to assemble the Iowa 277 

soil metagenome. We found that metaSPAdes produced a better assembly for the Iowa soil 278 

metagenome than the Oklahoma dataset. MetaSPAdes performed optimally for the assembly of the 279 

high-coverage metagenome, but was less efficient in the assembly of the low-coverage 280 

metagenome. 281 

4. Benchmarking suitability to various environments 282 

Environmental samples are widely dissimilar in microbial community complexity and have distinct 283 

taxonomic compositions. In this study, we assembled metagenomes from three environmental 284 

biomes of different phylotypic complexities. Overall, SPAdes, MEGAHIT, IDBA-UD and metaSPAdes 285 

assembled most of the metagenomes well, according to the parameters we evaluated 286 

(Supplementary Tables 3-5). SPAdes consistently provided the largest contigs and the widest 287 

assembly spans. MEGAHIT demanded far fewer computational resources, and yet produced similar 288 

assemblies to metaSPAdes and IDBA-UD. CLC provided assemblies of moderate to high quality, 289 

was the easiest to use and performed particularly well on large metagenomes. Together, these 290 

results indicate that no single assembler performs best across all sequencing platforms and 291 

datasets. 292 

5. Benchmarking on synthetic metagenomes 293 

As previously indicated, assessing metagenome assembler performance is complicated due to the 294 

unknown composition of environmental microbial communities. To overcome this challenge, we 295 

included three synthetic metagenomes of known composition to assess the error rates (such as 296 

number of indels, misassemblies, and ambiguous bases) generated by each assembler. These three 297 

metagenomes represented three discreet complexities (low, medium and high; Supplementary 298 

Figure 1), in order to challenge the assemblers with the unique properties of each dataset.  299 

Our analysis show that more complex metagenomes led to higher error rates in the resultant 300 

assemblies (Figure 4). Notably, SPAdes produced the most misassemblies (643, 4928 and 77264 301 

for the assemblies of low, medium and high complexity synthetic metagenomes, respectively) and 302 

the highest unaligned lengths (46 kbp, 891 kbp and 19 Mbp, respectively). IDBA-UD produced a 303 

high number of misassemblies while Omega consistently produced the most mismatches in all 304 

synthetic datasets (more than 1500 mismatches per 100 kbp for all synthetic metagenomes). CLC 305 

and Ray Meta consistently produced more than 100 ambiguous bases (N’s) per 100 kbp in each of 306 
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the generated synthetic assemblies. Finally, CLC also incorporated the most indels per 100 kbp in 307 

all complexity classes (more than double the number of indels produced by any other assembler).  308 

 309 

How to select a metagenome assembler 310 

Bioinformatics projects can be limited by memory (RAM) requirements. SPAdes, metaSPAdes, 311 

IDBA-UD, Velvet and MetaVelvet all have large memory requirements during the assembly of 312 

massive datasets. MEGAHIT, Omega and CLC are extremely memory efficient, as they required 313 

less than 500 GB of RAM to assemble the massive Iowa soil metagenome. MEGAHIT, for example, 314 

generates succinct de Bruijn graphs to achieve efficient memory usage [20]. 315 

Our results indicate that although many assemblers perform comparably, their applicability is defined 316 

by the research question at hand. SPAdes, for example, generated good assemblies with the most 317 

long and ultra-long contigs for most datasets. These are ideal characteristics for genome-centric 318 

studies, which require the binning of draft genomes from community sequence data [43]. By contrast, 319 

metaSPAdes considers read coverage during assembly, making it more applicable for microbial 320 

community profiling [17]. While SPAdes and metaSPAdes produced the best assemblies in general, 321 

MEGAHIT performed comparably and emerged as a rapid and memory efficient alternative 322 

assembler. 323 

However, it should be noted that SPAdes and IDBA-UD generate high numbers of misassemblies 324 

and contigs that do not align to the reference genomes. Other assemblers such as Omega, CLC and 325 

Ray Meta each have unique error profiles, which should be considered in light of the research 326 

questions asked.  For example, when assessing strain level genomic variations (SNP’s), assemblers 327 

that generate high numbers of indels and mismatches should be avoided. In addition, while SPAdes 328 

generates many mismatches, if the aim is to extract single genomes from a metagenome, manual 329 

curation of the newly re-constructed draft genomes will identify and correct such misassemblies.  330 

In conclusion, we argue that when selecting an assembler, the primary consideration should be the 331 

research question. Selecting an appropriate assembler is essential to make full use of metagenomic 332 

sequence dataset. The primary objectives of the project, whether gene- or genome-centric, for 333 

example, should dictate the choice of assembler. We suggest that a secondary consideration should 334 

be the computational resources available to the researcher. Some assemblers are very memory 335 

efficient, while others sacrifice computational resources for improved assembly quality. Finally, as 336 

most assemblers use a CLI (and are more flexible than those constrained by a GUI), the GUI-based 337 

CLC platform is an excellent alternative if bioinformatic skill level is a consideration. 338 

Other analyses 339 
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In additional analyses (Figure 3), we compared the performance of each assembler on a low diversity 340 

soil metagenome (Supplementary Table 3), other aquatic metagenomes (Supplementary Table 4) 341 

and human gut microbiomes (Supplementary Table 5).  342 

 343 

Discussion 344 

Over the last decade, high throughput sequencing has revolutionised the field of microbial ecology 345 

[44]. Amplicon-based technologies have allowed for near-complete classification of whole microbial 346 

communities, including populations of bacteria, archaea and fungi [45]. The emergence of two key 347 

platforms for analysing amplicon sequencing data, mothur [46] and QIIME [47], has allowed for 348 

methodological standards to be set, which enables robust comparisons between studies [48]. 349 

While whole community shotgun metagenome sequencing has facilitated the in-depth description of 350 

microbial communities from diverse environments, such as the human gut [49] and acid mine 351 

drainage systems [50], no standards exist with regard to assembly platforms or their use. While 352 

numerous reviews on strategies to analyse metagenomic data have been published [51], there are 353 

currently no standard assembly procedures implemented to enable thorough comparative analyses 354 

between projects. Numerous pipelines for processing metagenomic sequence data are available. 355 

These typically integrate existing tools into a single workflow for rapid, standardized analysis (e.g., 356 

MG-RAST, MetAMOS, and IMG/M) [52-54]. However, few of these pipelines are as widely used as 357 

mothur or QIIME in barcoding studies. This is partly because integrated metagenome analysis tools, 358 

such as MetAMOS, do not achieve the flexibility afforded by using each tool individually (e.g., using 359 

separate tools for assembly, binning and taxonomic assignment).  360 

Consequently, investigators can analyse unassembled reads [11], optimize their assembly 361 

parameters or even develop their own tools to assemble their data prior to further analysis [55]. 362 

However, within the scope of metagenome assembly, essential details are often omitted when 363 

describing methods [56]. This leads to methodological discrepancies, and severely limits the 364 

possibility of making routine, robust comparisons between studies. This issue was recently 365 

highlighted by J Vollmers, S Wiegand and A-K Kaster [21] and WW Greenwald, N Klitgord, V 366 

Seguritan, S Yooseph, JC Venter, C Garner, KE Nelson and W Li [57] who reported that the 367 

taxonomic diversity patterns of microbial communities differed substantially, depending on the 368 

assembler used. While some recent studies have applied single cell sequencing [58] or chromosome 369 

capture [59] approaches to enhance metagenome assembly, these techniques remain inaccessible 370 

to most researchers. We provide an evaluation of commonly-used assemblers on standard shotgun 371 

sequenced metagenomes. 372 

In our comparative analyses of the most popular assembly platforms, SPAdes produced the most 373 

long contigs, independent of the metagenome origin. However, this assembler introduced a large 374 

number of misassemblies in high complexity datasets. SPAdes is ideal for genome-centric research 375 
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questions that require long and ultra-long contigs, such as those that aim to bin and reconstruct 376 

single genomes from shotgun metagenomes [16]. By contrast, MEGAHIT and metaSPAdes provided 377 

very large assembly spans and consider sequence coverage during assembly, reducing the number 378 

of misassemblies generated. IDBA-UD also produced large assembly spans and a high number of 379 

contigs, but at the cost of generating misassemblies for complex datasets. These tools are thus more 380 

appropriate for research questions related to taxonomic profiling of natural microbial communities, 381 

for functionally annotating microbial communities, for the analysis of population scale dynamics or 382 

for comparison of microbial communities across biomes [17, 20]. By analysing metagenomes of 383 

known composition and complexity, we found that each assembler tested here generated a unique 384 

error profile (e.g., IDBA-UD produces many misassemblies, CLC produces many indels and Omega 385 

produces many mismatches). As mentioned above, this excluded some assemblers from specific 386 

research objectives (e.g., using CLC for variant calling). This reiterates the fact that the research 387 

question should be the primary consideration when selecting the appropriate assembler, and that 388 

these assembler-specific drawbacks should also be considered.  389 

Overall, MEGAHIT produced some of the best assemblies throughout this study, while only using a 390 

fraction of the computational resources required by other assemblers. We strongly recommend 391 

MEGAHIT for researchers who do not have access to large computational resources. Finally, the 392 

CLC assembler is ideal for researchers who lack a depth of bioinformatic knowledge, or who prefer 393 

to use a GUI and are willing to invest in software which is easier to use. CLC is easy to install, has 394 

an intuitive interface and provides a compromise in which assembly quality may be sacrificed for 395 

ease of use. Strikingly, the most widely cited assembler assessed here (Velvet cited 5974 times; 396 

Supplementary Table 1) did not perform well across most metagenomes, while scarcely cited 397 

platforms (MEGAHIT, metaSPAdes cited 114 and 18 times, respectively; Supplementary Table 1) 398 

performed well across most statistics assessed here.  399 

 400 

Conclusions 401 

No assembler tested here consistently provided superior assemblies across the different 402 

metagenomes. Consequently, we propose a viable methodology for the selection of an appropriate 403 

assembler, dictated by (1) the scientific research question posed, then by (2) the computational 404 

resources available, and (3) the bioinformatics skill level of the researcher (Figure 5). In light of the 405 

above proposed framework, we urge researchers to carefully consider the assembler used (as well 406 

as the entire bioinformatics pipeline followed) while specifically bearing in mind their research 407 

question and what feature of the dataset they want accentuated. 408 

 409 
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contigs - contiguous segments 411 

SRA - sequence read archive 412 

MG-RAST - Metagenomics Rapid Annotation Server  413 

CHPC - Centre for High Performance Computing  414 

RAM  random access memory  415 

GUI - graphical user interface 416 

MPI - Message Passing Interface  417 

CLI - command-line interface 418 

SNP – single nucleotide polymorphism   419 
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Figure and Table legends. 609 

Table 1. Assembly statistics and computational requirements for assembly of the Tara Oceans 610 

metagenome. Time required is given in seconds, minutes and hours for illustrative purposes and 611 

memory in GB of RAM required. 612 

Figure 1. Nonpareil estimates of sequence coverage (redundancy) for the 9 metagenomes studied. 613 

Metagenomes are grouped according to their environmental niche, red colours indicate soil 614 

metagenomes, blue colours indicate aquatic metagenomes and green colours are used for human 615 

gut metagenomes. Sequencing effort is indicated in base pairs on a log scale and the estimated 616 

coverage achieved is shown as a fraction of 1. 617 

Figure 2. Heatmap displaying the assembly statistics measured and computational resources used 618 

by the nine tested assemblers on the Tara Ocean metagenome. Well performing statistics are shown 619 

in yellow, while dark blue regions indicate poor performance. Clustering of assemblers and assembly 620 

statistics was done using an hierarchical clustering method in R (hclust).  621 

Figure 3. Radial plots showing assembly statistics for all metagenomes assessed as measured by 622 

the number of contigs larger than 500 bp, the total length of the assembly, the number of contigs 623 

larger than 1 kbp, the total bases calculated using only contigs larger than 1 kbp, the largest contigs, 624 

the N50 value and for the synthetic datasets the fraction of contigs which aligned to the reference 625 

genomes provided. Metagenomes are labelled above the respective radial plots, where the first row 626 

represents the soils metagenomes, followed by aquatic, human gut and synthetic metagenomes.  627 

Figure 4. Assembler performance on synthetics simulated datasets, measured by (a) number of 628 

misassemblies, (b) unaligned length, (c) number of unassigned bases (N’s) per 100 kbp, (d) number 629 

of mismatches per 100 kbp and the number of indels per 100 kbp. These statistics represent negative 630 

assembly statistics and are a reflection of poor performance. Each assembler is indicated by different 631 

colors and the complexity of the synthetic dataset is indicated on the x-axis.  632 

Figure 5. Proposed workflow to select a metagenome assembler based on the research question, 633 

the computational resources available and the bioinformatic expertise of the researcher. 634 

 635 

Additional Files 636 

Supplementary Tables and Figures 637 

.pdf 638 

Title of data: 639 

Supplementary Table 1. Attributes of de novo assemblers used in this study. Included in this 640 

table are the versions of each assembler used in this study, along with the release date of each 641 
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version. We provide a link to each assemblers’ website accompanied by its reference and number 642 

of citations. We gauge ease of use by providing the programming language and MPI compatibility of 643 

each tool as well as assessing the completeness of each tools’ available documentation.  644 

Supplementary Table 2. Characteristics of the metagenomic datasets used in this study. 645 

Three metagenomes from three distinct environments (Soil, Aquatic and Human gut) were selected, 646 

and we provide accession numbers, sequencing platforms used and basic sequence characteristics 647 

(pre- and post-filtering) of each metagenome. 648 

Supplementary Table 3. Assembly statistics for the assembled aquatic metagenomes.  649 

Supplementary Table 4. Assembly statistics for the assembled soil metagenomes. 650 

Supplementary Table 5. Assembly statistics for the assembled human gut metagenomes. 651 

Supplementary Table 6. Assembly statistics for the synthetic metagenomes. 652 

Supplementary Figure 1. Nonpareil estimates of sequence coverage (redundancy) for the 3 653 

synthetic metagenomes studied. 654 

Supplementary Figure 2. Computational requirements for the Tara Ocean metagenome. A) Total 655 

assembly span proportional to wall time required. B) Total assembly span in relation to peak memory 656 

usage. 657 

Supplementary Figure 3. Correlation between assembly span and mapping rate. The exponential 658 

trendline indicates a very strong positive correlation between the amount of data utilized and the size 659 

of the generated assembly (R2 = 0.83). 660 
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Table 1. Assembly statistics and computational requirements for assembly of the Tara Oceans metagenome. Time required is given in seconds, minutes 

and hours for illustrative purposes and memory in GB of RAM required. 

  Tara Ocean 

 CLC IDBA-UD MEGAHIT metaSPAdes MetaVelvet Omega Ray Meta SPAdes Velvet 

Number of contigs (≥ 500 bp) 50,716 163,815 216,938 185,419 67,161 15,982 6,128 220,178 57,816 

Total length 46,069,409 179,686,756 210,621,485 202,770,058 55,972,515 34,861,819 7,277,214 275,920,632 45,425,460 

No. of long contigs (≥ 1 kbp) 10,720 50,498 56,243 48,640 12,590 13,305 2,179 70,711 8,802 

No. of ultra-long contigs (≥ 50 kbp) 0 2 1 37 0 9 0 54 0 

Largest contig 39,748 101,400 62,649 141,519 30,177 102,255 41,443 197,381 21,980 

N50 880 1,166 982 1,124 805 2,691 1,329 1,415 749 

L50 14,113 38,236 58,246 39,033 21,544 2,737 1,345 39,617 19,631 

Mapping rate (%) 38.98 52.24 55.92 64.03 4,117 13.64 8.25 64.46 48.19 

Time (seconds) 3,527 69,782 10,455 125,862 2,527 168,213 16,419 80,039 2342 

Time (minutes) 58.78 1,163.03 174.25 2,097.70 42.12 2803.55 273.65 1,333.98 39.03 

Time (hours) 0.98 19.38 2.90 34.96 0.70 46.73 4.56 22.23 0.65 

Memory required (GB) 16.23 42.84 10.58 66.53 109.37 30.7 42 157.75 109.37 
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Figure 1. Nonpareil estimates of sequence coverage (redundancy) for the 9 metagenomes studied. 

Metagenomes are grouped according to their environmental niche, red colours indicate soil 

metagenomes, blue colours indicate aquatic metagenomes and green colours are used for human 

gut metagenomes. Sequencing effort is indicated in base pairs on a log scale and the estimated 

coverage achieved is shown as a fraction of 1. 
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Figure 2. Heatmap displaying the assembly statistics measured and computational resources used 

by the nine tested assemblers on the Tara Ocean metagenome. Well performing statistics are shown 

in yellow, while dark blue regions indicate poor performance. Clustering of assemblers and assembly 

statistics was done using an hierarchical clustering method in R (hclust).  
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Figure 3. Radial plots showing assembly statistics for all metagenomes assessed as measured by 

the number of contigs larger than 500 bp, the total length of the assembly, the number of contigs 

larger than 1 kbp, the total bases calculated using only contigs larger than 1 kbp, the largest contigs, 

the N50 value and for the synthetic datasets the fraction of contigs which aligned to the reference 

genomes provided. Metagenomes are labelled above the respective radial plots, where the first row 

represents the soils metagenomes, followed by aquatic, human gut and synthetic metagenomes.  
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Figure 4. Assembler performance on synthetics simulated datasets, measured by (a) number of 

misassemblies, (b) unaligned length, (c) number of unassigned bases (N’s) per 100 kbp, (d) 

number of mismatches per 100 kbp and the number of indels per 100 kbp. These statistics 

represent negative assembly statistics and are a reflection of poor performance. Each assembler is 

indicated by different colors and the complexity of the synthetic dataset is indicated on the x-axis.  
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Figure 5. Proposed workflow to select a metagenome assembler based on the research question, 

the computational resources available and the bioinformatic expertise of the researcher. 
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