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SUMMARY  (150 words) 21	

Drosophila melanogaster has a rich repertoire of innate and learned behaviors. Its 100,000–22	

neuron brain is a large but tractable target for comprehensive neural circuit mapping. Only 23	

electron microscopy (EM) enables complete, unbiased mapping of synaptic connectivity; 24	

however, the fly brain is too large for conventional EM. We developed a custom high-throughput 25	

EM platform and imaged the entire brain of an adult female fly. We validated the dataset by 26	

tracing brain-spanning circuitry involving the mushroom body (MB), intensively studied for its 27	

role in learning. Here we describe the complete set of olfactory inputs to the MB; find a new cell 28	

type providing driving input to Kenyon cells (the intrinsic MB neurons); identify neurons 29	

postsynaptic to Kenyon cell dendrites; and find that axonal arbors providing input to the MB 30	

calyx are more tightly clustered than previously indicated by light-level data. This freely available 31	

EM dataset will significantly accelerate Drosophila neuroscience. 32	

 33	

KEYWORDS 34	
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 37	

HIGHLIGHTS 38	

- A complete adult fruit fly brain was imaged, using electron microscopy (EM) 39	

- The EM volume enables brain-spanning mapping of neuronal circuits at the synaptic level 40	

- Olfactory projection neurons cluster more tightly in mushroom body calyx than expected from 41	

light-level data 42	
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- The primary postsynaptic targets of Kenyon cells (KCs) in the MB are other KCs, as well as the 43	

anterior paired lateral (APL) neuron 44	

- A newly discovered cell type, MB-CP2, integrates input from several sensory modalities and 45	

provides microglomerular input to KCs in MB calyx 46	

- A software pipeline was created in which EM-traced skeletons can be searched for within 47	

existing large-scale light microscopy (LM) databases of neuronal morphology, facilitating cell 48	

type identification and discovery of relevant genetic driver lines49	
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INTRODUCTION 50	

Neural circuits are in large part made of neurons and the synapses connecting them. Maps of 51	

connectivity inform and constrain all models of how neuronal circuits transform information and 52	

subserve behavior (Braitenberg and Schüz, 1998; Marr, 1969; Sterling and Laughlin, 2015). 53	

Historically, anatomical maps of neuronal connectivity were inferred from light microscopy (LM) 54	

images of sparsely labeled neurons (Shepherd, 2016). Updated forms of this approach remain 55	

important to this day (e.g. Wertz et al., 2015; Wolff et al., 2015), as do electrophysiological 56	

measurements of connectivity between small groups of neurons (Ko et al., 2011; Perin et al., 57	

2011; Song et al., 2005). However, for a given volume of brain tissue, these methods lack the 58	

resolution to map all synapses between all neurons, which may result in an undersampled 59	

description of neuronal network topology (Helmstaedter et al., 2008). 60	

Electron microscopy (EM) is the only method capable of simultaneously resolving all neuronal 61	

processes and synapses in a given volume of brain tissue – a requirement if one wishes to 62	

make complete maps of neuronal connectivity at the synapse level (or 'connectomes'; Lichtman 63	

and Sanes, 2008). However, generating EM volumes of any appreciable size is technically 64	

challenging (Briggman and Bock, 2012; Harris et al., 2006; Helmstaedter, 2013). Nanometer-65	

scale image voxels must be acquired over a spatial extent sufficient to encapsulate circuits of 66	

interest, typically tens to hundreds of microns at a minimum. Volume EM for connectomics has 67	

therefore traditionally been limited to exceedingly small organisms, such as the nematode 68	

(White et al., 1986) and the larval ascidian (Ryan et al., 2016), or to small subvolumes from (for 69	

example) the fly optic medulla (Takemura et al., 2008), cat thalamus (Hamos et al., 1987), and 70	

macaque visual cortex (McGuire et al., 1991). 71	

Recent technical advances have enabled increased acquisition speed and automation of the 72	

imaging pipeline, producing larger EM volumes than were previously attainable (reviewed in 73	
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Briggman and Bock, 2012; see also Eberle et al., 2015; Kuwajima et al., 2013; Xu et al., 2017). 74	

Circuit diagrams mapped in these larger EM volumes have yielded new insights into (for 75	

example) the network architecture of the larval fly (Ohyama et al., 2015), the optic medulla of 76	

the adult fly (Takemura et al., 2017b), the zebrafish olfactory bulb (Wanner et al., 2016), and the 77	

mammalian retina (Briggman et al., 2011; Lauritzen et al., 2016), thalamus (Morgan et al., 78	

2016), and neocortex (Bock et al., 2011; Kasthuri et al., 2015; Lee et al., 2016). Large EM 79	

volumes have also revealed surprising new findings in cellular neuroanatomy, such as the 80	

differential distribution of myelin on axons depending on neuronal subtype (Micheva et al., 2016; 81	

Tomassy et al., 2014). However, imaging infrastructure for volume EM continues to limit the 82	

scale of connectomics investigations. 83	

Here we report next-generation hardware and software for high throughput acquisition and 84	

processing of EM data sets. We apply this infrastructure to image the entire brain of a female 85	

adult fruit (aka vinegar) fly, Drosophila melanogaster (Figure 1A). At approximately 8 x 107 µm3, 86	

this volume is nearly two orders of magnitude larger than the next-largest complete brain 87	

imaged at sufficient resolution to trace synaptic connectivity, that of the first instar Drosophila 88	

larva (Ohyama et al., 2015). 89	

D. melanogaster is an important model organism for neurobiology research, owing to its rich 90	

repertoire of innate and learned behavior (Hampel et al., 2015; Heisenberg and Wolf, 1984; 91	

Hoopfer, 2016; Kim et al., 2017; Ofstad et al., 2011; Owald and Waddell, 2015; Pavlou and 92	

Goodwin, 2013; von Reyn et al., 2014), electrophysiological accessibility (e.g. Hige et al., 2015; 93	

Wilson et al., 2004), relatively small size (Figure 1A), and the stereotypy of and genetic access 94	

to most of the ~100,000 neurons in its brain (Aso et al., 2014; Chiang et al., 2011; Jenett et al., 95	

2012; Kvon et al., 2014; Milyaev et al., 2012; Pfeiffer et al., 2010). In the fly brain, each 96	

morphological cell type usually consists of one to a few neurons per hemisphere, with 97	
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stereotyped neuronal arbors reproducible across individuals with a precision of ~10 microns 98	

(Costa et al., 2016; Jefferis et al., 2007; Lin et al., 2007). Thousands of genetic driver lines for 99	

specific subsets of cell types (Jenett et al., 2012; Kvon et al., 2014), or even single cell types 100	

(Aso et al., 2014; Grabe et al., 2015; Wolff et al., 2015), enable in vivo manipulation of neuronal 101	

physiology and the construction of searchable databases of neuronal morphology (Chiang et al., 102	

2011; Costa et al., 2016; Milyaev et al., 2012). 103	

We leveraged the stereotypy of fly neuronal morphology to validate that the EM volume was 104	

suitable for tracing brain-spanning neuronal circuitry. We focused on the olfactory projection 105	

neurons (PNs), which are thoroughly described at the light microscopy (LM) level (Jefferis et al., 106	

2007; Lin et al., 2007; Tanaka et al., 2004) (Figure 1B, Figure S1). On each side of the brain, 107	

the dendrites of ~150 PNs innervate ~50 glomeruli of the antennal lobe (AL). Each glomerulus is 108	

morphologically identifiable (Couto et al., 2005; Grabe et al., 2015; Stocker et al., 1990) and 109	

receives input from a stereotyped set of olfactory receptor neurons (ORNs), resulting in 110	

reproducible PN odorant tunings across animals (Wilson, 2013; Wilson et al., 2004). PN axons 111	

project from the AL to the lateral horn (LH), which is thought to subserve stereotyped behavioral 112	

responses to odorants (Heimbeck et al., 2001; Jefferis et al., 2007; Ruta et al., 2010). Along the 113	

way to the LH, most PNs send collaterals into the calyx of the mushroom body (MB), a locus of 114	

learning, recall, and synaptic plasticity (Davis, 2011; Heisenberg, 2003; Owald and Waddell, 115	

2015). Most PN types project to the MB calyx via the medial antennal lobe tract (mALT), but 116	

several travel in secondary tracts, and a few bypass calyx entirely and project only to LH (Frank 117	

et al., 2015; Stocker et al., 1990; Tanaka et al., 2012). 118	

To explore whether the EM volume could be used to make new discoveries as well as verify 119	

existing knowledge, we examined a subset of the circuitry downstream to PNs in the MB calyx. 120	

The Drosophila MB has ~2,000 intrinsic neurons on each side of the brain called Kenyon cells 121	
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(KCs). Each KC projects a highly variable dendritic arbor into the calyx, which terminates in 122	

elaborations known as claws (Figure S1). Claws from many KCs converge to wrap individual PN 123	

boutons in a characteristic structure called the microglomerulus (Yasuyama et al., 2002), and 124	

each KC receives input from multiple PNs of diverse types (Caron et al., 2013; Gruntman and 125	

Turner, 2013). KCs sample this input in what is thought to be a random fashion (Caron et al., 126	

2013), although some biases have been noted (Gruntman and Turner, 2013). In order to fire 127	

action potentials, KCs require a threshold number of input PNs to be coactive (Gruntman and 128	

Turner, 2013); the firing pattern of KCs is therefore thought to be a combinatorial and sparse 129	

representation of olfactory stimuli. The dendrites of KCs also receive inhibitory and modulatory 130	

synapses from a variety of other cell types within the calyx, and have presynaptic release sites, 131	

which target unknown cell types (Butcher et al., 2012; Christiansen et al., 2011). KC axons 132	

project from the calyx to the MB lobes, where they synapse onto MB output neurons (MBONs). 133	

KC-MBON synapses are modulated by rewarding or punishing signals from dopaminergic 134	

afferent neurons (DANs; Aso et al., 2012; Burke et al., 2012; Liu et al., 2012); this plasticity 135	

underlies olfactory memory formation (Hige et al., 2015; Owald et al., 2015; Sejourne et al., 136	

2011). 137	

In the current work, we surveyed all microglomeruli in the main MB calyx and traced their bouton 138	

inputs sufficiently to identify the originating cell’s type, resulting in a description of the complete 139	

set of olfactory inputs to the MB. Although most MB input originated from olfactory PNs, we 140	

discovered a previously unknown cell type providing bouton input to KC claws. To map unknown 141	

connectivity within the calyx, we also identified the cell types of the KC postsynaptic targets. 142	

Finally, we found more clustering of PN axonal afferents within the MB calyx than was predicted 143	

from light microscopy (LM) data, which may bias the sampling of olfactory input from PNs by 144	
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KCs. These findings demonstrate the utility of this whole-brain dataset for mapping both known 145	

and new neural circuit connections. 146	

 147	

RESULTS 148	

TEMCA2: a second-generation transmission EM camera array 149	

Current volume EM methods generally trade off between convenient sample handling, high 150	

image resolution, and rapid image acquisition (Briggman and Bock, 2012). Transmission EM 151	

(TEM) camera arrays (TEMCAs) offer high signal-to-noise and high throughput imaging of serial 152	

thin sections (Bock et al., 2011; Lee et al., 2016). Post-section staining increases sample 153	

contrast over alternative methods that rely on en bloc staining, and features of interest may be 154	

re-imaged at higher magnifications. However, lossless serial sectioning and imaging of 155	

thousands of sections is a technically challenging, manual process; the image data are 156	

anisotropic (i.e., each voxel is narrower than it is tall, typically 4 x 4 x 45 nm), which is 157	

inconvenient for processing by automated segmentation pipelines; and large sample areas 158	

represented by mosaics of thousands of overlapping individual camera images necessitate a 159	

sophisticated and scalable stitching pipeline (Saalfeld et al., 2012; Wetzel et al., 2016). 160	

Despite these challenges, the potential for gains in throughput persuaded us to develop a 161	

second-generation system (TEMCA2) prior to undertaking a Drosophila whole-brain imaging 162	

effort (Figure 1; Figure S2). To achieve high frame rates in TEM, electron dose is simply 163	

increased until the sensors are saturated in the desired image frame integration period. This 164	

option is generally not available in scanning EM (SEM)-based approaches, since coulomb 165	

repulsion between electrons limits the maximum current per beam (Denk and Horstmann, 166	

2004). We constructed a 2 x 2 array of high frame-rate sCMOS-based scientific cameras and 167	
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coupled them with optical lenses custom-designed for imaging TEM scintillators (Figure 1C). At 168	

this higher electron dose, images are acquired in 4 frames of 35 ms exposure each.  Standard 169	

TEM sample holders and goniometer stages take several seconds to step and settle, which is 170	

not fast enough for this imaging scheme. Therefore, we built a high speed, piezo-driven single 171	

axis Fast Stage (Figure 1D; Figure S2B; Movie S1), with a sample holder designed to accept 172	

standard-diameter (3 mm) TEM sample grids (Figure 1E-F). The Fast Stage has the same 173	

shape as a standard sample holder, so that the TEM’s standard multi-axis stage can provide 174	

motion in other axes. Step-and-settle with the Fast Stage typically completed in 30-50 ms 175	

(Figure S2C-D). On-line analysis of sample drift between subsequent frames was used to 176	

determine whether stability was sufficient to acquire high-quality images, and frames were 177	

translated before summation to correct for small (16 nm or less) drift between frames. Net 178	

imaging throughput using the TEMCA2 system is ~50 MPix/s, roughly six times faster than the 179	

first-generation TEMCA (Bock et al., 2011). For the whole-brain imaging effort, we constructed 180	

two TEMCA2 systems, yielding an order of magnitude increase relative to previously available 181	

EM imaging throughput.  182	

Autoloader: a hands-free robot for automatic and reliable TEM imaging 183	

To allow unattended multi-day imaging, reduce risk to the samples, and decrease the overhead 184	

of sample exchange (10 minutes out of every 30 in typical TEMCA2 operation), we built a 185	

robotic system (Autoloader) capable of autonomous sample exchange and imaging of the TEM 186	

grids (Figure 1G; Figure S2E-F; Movies S2-3). Although automatic sample exchange systems 187	

for TEMs have been built (Lefman et al., 2007; Potter et al., 2004), their capacity and reliability 188	

were insufficient for the whole-brain imaging effort described here. The Autoloader mounts to an 189	

accessory port on the TEM, has its own vacuum system, and completely replaces the off-the-190	

shelf stage system. To better support automatic sample handling, we made custom 100 µm-191	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/140905doi: bioRxiv preprint 

https://doi.org/10.1101/140905
http://creativecommons.org/licenses/by-nc/4.0/


	 10	

thick beryllium-copper sample support grids, each etched with unique ID numbers and spatial 192	

fiducial marks to guide machine vision-based pick-and-place software for grid exchange (Figure 193	

1F). Each support grid is stored in a 64-pocket cassette, and each cassette is stored in an 8-194	

cassette magazine (Figure 1H). The Autoloader grid positioning system (GPS; Figure 1I-K) 195	

provides high-speed multi-axis grid positioning. A pre-aligner is available for optimizing sample 196	

orientation (Figure 1L; Movies S2-3). Automatic grid exchange is accomplished in about 5 197	

minutes without breaking vacuum. 198	

Application of EM infrastructure to image a complete adult fly brain 199	

For a given electron dose, a higher contrast sample scatters more electrons, resulting in a 200	

higher quality image (Denk and Horstmann, 2004). We therefore optimized fixation and 201	

embedding procedures for high membrane contrast, while preserving high quality ultrastructure. 202	

A series of 7,060 sections, encompassing the entire brain, was prepared manually (Figure S3). 203	

Nearly all (99.75%) targeted serial section data were successfully acquired. Ten sections were 204	

lost prior to imaging, and regions of some sections with debris or cracks in the support film were 205	

excluded from imaging. Medium- and large-diameter neurites can still be readily traced through 206	

the missing data, with minimal anticipated impact on traced networks (Schneider-Mizell et al., 207	

2016). The resulting EM dataset comprises ~21 million images occupying ~106 TB on disk. 208	

The data were acquired over a period of ~16 months. Eighty-three percent of imaged sections 209	

were acquired with a TEMCA2 system (4.3 million Fast Stage moves), while the Autoloader was 210	

still in development, and 17% of imaged sections were acquired by the Autoloader (3.5 million 211	

GPS moves; ~6,800 machine vision-guided steps to pick, pre-align, and re-stow each grid). 212	

Eighty-two percent of Autoloader grid exchanges were successful; 14% were automatically 213	

halted and the grids re-stowed, usually due to variations in the manual placement of grids in the 214	

Autoloader cassettes or inhomogeneities in the support film; and 4% required manual control of 215	
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the Autoloader for re-stowing. Re-stowed grids were removed from the Autoloader and imaged 216	

manually with a Fast Stage on a TEMCA2. No sections were lost or damaged due to Autoloader 217	

or Fast Stage malfunction. 218	

The quality of acquired image data was high (Figure 2; Movie S4). Whether a given EM volume 219	

has sufficient resolution to reliably detect synapses and trace fine neuronal processes can 220	

currently only be evaluated empirically (see below). In general, however, image resolution 221	

increases not only with decreasing voxel size, but also with increasing image signal-to-noise 222	

(S/N). We found that the S/N of images in this dataset equals or exceeds that of other publicly 223	

available datasets (Figure 2G; Figure S4). Furthermore, it is straightforward to re-image targeted 224	

regions of interest in the full adult brain volume at higher magnification (Figure S5A-B). 225	

Volume reconstruction and validation of tracing by NBLAST-based geometry matching 226	

We developed cluster-backed software to stitch images from a single thin section into a 227	

coherent mosaic, and then to register stitched mosaics across thousands of serial sections into 228	

an aligned volume (Figure 2A-G), a process known as ‘volume reconstruction’. Calibration 229	

mosaics were used to correct lens distortions (Kaynig et al., 2010), and a scalable and linear 230	

solver was developed to stitch all section mosaics independently. During alignment of the 231	

volume, approximately 250 sections were found to be misordered. These misordered sections 232	

were automatically detected and re-ordered over several iterations of coarse and fine series 233	

alignment (Hanslovsky et al., 2017). With this software infrastructure, traced neurons can be 234	

projected across successive volume reconstructions, allowing tracing work to begin before 235	

imaging of the whole brain was complete. Furthermore, high- and low-dose imaging of robust 236	

and fragile areas of a section, respectively, could be stitched together seamlessly (Figure S5 C-237	

E). Intra-mosaic variations in image tile intensity, created by variations in section thickness, 238	

electron beam etching, or deposition of contaminants from post-staining or section pickup, were 239	
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corrected (Figure S5 F-I) using a scalable implementation of an existing algorithm (Kazhdan et 240	

al., 2010). 241	

To test the reproducibility of tracing in the whole-brain EM dataset, three independent teams, 242	

each comprising two tracers, targeted the same KC for anatomical reconstruction (Figure S6). In 243	

the fly brain, microtubule-free neurites (‘twigs’) as fine as 40 nm in diameter tend to extend for 244	

short distances before joining larger, microtubule-containing ‘backbone’ neurites (Schneider-245	

Mizell et al., 2016). KC claws are good examples of ‘twigs’, whereas their dendritic trunks and 246	

the axonal neurite leaving the calyx are larger-diameter ‘backbones’. The neuronal arbors and 247	

associated synapses reconstructed by each team were essentially identical for both twigs and 248	

backbones. PN to KC claw inputs with high synapse counts were detected in all three 249	

reconstructions (Figure S6C). Consistent with a tracing approach biased toward false negatives 250	

rather than false positives (Methods), one low-synapse-count input was missed by one of the 251	

tracing teams (Figure S6, red asterisks). These independent reconstructions demonstrate that 252	

the EM data support tracing of neuronal connectivity, even in challenging neuropil such as the 253	

microglomeruli of the MB calyx. 254	

The stereotypy of the fly brain allows identification and comparison of fluorescently labeled 255	

neurons across individuals, by warping brains imaged at the light level to a standard template 256	

brain (Chiang et al., 2011; Costa et al., 2016; Manton et al., 2014; Milyaev et al., 2012). We 257	

developed tools to register LM datasets to the EM-imaged brain (Methods), allowing precise 258	

overlay of LM onto EM data across multiple brains (Figure 3A-D). This approach can also be 259	

used to analyze EM-traced neurons within existing frameworks for fly neuroanatomy. For 260	

example, the geometric search algorithm, NBLAST (Costa et al., 2016), can be used to search 261	

for an EM-traced PN skeleton thought to arise from the AL glomerulus VM2 (Figure 3E-G) in the 262	

FlyCircuit single neuron collection (Chiang et al., 2011). The VM2 PN is the top hit arising from 263	
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this query (Figure 3G), with an NBLAST mean score of 0.638. Remarkably, this NBLAST score 264	

is within the range of top scores for the 6 LM-imaged VM2 neurons in the FlyCircuit database 265	

when compared with one another (0.635-0.706), consistent with the high qualitative similarity of 266	

the EM-traced and LM-imaged PNs (Figure 3G). 267	

EM-based reconstruction of complete olfactory input to the MB calyx reveals tight 268	

clustering of homotypic PN arbors  269	

To systematically compare EM-based PN reconstructions with available LM data, we identified 270	

all PN to KC microglomeruli in the main MB calyx on the right side of the fly’s brain, and traced 271	

the originating PNs sufficiently to identify their subtype (Figure 4). We classified olfactory PNs 272	

known to arise from a single glomerulus in AL based on assessment of each PN’s dendritic 273	

distribution in AL (Figure 4B) and its axonal arbor in LH. We found that the great preponderance 274	

of input to the MB main calyx is olfactory, consistent with LM data. Of the 576 microglomerular 275	

boutons in main calyx, 500 arose from olfactory PNs (87%, from 120 PNs). Of these, 20 boutons 276	

(3%) arose from 8 multiglomerular PNs. The other inputs to main calyx included 50 boutons 277	

from thermosensory PNs (9%, arising from 8 neurons); 9 boutons from other PNs (2%, arising 278	

from 5 neurons), traveling either via tracts alternative to the mALT (7 boutons from 4 PNs) or 279	

from the subesophogeal region (2 boutons from 1 putative PN; data not shown); and 17 boutons 280	

(3%) arising from a previously unknown neuron that we name MB-CP2 and describe further 281	

below. This survey located 51 out of the 52 previously described olfactory glomeruli (Grabe et 282	

al., 2015); VP4 was not located. The existence of an additional glomerulus, DL6, has been 283	

disputed (Grabe et al., 2015) and we likewise did not locate it. We also found 3 neurons arising 284	

from glomeruli VC5 or VC3l, which we could not disambiguate based on our tracing data. These 285	

glomeruli are not consistently divided in the literature, and the molecular identity of their 286	

incoming olfactory receptor neurons is not yet clear.  287	
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Despite these caveats, nearly all (48/52, 92%) previously described subtypes of uniglomerular 288	

olfactory PNs were unambiguously identified (Grabe et al., 2015), setting the stage for future 289	

trans-synaptic mapping of circuitry downstream of molecularly identified olfactory pathways in 290	

the fly brain. The arbors of selected subtypes formed concentric clusters in MB main calyx 291	

(Figure 4C), consistent with previous LM data (Tanaka et al., 2004). Unsupervised clustering 292	

based on NBLAST score grouped PNs of the same assigned type (Figure 4D), and in nearly all 293	

cases, the expert PN type assignments and NBLAST scores were in good agreement (Table 294	

S1). The number of PNs found to arise from each glomerulus (Figure 4E) was also in excellent 295	

agreement with recent LM data (Grabe et al., 2016). 296	

We found that PNs arising from the same glomeruli often show much tighter clustering (Figure 297	

5, Figure S7) than predicted from LM data pooled across multiple animals (Jefferis et al., 2007). 298	

The PN cluster at the center of the concentrically arranged arbors shown in Figure 4C (arising 299	

from DA1, DC3, and VA1d glomeruli) was also qualitatively tighter in the EM data than in LM 300	

data pooled across multiple animals (Figure 5A, bottom row). Quantification of the average 301	

distance between homotypic PNs revealed that intra-animal arbors are significantly more 302	

clustered than arbors from multi-animal LM data (Figure 5B-C). A similar result was obtained 303	

based on NBLAST score differences (Figure S7B-C). The tight clustering of EM-traced PNs 304	

suggests developmental co-fasciculation of homotypic inputs, and may bias the sampling of 305	

olfactory input by KCs (see Discussion).  306	

A previously unknown cell type, MB-CP2, provides input to Kenyon cell claws 307	

To assess the utility of the whole-brain EM dataset for characterizing previously unknown cell 308	

types, we chose to make a fuller reconstruction of one of the unidentified microglomerular inputs 309	

to the MB calyx mentioned above, which we name MB-CP2 (“Mushroom Body Calyx 310	

Pedunculus #2”; Figure 6, Movie S5), per the naming convention of Tanaka et al. (2008). We 311	
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traced this neuron’s backbone to completion as well as that of its equivalent on the contralateral 312	

hemisphere (Figure 6A). The same 10 neuropil compartments were symmetrically innervated by 313	

each MB-CP2 neuron on either side of the brain (Figure 6A,F). In contrast to PNs, which receive 314	

input from olfactory receptor neurons (ORNs), MB-CP2 receives input from higher-order 315	

compartments in the protocerebrum, far from the sensory periphery (Movie S5). These include 316	

the superior medial protocerebrum (SMP), superior intermediate protocerebrum (SIP), and 317	

superior lateral protocerebrum (SLP), which are relatively little-studied compartments innervated 318	

by both sensory and motor neurons (Tschida and Bhandawat, 2015). MB-CP2 dendrites in the 319	

MB pedunculus and γ1 compartment of the MB lobes are also postsynaptic to KCs, specifically 320	

the γ (Figure 6B-C) and γd (data not shown) subtypes. In the MB main calyx, MB-CP2 provides 321	

microglomerular bouton input to all 5 olfactory KC subtypes (γ, αβc, αβs, α′β′m, and α′β′ap), but 322	

only in the anteroventral main calyx (Figure 6D-E). In the MB dorsal accessory calyx (dAC), 323	

which receives gustatory, thermosensory, and visual inputs (Kirkhart and Scott, 2015; Vogt et 324	

al., 2016; Yagi et al., 2016). MB-CP2 is presynaptic to αβp KCs throughout the entire dAC (data 325	

not shown). The two MB-CP2 neurons may therefore provide multimodal and recurrent 326	

feedback from γ KC axons to a subset of KC dendrites in the main calyx, adding to the set of 327	

known MB recurrent networks (Aso et al., 2014; Owald and Waddell, 2015). 328	

Identification of cell types post-synaptic to Kenyon cells in the MB calyx 329	

Kenyon cells are presynaptic in the MB calyx, but their postsynaptic targets are unknown 330	

(Butcher et al., 2012; Christiansen et al., 2011). To identify these postsynaptic partners, we 331	

annotated all presynaptic release sites arising from 3 KCs of each subtype (γ, αβc, αβs, α′β′m, 332	

and α′β′ap) with dendrites in the main calyx (Aso et al., 2014). We then traced their postsynaptic 333	

targets to classification (Figure 7; see Methods). All KC presynaptic release sites targeted 334	

multiple postsynaptic processes. Consistent with immunohistochemical data (Christiansen et al., 335	
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2011), most (82%; Table S2) pre-synaptic release sites were in αβc-, αβs-, or γ KCs, and 87% 336	

of the release sites were distributed along KC dendrites outside of claws. Of the 15 cell types 337	

known to arborize within the MB calyx (Aso et al., 2014; Burke et al., 2012; Busch et al., 2009; 338	

Chen et al., 2012; de Haro et al., 2010; Mao and Davis, 2009; Roy et al., 2007; Tanaka et al., 339	

2008), we found that a small subset contributes most of the postsynaptic neurites (4 subtypes 340	

contributing 75% of neurites; see Table S2). These are: the dendrites of other KCs; the APL, a 341	

wide-field inhibitory neuron that innervates the entire MB and sparsifies KC activity (Lin et al., 342	

2014; Liu and Davis, 2009); MB-CP1, an MBON whose dendritic arbor innervates the calyx and 343	

pedunculus (Tanaka et al., 2008); and two MB-C1 neurons, a class of interneuron that 344	

innervates the calyx and lateral horn (Tanaka et al., 2008). Fourteen percent of fine postsynaptic 345	

neurites were too difficult to readily trace back to parent backbone. Intriguingly, α′β′ KCs were 346	

presynaptic only to APL and other KCs. A large fraction of KC presynaptic release sites 347	

therefore targets a specific and sparse subset of available cell types in calyx. 348	

 349	

DISCUSSION 350	

Here we contribute a complete EM volume of an adult female Drosophila melanogaster brain for 351	

free use by the research community. We identified PNs from nearly all the olfactory PN 352	

subtypes, and then traced PN output across two synapses – from PNs to KCs, and from KCs to 353	

their post-synaptic targets in the MB calyx – demonstrating that this dataset supports tracing of 354	

brain-spanning neural circuitry at synaptic resolution. Cell type identification of PNs was helped 355	

by software to search EM-traced neuronal arbors for matches in large-scale morphological 356	

databases. With the PN types classified, any molecularly identified olfactory pathway in the fly 357	

brain can now be mapped, which will likely aid in the determination of circuit mechanisms 358	

underlying intrinsic and learned behavioral responses to odors. Since PN odorant tuning, 359	
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molecular identity, and morphology are all highly stereotyped, a great deal of information from 360	

other experiments can be directly related to the circuits mapped in this dataset. This same 361	

approach is generalizable to many other circuits underlying learned and intrinsic behaviors in 362	

this animal. 363	

Generation of volume EM data of this scale remains technically challenging across all stages of 364	

the data pipeline. Our new generation of image acquisition hardware provided images with 365	

excellent signal-to-noise and unmatched throughput. Many further optimizations of this 366	

hardware are available. Emerging large-format, high-speed fiber-coupled cameras and direct 367	

electron detectors may achieve imaging throughput comparable to the TEMCA2, while requiring 368	

substantially lower electron dose due to their greater sensitivity (Ruskin et al., 2013). Multibeam-369	

SEM also shows great promise (Eberle et al., 2015), as do slower but higher resolution methods 370	

such as parallel FIB-SEM imaging of slabs cut by hot knife methods (Xu et al., 2017). Low 371	

resolution EM imaging, followed by high resolution re-imaging of synaptic connectivity in 372	

selected sub-volumes, also holds promise for brain-spanning connectomics in larger animals 373	

(Hildebrand et al., 2017). Manual sectioning of long series of thin sections is not routinely 374	

replicable by most practitioners; efforts are currently underway to automate this process.  375	

Stitching and registration of serial section mosaics at the scale of this dataset posed a 376	

significant challenge. We developed scalable software for volume reconstruction and image 377	

intensity correction, as well as a data store for managing the image transformations between 378	

raw data and any given volume reconstruction. Although the resulting registration quality is 379	

clearly sufficient for manual tracing efforts, remaining fine-scale imprecision may need to be 380	

overcome before emerging automatic segmentation methods can be fully leveraged (Arganda-381	

Carreras et al., 2017; Beier et al., 2017; Januszewski et al., 2016). Early segmentation results 382	

with subsets of this whole-brain dataset are nonetheless promising (Funke et al., 2016).  383	
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Our analysis of the MB main calyx revealed that PNs arising from the same glomerulus often 384	

cluster more tightly in the calyx than was expected from LM data pooled across many animals. 385	

Interestingly, the intra-animal dye-filled DM6 PN pairs in Figure 6 of (Kazama and Wilson, 2009) 386	

also are tightly clustered, although this result is anecdotal. The basis of this clustering may be 387	

developmental, with sister PNs arising from the same glomerulus or neuronal lineage (Spindler 388	

and Hartenstein, 2010) tending to co-fasciculate. Tight intra-animal clustering of PNs raises the 389	

possibility that the PN to KC connectivity matrix may be biased, rather than fully random. If 390	

boutons from a given PN type are clustered tightly in the calyx, and a given KC happens to have 391	

a distribution of claws centered on that PN cluster, then the KC will have greater opportunity to 392	

receive input from that PN type. This may explain the above-chance convergence of DA1, DC3, 393	

and VA1d PNs onto postsynaptic KCs observed by Gruntman and Turner (2013). Indeed, our 394	

EM reconstructions indicate that these three PN types are tightly clustered at the center of the 395	

MB calyx, consistent with the earlier LM data of Tanaka et al. (2004). However, the most 396	

thorough examination of PN to KC connectivity to date, using partial connectivity data pooled 397	

across many animals, was consistent with a model in which the PN to KC connectivity matrix is 398	

entirely random (Caron et al., 2013). More comprehensive mapping of the KC population 399	

postsynaptic to PNs will help determine whether intra-animal biases in the PN to KC connectivity 400	

map exist, and the effect this bias may have (if any) on the overall KC sampling of olfactory 401	

input. 402	

Our survey of input to KC claws in the MB calyx also revealed a new cell type, MB-CP2, which 403	

likely provides recurrent and multimodal input to a small fraction of KCs in the main calyx. Even 404	

in well-described brain regions, it is not uncommon for new cell types to be discovered by EM 405	

(Helmstaedter et al., 2013; Takemura et al., 2017a), or by LM in combination with increased 406	

coverage of genetic driver lines (Aso et al., 2014). The finding of a new input cell type to KC 407	
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claws is also consistent with the “projection neurons innervating unknown regions of the brain” 408	

occasionally seen by Caron et al. (2013); see their Supplementary Table 1. Development of a 409	

split-GAL4 driver line for MB-CP2 would facilitate characterization of this neuron’s role in MB 410	

circuitry. 411	

There is extensive recurrent microcircuitry between neurites within the MB calyx (Butcher et al., 412	

2012), but the cell type identity of participating neurons has been elusive. We traced neurons 413	

postsynaptic to KC dendrites to identify their cell types, setting the stage for future interrogation 414	

of these fine-scale interactions by complementary high-resolution physiological and anatomical 415	

methods. We discovered that KC dendrites predominantly target a sparse subset of available 416	

cell types, including the wide-field inhibitory neuron APL, other KCs, the MBON MB-CP1, and 417	

MB-C1, an inhibitory neuron that innervates calyx and lateral horn. Interestingly, α′β′ KC 418	

dendrites are even more selective, targeting only the APL and other KCs. This may be related to 419	

their specific role in memory and learning; unlike other KC subtypes, α′β′ KCs are dispensable 420	

for memory retrieval (Krashes et al., 2007). Recurrent, fine-scale microcircuitry seems to be a 421	

general feature of the fly neuropil (Meinertzhagen and O'Neil, 1991; Schurmann, 2016; 422	

Takemura et al., 2017a; our unpublished observations), and identification of participating cell 423	

types will be an important initial step toward understanding microcircuit operation in many areas 424	

of the brain. 425	

Drosophila exhibits a wide range of complex sensory- and memory-guided behaviors, including 426	

visual place learning, tactile-guided sequential grooming, olfactory-memory-guided courtship, 427	

escape, and vision-guided flight. The algorithms underlying behavior are implemented by 428	

neuronal circuits, and neuronal circuits are defined in large part (though certainly not entirely; 429	

Bargmann and Marder, 2013) by the synaptic connectivity between neurons. The connectome 430	

therefore is necessary to Marr’s (1982) implementation-level of analysis, and may aid in the 431	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/140905doi: bioRxiv preprint 

https://doi.org/10.1101/140905
http://creativecommons.org/licenses/by-nc/4.0/


	 20	

inference of underlying algorithms as well. The dataset we share here will help establish a 432	

structural scaffold for models of circuit function in the fly. 433	

 434	

Figure and Table Legends 435	

Figure 1. Target Volume and EM Acquisition Infrastructure. See also Figure S1, Figure S2, 436	

Figure S3, Movie S1, Movie S2, Movie S3. 437	

(A) Oblique view of a surface model of the Drosophila brain (gray mesh) with specific neuropils 438	

highlighted:  antennal lobe (orange); mushroom body (pink); lateral horn (turquoise).  439	

(B) Schematic of olfactory pathway. Projection neurons (PNs) originate from antennal lobe and 440	

their axons pass through the MB calyx, forming en passant synapses with MB output neurons 441	

(MBONs), before terminating in the LH. 442	

(C) Left, schematic of TEMCA2 vacuum extension, scintillator, and camera array. Right, camera 443	

field of views (FOVs) diagram, indicating the non-overlapping FOV of each camera on 444	

scintillator. 445	

(D) FEI CompuStage-compatible single-axis Fast Stage. 446	

(E) Fast Stage grid holder. 447	

(F) Custom-etched 2x1mm slot grid with fiducial marks, 2-D barcodes, and unique serial 448	

identifier. 449	

(G) Cassette, magazines, and four-axis stage inside the Autoloader vacuum. 450	

(H) Autoloader cassettes and magazines. 451	
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(I) Grid holder and end-effector of Autoloader grid positioning system (GPS). Arrows: prism and 452	

LED assembly (red); sample grid (black); lever of the grip assembly which actuates grid release 453	

when retracted against its stop on the stage housing (white). 454	

(J) Autoloader end-effector 455	

(K) Four-axis Autoloader stage. Arrows: grid positioning system (GPS) chamber (blue); view 456	

port (red); cassette shuttle chamber (black); end effector and miniature camera (white). (L) 457	

Rotational aligner integrated into the Autoloader cassette shuttle.  458	

(L) Rotational aligner integrated into the Autoloader cassette shuttle. 459	

 460	

Figure 2. Reconstructed Image Volume. See also Figure S4, Figure S5, Figure S6.  461	

(A-F) Renderings of brain-spanning EM in the sectioning plane (x-y axes) at successive zoom 462	

levels. All panels rendered using the ELM viewer (Methods), which averages several adjacent 463	

sections to improve contrast at low magnifications. Red dotted lines in left column indicate 464	

orthogonal (y-z axes) section plane through the brain volume, rendered in right column. “D-V” 465	

and “A-P” indicate the dorso-ventral and anterior-posterior axes, respectively. 466	

(G) Image S/N versus acquisition speed for the current dataset and several publicly 467	

downloadable volume EM data sets acquired via different techniques (Table S3). Acquisition 468	

speed is in logarithmic scale. We assume all methods are shot-noise limited; for comparison 469	

purposes signal-to-noise values have therefore been normalized to the TEMCA2 voxel size 470	

(4x4x40 nm) by the square root of the source data’s voxel size (Methods). 471	

(H-K) Serial thin sections succeeding the one in F. Fine processes can be followed across serial 472	

sections and section-to-section image registration is accurate enough to provide a consistent 473	

field of view.  474	
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Scale bars: 200 µm in (A), 100 µm in (B); 25 µm in (C); 10 µm in (D); 2 µm in (E); 0.4 µm in (F, 475	

H-K).  476	

 477	

Figure 3. Validation of Tracing by EM-LM Registration and NBLAST-based Geometry 478	

Matching.   479	

(A-D) ELM can be used to define a three-dimensional warp field between the EM data set and a 480	

light-level template brain such that EM-imaged and LM-imaged brains are in a common 481	

template space.  Same oblique cut plane shown in A-D. 482	

(A) Oblique cut plane through the EM volume contains the AL and mALT (orange) that project 483	

from AL to MB calyx (red), and LH (green).  484	

(B) The LM template brain immunofluorescently labeled with synapse-specific nc82 (magenta). 485	

The mALT is devoid of synapse-labeling.  486	

(C) LM data of a subset of PNs labeled with random fluorophore combinations using FLP-out 487	

technique. 488	

(D) Overlay of A-C. All LM datasets that have been aligned to the template brain can be 489	

projected onto the EM dataset.  490	

(E)  An EM-traced putative VM2 PN (black skeleton), projected to a template brain (gray surface 491	

mesh) using the inverse of the transformation previously defined to align the template brain to 492	

the EM dataset in B.  493	

(F) Top hit resulting from an NBLAST search of the FlyCircuit  database using the EM-traced PN 494	

(red) as a query structure. The annotated class in the VFB database is VM2.  495	

(G) Overlay of the EM and LM PNs shows great structural similarity.  496	
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Scale bars:  ~100 µm in (A-D), ~50 µm in (E-G). 497	

 498	

Figure 4. Survey of Olfactory PNs Providing Driving Input to Microglomeruli in the Main 499	

MB Calyx Agrees with LM Data. See also Table S1. 500	

(A) Frontal view of olfactory PNs on the right hemisphere. A majority of PNs extend dendrites 501	

into glomeruli in antennal lobe (AL) while their axons pass through calyx, forming en passant 502	

synapses with KCs, and terminate in lateral horn (LH). A few project directly to the LH via the 503	

mlALT.  504	

(B) Frontal view of reconstructed PN skeletons (upper panel) and glomerular surface models  505	

(lower panel) in AL.  506	

(C) Concentric organizations revealed in frontal-dorsal view of PN boutons in calyx. 507	

Reconstructed bouton skeletons (upper panel) and 2D projection (lower panel) of a bouton 508	

surface rendering, integrated on the Z (anterior-posterior) axis for each of 3 groups respectively. 509	

PNs from DM1, VA4, VC1, VM2 (green); DL1 and VA6 (blue); DA1, DC3, and VA1d (red).  510	

(D) Dendrogram produced by hierarchical clustering of uniglomerular olfactory PNs based on 511	

morphological similarity described by NBLAST. 512	

 (E) Comparison of number of PNs per glomerulus in the EM data, versus those in Grabe et al. 513	

(2016).  514	

Colors: (A-B, D) PN colors represent sensillum type (see legend in A) for their corresponding 515	

olfactory receptor neuron (ORN) class. Color code is the same as in Couto et al. (2005) Figure 516	

4A.  517	

Abbreviations: LB, large basiconic; TB, thin basiconic; SB, small basiconic; T1, T2, T3, trichoid 518	

sensilla; PB, maxillary palp basiconic, AC, antennal coeloconic; AI, antennal intermediate. 519	
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Scale bars: ~10 µm in (A-C). 520	

 521	

Figure 5. PN Arbors in Calyx Cluster More Tightly Than Previously Seen with LM Across 522	

Individuals. See also Figure S7. 523	

(A) Comparisons of PN tracings in EM and LM. Left column shows entire PNs with right calyx 524	

neuropil in gray. Middle and right columns show EM and LM PN skeletons, respectively, in 525	

calyx.  526	

(B) Pair-wise mean nearest distance for homotypic PN calyx collaterals. Glomeruli are ordered 527	

by the difference of mean distances between EM and LM PNs. Each data point represents the 528	

mean of nearest distance between the calyx collaterals of a pair of PNs from the same 529	

glomerulus.  The same number of LM PNs as EM PNs is sampled from the existing database of 530	

LM neurons (Costa et al., 2016; Jefferis et al., 2007). Only glomeruli innervated by two or more 531	

PNs in the EM data are shown.  532	

(C) Histogram of all data points in (B). The total average distance for all EM PN pairs was 533	

significantly shorter than that for all LM PN pairs (3.53 ± 1.63 µm versus 5.53 ± 2.65 µm, t test 534	

p-value 1.3e-12).  535	

Scale Bars:	~20 µm in (A) left column; ~10 µm in (A), middle and right columns. 536	

 537	

Figure 6. MB-CP2, a New Cell Type Providing Microglomerular Input to KC Claws. 538	

(A) 3D rendering of this neuron in both hemispheres with LM meshes of whole brain (gray) and 539	

MB (green).  540	
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 (B-E) TEM of synapses between MB-CP2 and KCs. MB-CP2 processes (orange); confirmed 541	

KC processes (green).  542	

(B-C) Example synapses of MB-CP2 postsynaptic to yKCs in pedunculus, right and left 543	

hemispheres, respectively.  544	

(D-E) Example synapses of MB-CP2 microglomerular organization in the main calyx, right and 545	

left hemispheres, respectively.  546	

(F) Summary schematic of MB-CP2 input and output brain regions with synaptic counts 547	

discovered thus far. This neuron innervates 10 distinct neuropils. Abbreviations: Ped, 548	

pedunculus; LH, lateral horn; dAC, dorsal accessory calyx; SC, superior clamp; PLP, posterior 549	

lateral protocerebrum; SMP, superior medial protocerebrum; SIP, superior intermediate 550	

protocerebrum; SLP, superior lateral protocerebrum.  551	

Scale Bars: 100 µm in (A), dorsal view; 500 µm in (B-C); 2 µm in (D-E). 552	

 553	

Figure 7. KC Presynaptic Release Sites in the MB Main Calyx Mostly Target a Small 554	

Subset of Available Partners.  555	

(A-D) Morphological comparison of LM data (left) and EM-reconstructed skeletons (right) for the 556	

same classes of neurons.  557	

(A) αβc- (green), αβs- (yellow), and γ- (cyan, blue) KCs. LM data shows the entire population for 558	

these three KC classes. EM data shows one KC of each of the three classes. Inset location 559	

indicated by the smaller red box. Inset shows the dendritic arm and claw of the γ KC that is 560	

presynaptic in (E). Black arrowhead indicates the location of the synapse in (E). Note the 561	

synapse is outside of the KC claw.  562	

(B) The APL neuron.  563	
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(C) The MB- CP1 output neuron.  564	

(D) The MB-C1 putatively GABAergic interneuron. Inset location indicated by the smaller red 565	

box. Inset shows the dendritic arm and claw of the γ KC that is presynaptic in F. This KC is not 566	

shown in D for visual clarity. Black arrowhead indicates the location of the synapse in F. Note 567	

the synapse is outside of the KC claw.  568	

(E-F) TEM micrographs of KC divergent polyadic presynaptic release sites in the MB main 569	

calyx. White arrowheads indicate visible presynaptic release sites. In general the same color 570	

code is used to indicate same classes of neurons between (A-D) and (E-F). Black arrowhead 571	

(A) points to the same location in the 3D skeleton as white arrowhead points to in EM 572	

micrograph (E); same is true for black arrowhead in (D) and white arrowhead in (F).  573	

(E) The γ KC from A inset (blue) and two other γ KCs (light purple and dark purple, presynaptic 574	

release sites not visible in this section) are convergently presynaptic to the APL (green), the MB-575	

CP1 (red), and each other at the same synaptic cleft. The APL is presynaptic to a PN (orange) 576	

in this section plane.  577	

(F) The γ KC from D inset (blue) is presynaptic via a divergent polyad to MB-C1 (pink), and the 578	

APL (green) two sections away (not visible in this section), and several additional unidentified 579	

partners.  580	

Scale Bars: ~25 µm in (A-D), 1 µm in (E-F). 581	
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Figure 1. Target Volume and EM Acquisition Infrastructure. See also Figure S1, 
Figure S2, Figure S3, Movie S1, Movie S2, Movie S3.
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Figure 3. Validation of Tracing by EM-LM Registration and NBLAST-based 
Geometry Matching.
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Figure'4.'Survey'of'Olfactory'PNs'Providing'Driving'Input'to'Microglomeruli'in'the'Main'MB'
Calyx'Agrees'with'LM'Data.'See'also'Table'S1.!
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~20μm

Figure 5. PN Arbors in Calyx Cluster More Tightly Than Previously Seen with LM Across Individuals. See 
also Figure S7.
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Figure 7. KC Presynaptic Release Sites in the MB Main Calyx Mostly Target a Small Subset of 
Available Partners. 
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STAR METHODS 1	

 2	

CONTACT FOR REAGENT AND RESOURCE SHARING 3	

Further information and requests for resources and reagents should be directed to and will be 4	

fulfilled by the Lead Contact, D.D.B. (bockd@janelia.hhmi.org). 5	

 6	

EXPERIMENTAL MODEL AND SUBJECT DETAILS 7	

Multiple brains of 7 day-old [iso] w1118 x [iso] Canton S G1 adult female flies were screened and 8	

one was picked for EM imaging.  9	

 10	

METHOD DETAILS 11	

Sample preparation 12	

Brains from 7 day-old adult [iso] w1118 x [iso] Canton S G1 flies were dissected in cold fly saline 13	

(Olsen et al., 2007).  The dissected brains were fixed with 2% glutaraldehyde in 0.1M sodium 14	

cacodylate for 1 hour at 4°C, followed by 1 hour at room temperature (RT).  Following aldehyde 15	

fixation, the brains were rinsed 6 x 5 min with sodium cacodylate buffer at RT, 3 x 10 min 16	

incubations in 0.02M 3-amino-1,2,4-triazole (A-TRA) (De Bruijn et al., 1984) (Sigma-Aldrich) in 17	

sodium cacodylate, the last on ice, followed by post-fixation with 1% OsO4 in sodium cacodylate 18	

containing 0.1M A-TRA for 90 minutes on ice.  The brains were then rinsed with cold sodium 19	

cacodylate buffer, allowed to warm to RT followed by deionized or Milli-Q water at RT before 20	

being stained en bloc with 7.5% uranyl acetate in water overnight at 4°C.  Following en bloc 21	

staining, brains were rinsed with water at RT and then dehydrated in an ascending ethanol 22	
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series to 100% ethanol, followed by 100% propylene oxide.  Samples were infiltrated with 23	

EmBed 812 resin using propylene oxide to resin ratios of 2:1 and 1:2 for 30 minutes each 24	

followed by two 1-hour long incubations in 100% resin and a third 100% resin incubation 25	

overnight. Finally, samples were flat embedded between Teflon-coated glass slides and allowed 26	

to harden for 24 hours at 65-70° C. 27	

Samples were subsequently screened for whole-brain sectioning by X-ray tomography using an 28	

Xradia XRM-510 X-ray microscope (subsequently acquired by Zeiss).  Samples without obvious 29	

surface defects due to dissection, or internal defects were re-embedded in silicon rubber molds 30	

for sectioning (Fig. S3). 31	

 32	

Sample supports, ultramicrotomy, and post-staining 33	

Custom bar-coded grids made from 100 µm thick copper beryllium with a 2 x 1mm slot, a unique 34	

serial identifier in human readable and 2-D barcode form and with fiducial markers were used to 35	

collect sections. Schematics and vendor information for the custom grids are available to non-36	

profit research organizations upon request. Grids were prepared for picking up sections by first 37	

applying a silver/gold-color film of Pioloform (Pioloform FN, Ted Pella catalog #19244) followed 38	

by a ~8 nm layer of carbon. The Pioloform film was made thicker than normal to provide 39	

enhanced sample stability under the higher beam current necessary for rapid imaging (see 40	

below). To prepare the Pioloform film, a 600 µL aliquot of 2.05% Pioloform in dichloroethane 41	

was applied to an ethanol and hydrofluoric acid cleaned glass microscope slide (Gold Seal, Ted 42	

Pella catalog #260210) via spin coating using a Laurell WS400B-6NPP/Lite spin coater. After 43	

applying the Pioloform solution, the slide was spun for 1.4 seconds with a target speed of 8,000 44	

rpm and an acceleration index of 255. The film was released from the slide by scribing the 45	

edges of the slide with a diamond scribe and slowly submerging the glass slide at a shallow 46	
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angle into a large dish of water. The film remains floating on the surface of the water and 47	

cleaned grids were then carefully placed, bar code side down, onto the film. The film and grids 48	

were subsequently picked up from above on a 1 x 3 inch slotted and anodized aluminum slide. 49	

The anodized surface also provided a stable and reusable surface from which the grids could be 50	

cut from the surrounding support film using a heated tungsten filament. Grids were loaded onto 51	

custom 203-place stainless steel plates for carbon coating. 52	

Carbon coating was carried out in a Denton Explorer 14 high vacuum evaporator equipped with 53	

oil diffusion pump, liquid nitrogen cold trap, and a film thickness monitor using carbon rods (Ted 54	

Pella catalog #62-132). The carbon rods were de-gassed at sub-evaporation currents (8-14 55	

amps) prior to and immediately following sample loading. The 203-place plate was held at a 90-56	

degree angle to the source at a distance of 10 cm during evaporation. Following a vacuum 57	

recovery period, the carbon rods were de-gassed and warmed at sub- to near-evaporation 58	

currents (8-16 amps). To avoid overheating the films, carbon was evaporated in a series of 59	

cycles (in our hands, each cycle was stopped when the deposition rate reached -0.5 Å/sec and 60	

resumed when the deposition rate returned to 0 Å/sec). Vacuum levels prior to evaporation were 61	

~5x10-8 torr or better. Evaporation was carried out at 22 ± 1 amps. Carbon evaporation was 62	

halted at an indicated thickness of 70 to 80 Å and final thickness assessed after a 5 minute cool 63	

down period. Successfully prepared grid films remained perfectly flat when held within ~1 mm of 64	

a water surface (Figure S3F) whereas unsuccessful films displayed a relaxation of the film 65	

tension when held close to water (Figure S3E). Grid batches in which coatings tested did not 66	

remain flat were rejected. 67	

Serial sections of the brain were cut with a Leica UC-6 ultramicrotome at a thickness of 35-40 68	

nm, with periodic retrimming of the block face. Total sectioning time was ~3 weeks. Typically, 3 69	
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serial sections were collected on each of the ~2,400 custom bar-coded grids needed to collect 70	

the 7000+ sections necessary to encompass the whole brain.  71	

Following sectioning, grids were stained in 3% aqueous uranyl acetate for 20 minutes followed 72	

by Sato’s lead (Sato, 1968) for 5 minutes, with ddH2O washes after each staining step. To 73	

facilitate the staining of ~2,400 grids, a custom Plexiglass staining device with slots to hold 100 74	

grids at a time, loosely based on the Hiraoka (1972) device, was used. 75	

 76	

Electron Microscopy 77	

Two FEI Tecnai Spirit BioTWIN TEMs were used to image the whole fly brain series. The first, a 78	

TEMCA2 system (Figure 1C, Figure S2A), was equipped with a custom single-axis Fast Stage, 79	

vacuum extension, scintillator (5 µm Mylar on a support ring 9 5/8 inches in diameter, coated with 80	

10 mg fine-grained P43/cm2; Grant Scientific), and four Fairchild SciMOS 2051 Model F2 5.5 81	

megapixel cameras (2560 x 2160 pixel sensor size) configured in a 2 x 2 array. The second 82	

TEM was equipped with an Autoloader (Figure 1G, S2E), a custom scintillator (6 mg fine-grain 83	

P43/cm2; Grant Scientific), and a single Fairchild SciMOS camera. In both systems, 4:1 84	

minifying C-lenses (AMT) were mounted on the SciMOS cameras using custom lens mounts 85	

(AMT). These systems were previously described in abstract form (Robinson et al., 2016). 86	

Schematics and model files for the Fast Stage and Autoloader are available to non-profit 87	

research organizations upon request. 88	

The Fast Stage has a single high-speed axis of motion, and is designed to interface an FEI 89	

CompuStage goniometer (Figure S2B), which provides the other degrees of freedom necessary 90	

to position a sample in the TEM. The sample holder is connected to a drive rod, which passes 91	

through a custom rolling-element bearing, vacuum sealing bellows, and a rolling-element 92	
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damper (Figure 1D, S2B). The drive rod is connected to a slide-mounted encoder which 93	

provides nanometer-resolution positional feedback. It is moved linearly by a precision piezo 94	

motor (Physik Instrument cat N301K151). The custom rolling-element tip bearing provides rigid 95	

lateral support to the drive rod within the outer drive rod tube, while minimizing axial friction 96	

required to move the driven mass of the system. The custom rolling-element dampers kill 97	

vibrations of the drive rod induced by the pulsed motion of the piezo motor during moves. 98	

Without these dampers, the drive rod would vibrate for hundreds of milliseconds under the 99	

pulsed motion of a move, rendering the system unusable. With the dampers, 8-24 micron moves 100	

are reliably achieved where all vibrations are damped to less than 5 nanometers in less than 50 101	

milliseconds (Figure S2C). The miniature vacuum bellows isolates the specimen-holding region 102	

of the device from atmospheric pressure of the operating environment. By locating the vacuum 103	

bellows just behind the O-ring in an FEI style holder, the volume needed to be evacuated after 104	

sample insertion is minimized, allowing samples to be exchanged in the same amount of time as 105	

a conventional holder. 106	

The Autoloader GPS (Figures 1I, S2E-F) is a complete replacement for the FEI CompuStage  107	

goniometer and specimen holder, and provides all required degrees of freedom to position a 108	

specimen within the TEM column. High-speed single-axis motion is supported by the same drive 109	

mechanisms used in the Fast Stage. Other axes of motion are provided by piezo-driven and 110	

brush motors (Figure S2). The rotational angle of the sample can be changed by placing the 111	

sample grid on a rotary pre-aligner, rotating to the desired angle, and picking the sample back 112	

up again in the gripper (Movie S3). The machine vision system enabling automated handling of 113	

samples in the Autoloader recorded continuous video while operating, providing visual 114	

confirmation of proper operation and an invaluable debugging tool in the event of handling 115	

errors.  To enable a continuous video stream as well as high dynamic range images suitable for 116	
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image processing, the acquisition stream automatically adjusts image gain and exposure time 117	

for the required regime.  These changes can be seen in Movie S3. 118	

Image acquisition on the TEMCA2 system was performed at an indicated scope magnification of 119	

2900x, while the single camera Autoloader equipped system operated at 4800x indicated 120	

magnification. The longer vacuum extension of the TEMCA2 system enlarged the projected 121	

image by ~1.7x, resulting in ~4 nm/pixel for both systems. 122	

Software control of the TEMCA2 and Autoloader systems was written in LabVIEW (National 123	

Instruments). Wrapper software to interface the Fairchild SciMOS cameras with LabVIEW was 124	

written in C. Hardware triggers were used to interleave stage motion with camera frame buffer 125	

acquisition. Each camera was read out by a dedicated analysis workstation (Dell), or ‘acquisition 126	

node,’ connected via 10 Gb Ethernet to a central ‘control node’ which managed hardware 127	

triggering, stage control, region of interest (ROI) specification, mosaic preview, and user 128	

interface for hardware control. Low-latency TEM hardware control (such as beam blanking, 129	

valve operation, CompuStage control, magnification and focus adjustments, and electron beam 130	

diameter) was achieved by direct communication between LabVIEW software and the FEI 131	

dynamic-link library (DLL) files supporting the FEI Tecnai scripting environment, through the 132	

DLLs’ component object model (COM) interfaces.  133	

Acquisition nodes measured translational drift between successive image frames in near real-134	

time, using the NI Image analysis package (National Instruments). If drift exceeded a user-135	

specified threshold, they were discarded and additional frames were acquired until the 136	

requested number was acquired or until a user-specified timeout was exceeded. Each 137	

acquisition node allocated three tiers of memory buffer to the image processing pipeline, to 138	

allow real-time acquisition to continue unimpeded, regardless of variations in CPU load, 139	

operating system memory management, disk performance, or network throughput. In the first 140	
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tier, raw image frames were processed for drift estimation. In the second tier, sets of image 141	

frames were translated (to correct for small translations by the sample stage), summed, 142	

normalized to a background image of the scintillator, and histogram-adjusted. In the third tier, 143	

the summed and normalized images were written to disk. As images exited each of these 144	

buffers, memory was recycled so new images could be acquired and processed. Due to the 145	

rapid rate of data acquisition, multiple storage servers, each connected via 10 Gb Ethernet, 146	

were written to in round-robin fashion. Each server contained two RAID 6 volumes, and up to 147	

four servers were deployed in parallel during data acquisition. If a RAID 6 volume or a server 148	

went offline, images were written to other volumes in the available set. SSDs were installed in 149	

each acquisition node to allow an acquisition to complete in the event of total network failure 150	

during acquisition. This infrastructure was capable of supporting sustained output from the two 151	

TEMCAs and the Autoloader. No data were lost due to storage or network issues during 152	

acquisition of the whole-brain EM volume. 153	

Autoloader control software was substantially similar to the TEMCA2 software except that it also 154	

controlled the Autoloader hardware. Autoloader-specific functionality included machine-vision-155	

guided pick-and-place and pre-alignment of sample grids, automatic focus of the TEM, and 156	

region of interest relocation across grid picks. We also developed a user interface to let the 157	

operator define the sequence of imaging steps to be performed as well as accompanying 158	

microscope parameters for each step. All software for control of the SciMOS cameras, TEMCA2 159	

systems, and the Autoloader is available to non-profit research organizations upon request. 160	

For TEMCA2-imaged samples, a 16.2 nm/pixel pre-bake mosaic was acquired at 60 ms 161	

exposure time to pre-irradiate the sample and reduce specimen warping and shrinkage under 162	

high dose acquisition. The 16.2 nm/pixel mosaics were used to specify ROIs for 4 nm/pixel 163	

mosaic acquisition.  The 4 nm/pixel mosaics were acquired at 35 ms exposure times.  Frames 164	
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were analyzed for drift in real time and 4 frames with less than 16 nm frame-to-frame drift were 165	

translated into pixel-level alignment, summed, intensity corrected, and saved. Mosaics were 166	

acquired in a boustrophedonic fashion column by column (figure S2D) running down the long 167	

axis of the 2 x 1 mm slot across the three sections such that use of the fast, piezo-driven stage 168	

axis was maximized during acquisition while slower CompuStage moves were minimized.  Due 169	

to non-overlapping fields of view on TEMCA2, a two-step approach was utilized where a small 170	

stage displacement (~1900 pixels, or 7.6 µm) filled the gap between the fields of view was 171	

followed by a large displacement (~5500 pixels, or 22.0 µm) moving to a completely fresh field 172	

of view; this schema was utilized on both x and y axes with x and y steps being slightly different 173	

(5550/1950 and 5450/1850, respectively, big step/small step, in pixels).  Accurate calibration of 174	

pixels per micron is essential for converting pixel distances into physical distances and allows 175	

for pixel distances to be kept constant while the conversion factor was varied depending on the 176	

indicated magnification of the microscope. 177	

Samples are organized in the Autoloader as follows. The Autoloader holds a magazine (Figure 178	

1L) containing 8 cassettes. Each cassette holds 64 sample grids (Figure 1F) for a total 179	

magazine capacity of 512 sample grids. The Autoloader affords random access to the individual 180	

grids, which can be retrieved, oriented, loaded into the TEM, imaged, and reliably returned to 181	

their proper address in the Autoloader.  The Autoloader imaged samples in a two-pass routine 182	

where grids were returned to cassettes between acquiring pre-bake mosaics and 4 nm/pixel 183	

mosaics.  The interval between imaging steps allows for the designation of ROIs for 4 nm/pixel 184	

imaging.  To ensure that ROIs were accurately acquired, the Autoloader found the center of the 185	

grid slot every time a grid was loaded into the TEM column.  This center point was used to align 186	

ROIs and correct for small differences in grid orientation resulting from the two-pass workflow.  187	
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The Autoloader system employed a single point autofocus routine at the center of each section 188	

to determine focus for each ROI acquired. 189	

High-speed generation of mosaics necessitates high electron dose rate at the sample  (typically 190	

~180x the dose rate required for a 2 second exposure on Kodak 4489 film at 120 kV) to saturate 191	

the sensor wells within the short interval (35 ms in our case, vs. ~1-2s typical integration time).     192	

Pre-irradiation images of the grids were used to subdivide the samples into three ROI classes: 193	

(1) Included areas sufficiently free of substrate damage and contaminants to sustain imaging at 194	

the highest beam currents; (2) Excluded areas to be masked out of the data set entirely; (3) 195	

Borderline areas of usable but lower quality to be imaged at one tenth intensity. 196	

Four sections (not consecutive) were lost during sectioning; and two grids, each containing 3 197	

serial sections (3595-3597 and 6883-6885), were found to have ruptured support films after 198	

post-sectioning staining but prior to EM imaging. Sections with debris or cracks in the support 199	

film were imaged in two rounds: a high-dose, high-throughput round, excluding potentially fragile 200	

areas of a section; and a subsequent low-dose, slow exposure round, of the fragile region only. 201	

Twenty-seven sections in 9 grids ruptured toward the end of second round imaging when the 202	

low-dose electron beam hit artifacts. However, a majority (if not the entirety) of the section was 203	

already successfully imaged. In this case, although the sections were successfully imaged, the 204	

support film rupture precludes future re-imaging of these 27 sections. 205	

 206	

Volume Reconstruction Pipeline 207	

Overview 208	

For each imaging acquisition system used, small step size calibration mosaics and a small 209	

reference mosaic in the same area on three reference grids were acquired. The calibration 210	
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mosaics were used to calculate a correction for non-affine lens distortion for each camera in that 211	

particular acquisition system (Kaynig et al., 2010). The reference mosaics were then used to 212	

calculate the remaining affine distortion of each camera relative to all other cameras and 213	

acquisition systems, resulting in a global camera calibration model across all cameras and 214	

imaging systems involved. In the event that the imaging system configuration was modified (e.g. 215	

for camera refocusing or scintillator replacement), a new calibration mosaic was acquired, and 216	

new camera calibration models were calculated. Relational and non-relational databases were 217	

used to track image metadata and computed image transformations throughout the volume 218	

reconstruction process, and raw image data were processed using a custom-developed, highly 219	

scalable and efficient cluster-backed linear solver to stitch all section mosaics independently 220	

(Methods). 221	

The majority of low-dose/high-dose (see Electron Microscopy) sections are acquired during a 222	

single session, without the sample being removed from the microscope. Therefore, a reliable 223	

first guess for relative positions of these layer patches is usually provided. Generally, low-224	

dose/high-dose sections are registered in a process that takes advantage of components of the 225	

general registration pipeline above. Montages of individual acquisitions are generated and their 226	

point-matches stored. All montages sharing the same z-value (i.e. the low-dose/high-dose group 227	

of sections), together with reference neighbor “sandwich” sections are treated as a set of 228	

sections that are roughly aligned to each other as if they were all separate sections. This rough 229	

alignment is used to determine potential overlap of low-dose and high-dose areas. Tile-pairs are 230	

determined and their point-matches calculated and stored. Finally, all point-matches (within-231	

layer, across low-dose/high-dose patches, and cross-layer to neighboring reference sections) 232	

are used to solve a linear system to determine transformation parameters for a seamless 233	

registration. 234	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/140905doi: bioRxiv preprint 

https://doi.org/10.1101/140905
http://creativecommons.org/licenses/by-nc/4.0/


	 11	

Migration of data 235	

As noted above, camera images were written in a round-robin fashion across multiple high-236	

speed RAID 6 storage servers. Mosaics selected for inclusion into the final reconstructed 237	

volume were copied to a centrally managed distributed file system at Janelia Research Campus 238	

offering high-throughput connectivity to the computational cluster as well as off-site backups. All 239	

images were checksum verified after file copy operations. 240	

 241	

Stack management & relational database 242	

We created a relational database for storing and querying metadata associated with the 243	

thousands of image mosaics and millions of acquired images. We use SQL Server 2012 for our 244	

production system and SQLite for development. Metadata required for downstream processing 245	

included: paths to image data (with checksums), stage coordinates, ROIs associated with 246	

nominal section numbers, ordering of sections and microscope configurations with associated 247	

calibrations. The input for the alignment process – a stack – can be generated with a single SQL 248	

query joining the majority of tables. The result is a list of images with their layer (z), stage 249	

coordinates (x,y), and camera configuration (for associating the correct lens correction model). 250	

The alignment process of the approximately 21 million images and associated projection of 251	

already-traced skeletons between alignment iterations is computationally expensive. To manage 252	

this we developed the Renderer toolkit (https://github.com/saalfeldlab/render), a set of 253	

image stack management tools and RESTful HTTP web services now in use in multiple 254	

additional projects. Renderer was designed in order to handle large scale (hundreds of millions) 255	

of individual records efficiently while supporting large-scale concurrent access for the 256	

stitching, section order analysis, skeleton mapping and intensity correction. Briefly, Renderer is 257	

able to quickly materialize (i.e. render) modified images for a set of transformation parameters 258	

using the mpicbg transformation library (https://github.com/axtimwalde/mpicbg). The use of the 259	
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mpicbg library allows simple conversion between the Renderer database (a MongoDB instance) 260	

and TrakEM2 projects. For large scale rendering and coordinate mapping, we used Java stand-261	

alone and Spark framework clients to allow it to be processed in bulk on a cluster. 262	

 263	

Calibration mosaics 264	

In our TEMCA2 system, we operate with a wider field of view than a conventional TEM which 265	

comes at the cost of individual images showing significant non-linear distortion.  This distortion 266	

is the accumulation of camera lens-distortion, variation in camera mounting, and warping in the 267	

electron beam path.  We compensated for this distortion using the lens-correction method 268	

available in TrakEM2 (Kaynig et al., 2010) followed by affine normalization between all distortion 269	

models. For each individual camera, we imaged a 3 x 3 mosaic of redundantly (60%) 270	

overlapping tiles of a neuropil region in one of our sample grids.  This mosaic was then used to 271	

estimate a non-linear distortion correction model in TrakEM2.  To compensate for the remaining 272	

affine distortion (scale and shear) of each of these camera models, we imaged a large reference 273	

montage in the neuropil region of three reference sections (to account for accidental section 274	

loss) that we then jointly aligned with TrakEM2.  This way, we obtained a globally consistent 275	

camera calibration model for each individual camera.  We repeated the calibration step each 276	

time an imaging system was adjusted, resulting in a set of 15 independent camera calibration 277	

models for the complete Drosophila brain.  278	

 279	

Alignment 280	

The image acquisition process provides partially overlapping images that are assumed to cover 281	

the entire region of interest. Image mosaics need to be stitched within each z-section plane, as 282	

well as aligned across z to produce a seamless volume. Details of the methods and 283	

documentation of actively used code are available at 284	
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[https://github.com/billkarsh/Alignment_Projects/blob/master/00_DOC/method_overview.md;http285	

s://github.com/billkarsh/Alignment_Projects/blob/master/00_DOC/ptest_reference.md] and 286	

[https://github.com/khaledkhairy/EM_aligner].  287	

Here we provide a summary. The reconstruction process consists of two steps. (1) Matching of 288	

putatively identical content between pairs of overlapping images; those matched point-pairs are 289	

stored in a table. (2) Using point-pairs to solve for linear (affine) transforms that map local image 290	

coordinates to a common stitched volume coordinate system. 291	

 292	

Matching point-pairs within mosaics 293	

Matching is first done within each of the serial sample sections (z-layers), considered 294	

independently of any other sections. Two neighboring images would match essentially perfectly 295	

except for very slight differential beam heating. 296	

TEM stage coordinates provide useful guesses about which pairs of images have overlaps 297	

worth characterizing, as well as the expected relative transform between pair members that we 298	

can use to constrain content matching. For each prospective pair of images we first perform 299	

coarse matching using normalized FFT-based cross-correlation to obtain a best rigid transform 300	

between them: relative rotation and XY-translation. The expected constraint transform enters as 301	

a mask describing a disc of preferred XY-translations within the correlation image. 302	

The coarse transform between image A and B is then refined using a deformable mesh as 303	

follows. Within the overlap region of A and B, the A-pixels remain at fixed coordinates. For the 304	

B-image pixels, we erect a mesh of triangles and each of the B-pixel coordinates within are 305	

translated into barycentric coordinates (functions of the triangle vertices) which are variables. 306	

The normalized cross-correlation between A and B can now be expressed as a function of mesh 307	

vertex coordinates. A gradient descent process is used to find vertex positions that optimize 308	

correlation. 309	
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The reported point-pairs linking A to B are derived from the triangles of the mesh. Image-point A 310	

is defined as the centroid of a given mesh triangle prior to optimization. Its corresponding B-311	

image point is obtained by calculating the affine transform that takes the triangle to its optimized 312	

counterpart, and applying that to the A-centroid. 313	

 314	

Matching point-pairs across layers 315	

Since the layers are nominally 40 nm thick and neural processes propagate through tissue at all 316	

possible angles, content in adjacent layers is grossly similar but isn’t a precise match. 317	

Nevertheless, content-based matching as described above for same-layer image pairs (FFTs 318	

followed by deformable mesh optimization) works very well if combined again with expected 319	

pair-pair transforms for which we have high confidence. 320	

First we match whole layers to each other: For each layer, individually, we collect the reported 321	

in-layer point matches and solve for its set of affine transform parameters that register that 322	

layer’s 2D images to form a so-called montage. These data are used to render the layer at a 323	

reduced scale (~20X) to an image that we call the “montage scape”. Scale reduction allows the 324	

problem to fit comfortably in RAM, reduces computation time, and most importantly, emphasizes 325	

larger size tissue features such as large neurites running parallel to the z-axis, which vary much 326	

more slowly as a function of z than neuropil. Each pair of montage scapes is matched by FFT 327	

cross-correlation at a series of angles and the best correspondence is determined. This is 328	

followed by manual inspection using TrakEM2 (Cardona et al., 2012) to verify this rough 329	

alignment. 330	

 331	

Aligning Section Montages and Section-order Correction 332	

For larger volumes, we implemented a fully automated procedure for whole-layer matching. 333	

SIFT features are extracted from section montages, and point-correspondences are determined 334	
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for all pairs of sections within a range of expected ordering mistakes (in our case within 100 335	

sections).  We then use the number of point-correspondences between two sections as a 336	

surrogate for their inverse relative distance and identify the shortest possible path to visit all 337	

sections, resulting in an ordered series (Hanslovsky et al., 2017).  Then, a regularized linear 338	

system is solved to calculate an affine transformation for each section that roughly aligns the 339	

volume. 340	

With a given pair of layers now coarsely aligned, we subdivide each layer into an array of 341	

‘blocks’ (~10 x 10 neighborhoods of image tiles). We again step angles and calculate FFT 342	

cross-correlation, this time on pairs of corresponding blocks to find the best block-block 343	

transforms. As a result we know which images within the blocks pair with each other and what 344	

their relative transform ought to be.  Again, we subdivide each image into local regions, estimate 345	

point correspondences using FFT-based cross-correlation, and collected these 346	

correspondences in a database. 347	

 348	

Solving the volume 349	

With the full set of point pairs tabulated, each image is typically connected to several of its 350	

neighbors. We then construct a system of equations requiring that, under the sought affine 351	

parameter set that defines each image transformation, point-pairs should map to the same 352	

global point in the reconstructed volume. To avoid spurious deformation and volume shrinkage, 353	

the equation system is regularized to a roughly aligned volume. This roughly aligned volume 354	

depends on individual montages that were in turn regularized to a rigid model approximation 355	

that is independently estimated. The full system constitutes a large linear sparse matrix 356	

problem, whose solution provides the globally optimal transformation for all images 357	

simultaneously.  358	

 359	
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Sources of error 360	

-       Wrong (low-quality) point-pairs: These may occur due to the self-similarity of nominally 361	

good quality neural EM images. Errors are even more likely in tissue regions that are 362	

substantially devoid of neurons or texture, such as the lumen of the esophagus, or along the 363	

outer boundary of the sample where tissue is sparse or even absent from several image tiles. 364	

To address this error we employ (a) auxiliary contextual information about the likely transform 365	

between any two images that constrains matching derived from local image content alone, and 366	

(b) we impose a strict point-matching filter using Random Sample Consensus (RANSAC); 367	

(Fischler and Bolles, 1981) to separate true correspondences that behave consistently with 368	

respect to an affine transform up to a maximal correspondence displacement (Saalfeld et al., 369	

2012). 370	

-       Missing point-matches: In some cases tissue damage, contamination or folds within a 371	

section lead to a lack of point-matches in a smaller region within the volume. This is most 372	

prominent when searching for point-matches across z. We address this issue by extending the 373	

point-match search beyond immediate neighbor sections. 374	

 375	

Render (Image Intensity Correction) 376	

During iterative volume reconstruction, gradient-domain processing is used to remove seams in 377	

two dimensions. A target gradient field is constructed by computing the gradient field of the input 378	

mosaic and zeroing out seam-crossing gradients. Then, a least-squares system is solved to find 379	

the new image whose gradients best fit the target field. In addition, low-frequency modulation is 380	

removed by computing the windowed average of adjacent mosaics and replacing the low-381	

frequency components of an input mosaic with the low-frequency components of the average. 382	

We anticipate that future work will allow 3D processing of the whole-brain image volume 383	

(Kazhdan et al., 2015), reducing or eliminating section-to-section variations in intensity. 384	
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 385	

Projection of arbor tracing across alignments  386	

With each new alignment, the CATMAID PostgreSQL database containing all neuronal skeleton 387	

coordinates (Schneider-Mizell et al., 2016) is dumped to retrieve their "world" coordinates 388	

(coordinates representing their physical location in the brain). Each of these world coordinates is 389	

then inversely transformed using the Renderer service (see “Stack management & relational 390	

database” section) to a set of "local" coordinates detailing the source tile visible at that location 391	

and the relative location within. The local coordinates are projected back into world coordinates 392	

using the new alignment’s transformations. The updated coordinates are then applied to a new 393	

copy of the database. 394	

 395	

Neuron Tracing 396	

Neuron reconstructions are based on manual annotation of neuronal arbors from image stacks 397	

in CATMAID (http://www.catmaid.org) as described in (Schneider-Mizell et al., 2016). All 398	

neurons included in analyses are reconstructed by at least 2 team members, an initial tracer and 399	

a subsequent proofreader who corroborates the tracer’s work. In the event that any tracer or 400	

proofreader encounters ambiguous features (neural processes or synapses that are not 401	

identifiable with 100% confidence), they consult other tracers and proofreaders to determine the 402	

validity of said features, climbing the experience ladder up to expert tracers as needed. If any 403	

feature remains ambiguous after scrutiny by an expert tracer, then said feature is not included in 404	

the neural reconstruction and/or flagged to be excluded from analyses. During the proofreading 405	

phase, the proofreader and tracer iteratively consult each other until each neuron is deemed 406	

complete per the specific tracing protocol to which it belongs. An assignment of completion does 407	
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not necessarily entail that an entire neuron’s processes and synapses have been reconstructed 408	

(see “Tracing to Classification” and “Tracing to Completion” sections below). 409	

The criteria to identify a chemical synapse include at least 3 of the 4 following features, with the 410	

first as an absolute requirement: 1) an active zone with vesicles; 2) presynaptic specializations 411	

such as a ribbon or T-bar with or without a platform; 3) synaptic clefts; 4) postsynaptic 412	

membrane specializations such as postsynaptic densities (PSDs). In flies, PSDs are variable, 413	

clearer at postsynaptic sites of KCs in a micro-glomerulus but often subtle, unclear, or absent in 414	

other atypical synaptic contacts (Prokop and Meinertzhagen, 2006). In the absence of clear 415	

PSDs, all cells that are immediately apposed across a clearly visible synaptic cleft are marked 416	

as postsynaptic. We did not attempt to identify electrical synapses (gap junctions), since they 417	

are unlikely to be resolved at the 4 nm x-y pixel size of this data set. 418	

 419	

Tracing to Classification 420	

Often only reconstruction of backbone (e.g. microtubule-containing ‘backbone’ neurites, 421	

(Schneider-Mizell et al., 2016) or gross morphology is needed to classify a neuron based on 422	

expert identification or NBLAST-based neuron searching against an existing LM dataset. If 423	

either approach fails to find a match (as in the case of MB-CP2 in our study), the neuron may be 424	

deemed a new cell type. Neurons traced to classification are at a minimum skeletonized, with or 425	

without synapses, to the point at which their gross morphologies (or backbone skeletons) 426	

unambiguously recapitulate that observed by LM for a given cell class, or are unambiguously 427	

deemed as a new cell type not previously observed in all LM database from NBLAST neuron 428	

morphology search and/or multiple experts. 429	

 430	
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Tracing to Completion 431	

All steps for tracing to classification were completed. Additionally, every identifiable process and 432	

every identifiable synapse is traced within the data set. 433	

 434	

Multiverse 435	

Three teams each comprising 2 members, 1 tracer and 1 proofreader, reconstructed the same 436	

KC fragment to completion in tracing environments blinded to each other. In the tracing phase, 437	

the tracer had access to the proofreader for consult and verification. During the proofreading 438	

phase the proofreader had access to the tracer for consult and verification. When complete the 439	

reconstructions were merged into a single viewing environment for comparison (Figure S6). 440	

 441	

Tracing of Projection Neurons 442	

Three protocols were used to reconstruct olfactory projection neurons (PNs) on the right side of 443	

the brain: 1) putative PN boutons presynaptic to all traced claws of ~300 KCs as part of a 444	

separate ongoing effect of KC reconstructions (data not shown) were seeded and traced to 445	

classification. 2) A seed section at the posterolateral bend of the mALT, proximal to MB calyx, 446	

was selected and all neurons not found via protocol 1 were traced first directly toward the calyx. 447	

Neurons that innervated calyx were traced to classification, whereas those that bypassed calyx 448	

were halted. 3) A thorough visual survey of the calyx was conducted to ensure that all 449	

microglomerular structures had been identified and the untraced boutons within these 450	

microglomeruli were seeded with single skeleton nodes then traced to classification.  451	

Classification of olfactory glomeruli in AL followed that of Grabe et al. (2015), except that VC3l 452	

and VC3m glomeruli were treated as separate glomeruli (Chou et al., 2010; Silbering et al., 453	
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2011). Following Grabe et al. (2015) and Yu et al. (2010), VM6 and VP1 were combined into a 454	

single glomerulus due to morphological ambiguities, which we label as VM6 in this work.  455	

 456	

Delimitation of Boutons in Projection Neurons 457	

Projection neuron axonal boutons in the calyx were identified by varicosities containing arrays of 458	

presynaptic active zones each apposed to many postsynaptic processes (Figure S1A). Skeleton 459	

nodes at the varicosity/intervaricosity borders were tagged as “bouton borders” such that they 460	

contained all synapses inside each varicosity. 461	

 462	

Kenyon Cells and their Calyceal Postsynaptic Partners 463	

Three KCs from each of the KC classes that innervate main calyx (γ, αβc, αβs, α’β’m, and 464	

α’β’ap) were selected from a larger set of several hundred KCs already traced to classification 465	

as part of an ongoing study. All neurons postsynaptic to every presynaptic release site of the 15 466	

KCs in the PN bouton-containing portion of the calyx (namely, postsynaptic partners in the 467	

calyx) were enumerated and traced to classification. Postsynaptic partners to low order KC 468	

dendrites were not traced unless these dendrites occupied the PN bouton-containing portion of 469	

the main calyx. 470	

 471	

MB-CP2 472	

The 2 MB-CP2 neurons were traced to classification per the “Tracing to Classification” section 473	

above. Additionally, samples of their synapses were traced within each neuropil they innervate. 474	

More synapses were traced for the right hemisphere neuron than the left hemisphere, as the left 475	
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hemisphere neuron was traced to recapitulate the morphology and synapses observed in the 476	

right hemisphere. 477	

 478	

Neuronal Informatics 479	

Electron-Light Microscopy tools ELM 480	

ELM provides a user interface to manually define a three-dimensional warp field between a light 481	

microscopy data set and the whole-brain EM dataset by specifying corresponding landmark 482	

points. It was built on top of the BigWarp Fiji plugin (Bogovic et al., 2016), which in turn was built 483	

on top of the BigDataViewer plugin (Pietzsch et al., 2015) for FIJI (Schindelin et al., 2012). ELM 484	

is aware of standard compartment boundary models available for the template fly brains and 485	

provides hotkeys to view the labels for these compartments; to go between coordinates in ELM 486	

and the EM dataset as viewed in CATMAID; and to go from a CATMAID URL to the 487	

corresponding point in ELM. ELM is available at https://github.com/saalfeldlab/elm. 488	

 489	

Transforming data between EM and light microscopy templates: elmr 490	

elmr (https://github.com/jefferis/elmr) is a package written in R (http://www.r-project.org) to 491	

facilitate bidirectional transfer of 3D data between adult brain EM and light level data.  492	

 493	

Neuropil surface models 494	

Previously defined surface models of the whole fly brain and MB calyx (Ito et al., 2014; Manton 495	

et al., 2014), based on the same template brain as the virtualfybrain.org project 496	

(https://github.com/VirtualFlyBrain/DrosAdultBRAINdomains), were transformed to the EM 497	
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volume using elmr. The AL glomerulus meshes were generated in Blender (www.blender.org) 498	

from EM-reconstructed skeletons of PN dendrites and olfactory receptor neuron termini 499	

(Schlegel et al., 2016). 500	

 501	

QUANTIFICATION AND STATISTICAL ANALYSIS 502	

 503	

Comparison of signal-to-noise between volume EM datasets 504	

Determining the signal to noise ratio (S/N) of biological images is in general a subjective task, 505	

due to its variance under non-linear transformations (Erdogmus et al., 2004). As users of this 506	

data will likely care about biological structures, the determination of S/N should account for this, 507	

considering only the level of signal of these structures and not of things such as staining or 508	

cutting artifacts. The problem of S/N determination has been thoroughly treated in the case of 509	

super-resolution imaging where these ambiguities don’t exist (for a review, see Lambert and 510	

Waters, 2016; see also Supplementary Note 1 in Li et al., 2015), but as yet there are no 511	

universally accepted, automated techniques to calculate the S/N in individual images where 512	

signal is dense in both spatial and frequency spaces, such as EM data of brain neuropil.  513	

We present two measures of S/N here, an automated measure which avoids user biases, but 514	

can include some signal in noise and background calculations (feature based signal-to-noise 515	

ratios) and a simple technique which gives more precise S/Ns but is prone to bias (the cell-edge 516	

technique) which we use to verify the feature based signal-to-noise calculation. We apply these 517	

techniques to a range of publicly available data in order to evaluate the TEMCA2 method, 518	

sample images from each dataset are shown in Figure S4A. 519	
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In both cases we assume that noise is additive (and is independent of the magnitude of the 520	

signal) and symmetric. Such an assumption is likely false (e.g. electron shot noise is Poissonian 521	

and not symmetric at low numbers), however, such impacts are likely small based on manual 522	

examination of images and we assume the impacts of such an assumption are the same for all 523	

techniques. Such assumptions may fail however at very low signals where CCD and shot noise 524	

dominates, or at high signals, where processes such as non-linearity in CCD absorption become 525	

important. 526	

 527	

Feature based signal-to-noise ratios 528	

Fundamentally a signal-to-noise calculation of an image involves a calculation of the 529	

background level, the variation in this background level (which is assumed to be due to noise) 530	

and the calculation of the difference between the regions of interest and this background. 531	

Detecting what these regions are provides a challenge in EM data where images may not have 532	

clear background regions and where noise is contributed to through sample preparation. 533	

In order to measure the S/N we assume that in any given image, the structures of interest 534	

provide the majority of features above the noise. That is, most structures present are biological 535	

in nature, rather than artifacts of sample preparation. Therefore with this assumption, it can be 536	

further assumed that key-points detected by feature detection algorithms will disproportionately 537	

fall on the regions of interest.  538	

Given that animal cells and structures therein tend to be “blobby” due to hydrostatic processes 539	

(Jiang and Sun, 2013), we use a blob-detection algorithm (which compares areas of interest, c.f. 540	

edge or corner detection) to identify areas of interest. We use the SURF algorithm (Bay et al., 541	

2008), though SIFT (Lowe, 2004), BRIEF (Calonder et al., 2010) or other detection algorithms 542	
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should provide enough feature locations to produce similar results (see for example (Kashif et 543	

al., 2016) and references therein). 544	

Following the above, the variation in intensity of an image, I, in the local region of many feature 545	

points is likely to be mostly due to signal, and the variation in intensity nearby few (or no) feature 546	

points will be dominated by noise. The determination of such regions is done by generating an 547	

array of equal size to the original image and for each element, setting it to one if there is a 548	

feature in the corresponding element of the image. This array is then convolved with a Gaussian 549	

of width n, where n is chosen to maximize the SNR in a random selection of five images from 550	

each sample in an effort to avoid bias between samples. 551	

 To select a region dominated by noise we then shuffle this array before sorting it (to avoid 552	

biases in sorting algorithms) and take the lowest point. We then block out a region 2n square 553	

and resort the array nine more times (for a total of ten selected regions), forming the set of 554	

points plow. We likewise perform a selection for the points of maximum variation (phigh). See 555	

Figure S4B for an illustration of the entire process. 556	

 To determine the level of noise, we first generate a copy of the image to which a 557	

three pixel median filter has been applied. We then subtract this median image from the original 558	

to generate a noise dominated image, I'. At each of the minimum feature points (where noise is 559	

most dominant); the standard deviation of this image is taken over a three pixel square 560	

neighborhood. The level of noise, N, is then calculated as the mean of these standard 561	

deviations, i.e., 562	

! = ! !′ !!"# ± 1 . (1) 563	
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The background level of the image, B, is determined by taking the mean of these noise-564	

dominated regions (again taking a mean over the three pixel neighborhood), following on from 565	

the assumption of symmetric noise, giving 566	

 567	

! = ! !!"# ± 1 . (2) 568	

 569	

The level of signal is then taken to be the mean of the (absolute) difference of the mean of these 570	

three pixel neighborhoods around phigh, and the background. This results in the SNR being given 571	

by 572	

 573	

!/! = ! !!!"!±! !!
! . (3) 574	

 575	

As most images lack large areas that consist of only resin, this simple background selection is 576	

not perfect, as such the S/Ns generated should be considered lower limits in most cases. We 577	

show the S/N as a function of the acquisition rate for a variety of EM techniques in figure 2C.  578	

This measure works reasonably well when combining voxels producing S/Ns within 20% (1.5 579	

dB) of the expected based on additive Gaussian noise (Figure S4C), although the ATUM data of 580	

Kasthuri et al. (2011) increases by more than others, a possible sign of their voxels (3x3 nm in 581	

X-Y) under-sampling biological features. This method produces the expected increase when 582	

scaling down images producing equivalent normalized S/Ns (Figure S4C).  Increasing the size 583	

of images also increases the S/N, but this is due to the generation of new pixels with similar 584	

values to old ones inside the regions considered for noise due to the fact that creation of these 585	
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new pixels functions as a pseudo-low pass filter. As expected this measure reports larger S/N 586	

values when Gaussian blurring is applied (as noise is disproportionately removed when a low 587	

pass filter is applied) (Figure S4C). In images generated by super resolution techniques 588	

therefore, this method may be inappropriate and should be modified to, for example, use 589	

distance based regions rather than pixel based regions. 590	

 591	

Cell-membrane signal-to-noise 592	

Although the feature based signal-to-noise measure avoids many human biases in the selection 593	

of regions used to calculate background and signal levels, it unfortunately can often incorporate 594	

biological structure (our signal of interest) into these calculations. 595	

We therefore introduce a complementary measure to compare the S/N of biological EM data 596	

and verify that the feature based signal-to-noise calculation is valid. At its heart, this is simply a 597	

comparison between the signal level at a cell edge and the background nearby, taken at 598	

multiple points within an image. 599	

This is achieved by a user creating a line inside a random 100x100 pixel region which contains 600	

only resin and, ideally nearby, a line which covers only a stained cell boundary. Pixels along 601	

these lines (as selected by Bresenham's line algorithm (Bresenham, 1965)) are considered to 602	

be background or signal respectively. After selection of a background and signal line within each 603	

region, another 100x100 pixel region is chosen, until twenty lines in total (ten background, ten 604	

signal) are selected, skipping a region if there is not a suitable region in which to select both. 605	

The noise is considered to be the standard deviation of the pixel intensities across all 606	

background intensities, and the background level the mean. The signal value is considered to 607	

be a mean of the signal pixels. 608	
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We show an example of the selection process in Figure S4D-E. Signal-to-noise ratios found via 609	

this method Figure S4E, are found to be within 10% of that found via the feature method, 610	

suggesting the former may be used for a fast, bias-free, comparison between methods. 611	

 612	

Analysis of neuronal geometry 613	

Data analysis was conducted using custom packages developed in R. We imported EM 614	

skeleton data from the CATMAID tracing environment using rcatmaid 615	

(https://github.com/jefferis/rcatmaid). Section thickness in CATMAID was specified to be 35 nm; 616	

all analyses of skeleton geometry therefore use this value. For qualitative and quantitative 617	

comparison with LM neurons, the EM skeletons were transformed into coordinate spaces of 618	

various LM template brains using elmr based on landmark pairs defined with ELM (see above). 619	

The R NeuroAnatomy Toolbox package (nat, https://github.com/jefferis/nat) was used for 620	

geometric computations, 3D visualization of neuronal skeletons and surface models. 621	

 622	

NBLAST neuron search for Projection Neurons 623	

The EM skeletons of PNs were transformed into the FCWB template brain space for NBLAST 624	

neuron search against the ~400 LM PNs previously classified in the FlyCircuit dataset by 625	

glomerulus (Costa et al., 2016). This is enabled by a single elmr function nblast_fafb. The 626	

search functionality is built on the nat.nblast package (https://github.com/jefferislab/nat.nblast) 627	

and uses data distributed with the flycircuit package (https://github.com/jefferis/flycircuit), both of 628	

which are installed with elmr. Only PNs whose candidate glomerular types exist in the FlyCircuit 629	

dataset are used. Since EM-reconstructed PNs often have many additional fine processes 630	

compared with their LM counterparts, EM skeletons were used as NBLAST targets rather than 631	
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queries, in reverse to conventional NBLAST option. For each PN in EM, the top 5 hits of LM 632	

neurons and their NBLAST scores are tabulated to aid and/or confirm expert glomerular 633	

identification of PNs. Further details of the NBLAST neuron search, the associated LM data, and 634	

an online web-app for on-the-fly NBLAST queries are available at http://jefferislab.org/si/nblast. 635	

 636	

NBLAST clustering for PNs 637	

Pair-wise all by all NBLAST scores were computed for all uniglomerular PNs (nat.nblast function 638	

nblast_allbyall) after transformation into the JFRC2 template brain (Jenett et al., 2012) space 639	

using elmr. We used unsupervised hierarchical clustering with Ward’s method based on the 640	

NBLAST scores (nat function nhclust). The unsquared Euclidean distance, rather than the 641	

default square of the Euclidean distance, is used as the Y axis for dendrograms. 642	

 643	

Analysis and renderings of PN Arbors in Calyx 644	

We wished to quantify homotypic physical clustering of PNs in EM versus LM data. In summary, 645	

we randomly selected the same number of LM PNs as EM PNs from an existing LM database, 646	

subsetted the calyx arbors of the PNs with a calyx bounding box, and computed pair-wise 647	

geometric measures (mean nearest distance and NBLAST scores). Mean nearest distance 648	

quantifies physical co-location of arbors while NBLAST scores measure morphological similarity 649	

for a given pair of neurons. Details are as follows. 650	

LM datasets (Chiang et al., 2011) of PNs previously registered to a common template brain 651	

(Costa et al., 2016) were used for comparisons with EM PNs. From the LM dataset we first 652	

determined which glomeruli had multiple EM and LM tracings available. One glomerulus, DA3, 653	

was excluded because in LM data DA3 has en passant collaterals that do not enter the MB 654	
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calyx (Jefferis et al., 2007). We then selected a random set of LM skeletons so that we had the 655	

same number of LM and EM skeletons for each glomerulus. 656	

Both EM and LM PNs were transformed onto a common template brain, the JFRC2 template 657	

used by virtualflybrain.org (Manton et al., 2014), and resampled with a 1 µm interval to ensure 658	

uniform representation of skeletons. PN collaterals in the calyx were obtained by two steps: 1) 659	

subset the skeletons with a bounding box defined by the right-side calyx surface model from the 660	

neuropil segmentation generated and used by the Virtual Fly Brain (Ito et al., 2014; Manton et 661	

al., 2014; Milyaev et al., 2012); 2) remove the backbone of each PNs so only the en passant 662	

collaterals entering the calyx are used for distance calculation.  663	

For each glomerulus, geometric measures (mean nearest distance and NBLAST scores) were 664	

computed for each pair-wise combination of PNs of the same type. For mean nearest distance, 665	

we iterated over each node of the query neuron to find the nearest node in the target neuron, 666	

measured the Euclidean distance, and calculate the mean distance for all nodes in the query 667	

neurons (forward distance). When the query neuron is significantly larger than target neuron, 668	

artifactually long nearest distance can be introduced by end points in the larger neuron being far 669	

away from closest nodes from the smaller neuron. To address this issue, we calculated the 670	

same mean nearest distance with the query neuron and target neuron in reverse (reverse 671	

distance) and picked only the smaller of the forward and reverse distances. To quantify 672	

morphological similarity, NBLAST scores were computed for PN arbors in calyx in a similar pair-673	

wise manner. The distributions of all intra-glomerular pairwise mean distances and NBLAST 674	

scores of PNs were plotted, and for both measures the difference between EM and LM 675	

population data were analyzed with a Student t-test. 676	

To visualize only calyx arbors of PNs, a calyx bounding box as defined by calyx neuropil 677	

segmentation in the Virtual Fly Brain template brain (JFRC2) was used to subset both EM and 678	
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LM PN skeletons. Boutons of PNs in calyx are delimited by tagged nodes bordering bouton 679	

blocks of the skeletons (See Neuron Tracing). Only skeletons in PN boutons are kept for 680	

rendering concentric organizations of boutons in calyx. For all tracing visualizations, linear 681	

interpolation of neighbouring skeleton nodes was applied to smoothen artifactual spikes in 682	

neuron tracing due to registration or alignment errors. 683	

 684	

DATA AND SOFTWARE AVAILABILITY 685	

All files and movies are available through the following website: http://www.temca2data.org 686	

 687	

ADDITIONAL RESOURCES 688	

Access to the full adult fly brain data set is available at: http://www.temca2data.org 689	

Analysis code is available at: https://github.com/dbock/bocklab_public/tree/master/temca2data 690	

 691	

Supplemental Figure and Table Legends 692	

 693	

Figure S1. Neuronal Architecture of the MB Calyx. Related to Figure 1. 694	

(A) TEM micrograph of a calycal microglomerulus. A canonical olfactory PN axonal varicosity 695	

(bouton) is presynaptic to several KC dendritic claws. This architecture is collectively referred to 696	

as a microglomerulus. The PN terminal (pink) provides input to KC neurites at synaptic sites. 697	

Arrows: presynaptic release sites.  698	

(B) Schematic of microglomerular inputs to KCs in calyx of Drosophila. The PN axons from AL 699	

extend collaterals into the calyx and form boutons containing synapses to claw-shaped 700	
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dendrites from several KCs. The complete composition of cell types that provide driving inputs in 701	

microglomerular form in the calyx is unknown, as is the distribution of other KC inputs outside of 702	

claws. KCs have been shown to form presynaptic release sites in the calyx most of which, but 703	

not all, are outside of claws, and the complete postsynaptic partner cohort is unknown. Scale 704	

Bar: 1 µm in (A). 705	

 706	

Figure S2. Fast Stage Step and Settle, Overview of Details. Related to Figure 1. 707	

(A) TEMCA equipped with Fast Stage. Arrowheads: Fast Stage (black); elongated vacuum 708	

chamber (white); 2 x 2 camera array (red).  709	

(B) Upper panel: Schematic of Fast Stage showing the locations of bearings, dampers and 710	

vacuum bellows.  Left: driven mass; Right: exterior view.  Lower panel: Cut away of Fast Stage.  711	

Arrows: rolling element damper locations (black arrows); vacuum bellows (black arrowhead); 712	

rolling-element ‘tip’ bearing (white arrowhead). 713	

(C) Plot of Fast Stage motion over time following an 8 µm move. 714	

(D) Schematic of Fast Stage stepping pattern.  Left: small step/ big step schematic.  Numbers 715	

are camera numbers.  Right: Scanning axes and stages.  Red point is origin of scanning.  716	

(E) Autoloader (white arrowhead) mounted to an accessory port on FEI Tecnai Spirit BioTWIN.  717	

(F) Schematic of the Autoloader system diagraming motor positions and movement axes as well 718	

as vacuum and pneumatic subsystems. 719	

 720	

Movie S1. Fast Stage vs. FEI CompuStage. Related to Figure 1. 721	
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Movie showing the acquisition of 2 fields of view using the FEI CompuStage (left) as compared 722	

to the custom FastStage acquiring 17 fields of view (right) in the same time.  723	

Scale Bar: 1 µm. 724	

 725	

Movie S2. Autoloader Cutaway. Related to Figure 1. 726	

CAD movie of Autoloader detailing actions to retrieve and image a sample. 727	

 728	

Movie S3. Autoloader Pick-and-Place. Related to Figure 1. 729	

Movie of Autoloader pick-and-place routine.  The Autoloader locates the grid within the cassette, 730	

moves to a pre-pick location, confirms positioning, picks grid from cassette in a two step process 731	

with positioning assessments during the process, moves to the aligner, assesses the rotational 732	

angle of the grid, if necessary places the grid on the aligner and aligns the grid, retrieves the 733	

grid from the aligner, and inserts into the TEM column (insertion to column not shown).  734	

Following imaging, the Autoloader locates the correct cassette pocket, confirms positioning, 735	

replaces the grid in the cassette, and confirms that the grid is correctly located within the 736	

cassette.  Changes in image quality indicate a change in camera frame rate.  High quality 737	

images are used for positional assessments; lower quality images are used for diagnostic 738	

purposes. 739	

 740	

Figure S3. Sample Preparation for Electron Microscopy. Related to Figure 1. 741	

(A) D. melanogaster brain following sample preparation.  742	

(B) 3D volumetric rendering of X-ray tomogram data from embedded D. melanogaster brain.  743	
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(C) Sample support test showing a failed result with wrinkling of the support film on 3mm grid.  744	

(D) Sample support test showing a successful result with no wrinkling or relaxation of the 745	

support film evident. 746	

Scale Bars: 250 µm in (A-B). 747	

 748	

Figure S4. Comparison of S/N Between EM Imaging Methods. Related to Figure 2. 749	

(A) Sample images from a variety of EM data sources. From left to right, ATUM-SEM (Kasthuri 750	

et al., 2015), FIB-SEM (Takemura et al., 2015), SBEM (Briggman et al., 2011), ssTEM 751	

(Takemura et al., 2013), TEMCA1 (Bock et al., 2011), TEMCA2 (this paper). The top row shows 752	

images of side length 3 µm while the lower row shows 100 pixel subimages of each. The 753	

corresponding areas of these 100 pixel subimages are shown with a black square inside each 754	

image. 755	

(B) From left to right, a TEMCA2 image sample, the key-points detected in the image, 756	

convolution of the key-points illustrating dense and sparse feature regions (purple – low, yellow 757	

high), the region of sparse features selected from the TEMCA2 image showing a resin filled 758	

area suitable for noise calculation.  759	

(C) For all plots points and data sources are as per Figure 2G and Table S3. The normalized 760	

S/N versus acquisition rates of a variety of EM techniques (as color coded) are shown for 761	

different methods. From left to right, feature-based method as described in (B); Stacked Voxels 762	

means that voxels are combined across a layer (SBEM not shown due to alignments not being 763	

clear) and across 50 random images; Reduced Res means that voxels correspond to a higher 764	

physical size across 100 random images; Scaled Up Res means that voxels correspond to a 765	
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smaller physical size across 100 random images; Gaussian Blur means that voxels have been 766	

blurred with a Gaussian filter across 100 random images. 767	

(D) Left, sample image shows a region selected to quantify the noise (green) and a region to 768	

quantify the signal (red) for the cell-edge technique. Right, the intensity for noise and signal 769	

regions versus number of pixels in each region. 770	

(E) Normalized S/N versus acquisition rate as determined via the cell-edge technique across 5 771	

random images from each technique (same color codes as Figure S4C), each of which had 10 772	

regions of background/noise and signal determined. Points and data sources are as per Figure 773	

2G and Table S3. 774	

 775	

Figure S5. Re-imaging Synapses in Pedunculus, Montaging, and Intensity Correction in 776	

2D. Related to Figure 2. 777	

(A-B) Matching ~1.25um wide fields of view in section 3887 from the imaged volume (A) and re-778	

imaged at higher resolution (B).  (A) 4nm/pixel; (B) 1.3nm/pixel 779	

(C-E) Montaging high-dose and low-dose.  Debris present on a section necessitated collection 780	

of a small subset of tiles at lower dose than the remainder of the mosaic.   781	

(C) The debris and border of the low-dose mosaic can be seen in the context of the entire 782	

section.   783	

(D) Debris and mosaic boundary are clearly visible.   784	

(E) The boundary of the joined high-dose and low-dose mosaics is evident (arrowheads). 785	

(F-G) 2D intensity correction. (F) Mosaic of a single section prior to 2D intensity correction.  786	

Intensity differences between tiles are evident in (G). 787	
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(H-I) (H) Same section as in (F) following 2D intensity correction.  Intensity differences between 788	

tiles are greatly diminished (I). 789	

Scale Bars: 200 nm in (A-B), 100 µm in (C), 50 µm in (D), 2 µm in (E), 100 µm in (F, H), 2 µm in 790	

(G, I).  791	

 792	

Figure S6. Reliable Tracing. Related to Figure 2. 793	

(A-C) Three teams, each comprising 1 tracer and 1 proofreader, reconstructed the same 794	

neuron, with each team blinded to the others.  795	

(A) Synaptic counts and gross morphologies are comparable across teams. Arrows indicate 796	

location of synapse shown IN TEM inset. Asterisks in inset indicate locations of a single KC 797	

fingertip postsynaptic to the PN input.  798	

(B) Zoom-in to a claw with an input discrepancy across teams. Gold team discovered a bona 799	

fide process with 6 postsynapses to a putative PN input. Green team discovered 1/5 of the 800	

postsynapses on the proximal portion of this process but was not confident to trace the process 801	

further. Purple team was not confident to trace this process at all.  802	

(C) Network connectivity matched with only 1 inferior input difference shown by red node (PN7). 803	

Orange nodes indicate projection neuron bouton inputs to the KC. One putative PN input was 804	

missed by team 2, indicated by red box. Colored skeletons (A) and graph nodes (B) and indicate 805	

team membership: team 1, green; team 2, gold; team 3, magenta. 806	

Scale bars: ~20 µm in (A), 250 nm in (A) inset, ~2 µm in (B). 807	

 808	

Table S1. NBLAST Scores for PNs. Related to Figure 4. 809	
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 810	

Figure S7. EM versus LM PNs. Related to Figure 5. 811	

(A) Qualitative comparison of calyx collaterals of EM versus LM PNs. Only skeletons inside the 812	

calyx bounding box is shown, as described in Methods. Only LM PNs from (Jefferis et al. 2007) 813	

are used. Glomeruli are ordered by the difference of mean distances between homotypic EM 814	

PNs and LM PNs. Left column, EM PNs. Middle column, the pair of LM PNs with median pair-815	

wise mean nearest distances. Right column, LM PNs.  816	

(B) Pair-wise NBLAST scores for calyx collaterals of homotypic PNs. Glomeruli are ordered by 817	

the difference of NBLAST scores between EM and LM PNs. Each data point represents the 818	

NBLAST scores between the calyx collaterals of a pair of PNs from the same glomerulus.  819	

(C) Histogram of NBLAST scores across all glomeruli. The average NBLAST scores were 820	

significantly higher for PNs in EM than PNs in LM (EM: 0.55 ± 0.19, LM: 0.35 ± 0.19, t test p-821	

value 3.6e-15), indicating that EM PNs are morphologically more similar to each other than LM 822	

PNs. 823	

Scale bar: ~10 µm in (A). 824	

 825	

Table S2. KC Postsynaptic Partners in the MB Main Calyx. Related to Figure 7. 826	

Eighty-seven percent of the KC postsynaptic targets are driven by αβc-, αβs-, or γ KCs. The α'β' 827	

KCs drive only 13%. Only 4 neurons are responsible for 75% of the postsynaptic partners. The 828	

α'β' KCs are only presynaptic to other KCs and the APL. 829	

 830	

Movie S4. Whole Brain EM Volume. Related to Figure 1. 831	
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All sections through the dataset are shown. Left, a low-resolution view of the entire section 832	

extent. White square is centered on x,y position of the microglomerulus shown in Figure S1A. 833	

Right, a zoom-in on a field of view at the center of the white square in the low-resolution view. 834	

Section number 5372 shows the microglomerulus of Figure S1A. 835	

 836	

Movie S5. Neuropils Innervated by MB-CP2. Related to Figure 6. 837	

A previously unidentified neuron, MB-CP2 (orange skeleton), shown inside the whole brain 838	

mesh (gray outline) and several other neuropil meshes obtained via LM and registered to the 839	

EM volume. MB-CP2 is purely postsynaptic (blue dots) in several regions and both pre- (red 840	

dots) and postsynaptic in other regions (first synapse isolation). MB-CP2 innervates the MB 841	

(patina), where it is postsynaptic to γ and γd KCs in the MB pedunculus (second synaptic 842	

isolation; MB-CP2 skeleton subsequently isolated in blue), and presynaptic to all olfactory KC 843	

subtypes at microglomeruli in the MB calyx (second synaptic isolation; MB-CP2 skeleton 844	

subsequently isolated in red), where it also receives input from currently unknown cell types. 845	

Additionally, it is pre- and postsynaptic in the dAC (compartment mesh not shown), LH, and 846	

SLP. MB-CP2 innervates the antlers (cyan), LH (blue), posterior lateral protocerbrum (green), 847	

superior clamp (magenta), superior medial protocerebrum (red), superior intermediate 848	

protocerebrum (gold), and superior lateral protocerebrum (pink) where it is purely postsynaptic 849	

(shown in first synaptic isolation). See Figure 6G for synaptic input/output summary schematic 850	

by neuropil. Initial axes: dorsal, top; ventral, bottom. Movie begins from an anterior perspective. 851	

 852	
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50 μm

Figure S3. Sample Preparation for Electron Microscopy. Related to Figure 1.
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Figure S4. Comparison of S/N Between EM Imaging Methods. Related to Figure 2.
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Figure S5. Re-imaging Synapses in Pedunculus, 
Montaging, and Intensity Correction in 2D. Related to 
Figure 2.
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Figure S6. Reliable Tracing. Related to Figure 2. 
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Figure S7. EM versus LM PNs. Related to Figure 5.
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Table S1. NBLAST Scores for PNs. Related to Figure 4. "

glomerulus score glomerulus score glomerulus score glomerulus score glomerulus score
27295 DA1 1st DA1 0.697 DA1 0.688 DA1 0.685 DA1 0.683 DA1 0.672
57311 DA1 1st DA1 0.701 DA1 0.686 DA1 0.682 DA1 0.680 DA1 0.657
57323 DA1 1st DA1 0.653 DA1 0.635 DA1 0.634 DA1 0.633 DA1 0.626
57353 DA1 1st DA1 0.656 DA1 0.645 DA1 0.625 DA1 0.618 DA1 0.617
57381 DA1 1st DA1 0.717 DA1 0.697 DA1 0.693 DA1 0.678 DA1 0.673
61221 DA1 1st DA1 0.685 DA1 0.684 DA1 0.681 DA1 0.681 DA1 0.678
755022 DA1 1st DA1 0.635 DA1 0.618 DA1 0.613 DA1 0.605 DA1 0.604
2863104 DA1 1st DA1 0.657 DA1 0.640 DA1 0.634 DA1 0.633 DA1 0.624
38885 DA2 1st DA2 0.639 DA2 0.621 DA2 0.619 DA2 0.589 DA2 0.563
53631 DA2 1st DA2 0.583 DA2 0.555 DA2 0.529 DA2 0.522 DA2 0.513
57418 DA2 1st DA2 0.635 DA2 0.623 DA2 0.622 DA2 0.592 DA2 0.578
57422 DA2 1st DA2 0.615 DA2 0.604 DA2 0.602 DA2 0.581 DA2 0.549

1785034 DA2 1st DA2 0.602 DA2 0.601 DA2 0.596 DA2 0.564 DA2 0.526
65762 DC2 1st DC2 0.551 DA2 0.537 DA2 0.514 DA2 0.508 DA2 0.498
32399 DC3 1st DC3 0.577 VA1v 0.480 VA1d 0.459 VA1d 0.449 VA1v 0.446
57241 DC3 1st DC3 0.513 VA1d 0.428 VA1d 0.400 DA1 0.393 VA1v 0.376
57414 DC3 1st DC3 0.581 VA1d 0.457 VA1d 0.442 VA1d 0.428 VA1v 0.425
27303 DL1 1st DL1 0.644 DL1 0.639 DL1 0.622 DL1 0.612 DL1 0.596

1775706 DL1 1st DL1 0.680 DL1 0.655 DL1 0.645 DL1 0.641 DL1 0.636
30791 DL2d 1st DL2d 0.670 DL2d 0.652 DL2d 0.646 DL2d 0.644 DL2d 0.641
57333 DL2d 1st DL2d 0.672 DL2d 0.670 DL2d 0.670 DL2d 0.666 DL2d 0.664
57337 DL2d 1st DL2d 0.712 DL2d 0.695 DL2d 0.693 DL2d 0.693 DL2d 0.690
57341 DL2d 1st DL2d 0.704 DL2d 0.701 DL2d 0.700 DL2d 0.682 DL2d 0.682
67637 DL2d 1st DL2d 0.625 DL2d 0.609 DL2v 0.605 DL2d 0.601 DL2d 0.593
22422 DL2v 1st DL2v 0.699 DL2v 0.696 DL2v 0.691 DL2v 0.686 DL2v 0.681
56623 DL2v 1st DL2v 0.664 DL2v 0.661 DL2v 0.651 DL2v 0.650 DL2v 0.646
61773 DL2v 1st DL2v 0.690 DL2v 0.683 DL2v 0.682 DL2v 0.676 DL2v 0.673
33903 DL3 1st DL3 0.673 DA1 0.644 DA1 0.614 DA1 0.608 DA1 0.602
77661 DL3 1st DL3 0.637 DA1 0.601 DA1 0.595 DA1 0.581 DL3 0.580
581536 DL3 1st DL3 0.638 DA1 0.609 DA1 0.605 DA1 0.605 DA1 0.589
23829 DL4 1st DL4 0.594 DA1 0.574 DL1 0.458 DL1 0.434 VM7 0.275
30891 DM1 1st DM1 0.671 putative VA4 0.491 DM5 0.463 DM5 0.433 VC2 0.428
22594 DM5 1st DM5 0.604 DM5 0.599 VM5d 0.533 VM5d 0.510 VM5d 0.509
27611 DM5 1st DM5 0.587 VM5d 0.580 VM5d 0.561 VM5d 0.561 VM5d 0.557
57307 DM6 1st DM6 0.601 DM6 0.596 DM6 0.594 DM6 0.579 DM6 0.575
60799 DM6 1st DM6 0.633 DM6 0.627 DM6 0.600 DM6 0.593 DM6 0.589
68697 DM6 1st DM6 0.581 DM6 0.577 DM6 0.567 DM6 0.565 DM6 0.565
27048 DP1l 1st DP1l 0.665 DP1l 0.530 DL2v 0.463 DL2v 0.460 DL2v 0.456
27884 V 1st V 0.540 V 0.382 V 0.367 VP1 0.331 V 0.225
192547 V 1st V 0.511 VP1 0.215 V 0.109 V 0.108 DP1l 0.030
36390 VA1d 1st VA1d 0.631 DC3 0.545 VA1v 0.540 VA1v 0.517 VA1v 0.515
42421 VA1d 1st VA1d 0.561 DC3 0.532 VA1v 0.499 VA1v 0.497 VA1v 0.491
51080 VA1v 1st VA1v 0.627 VA1v 0.620 VA1v 0.610 VA1v 0.605 VA1v 0.602
52106 VA1v 1st VA1v 0.604 VA1v 0.599 VA1v 0.592 VA1v 0.579 VA1v 0.577
55125 VA1v 1st VA1v 0.614 VA1v 0.585 VA1v 0.585 VA1v 0.577 VA1v 0.574
57246 VA1v 1st VA1v 0.654 VA1v 0.641 VA1v 0.635 VA1v 0.634 VA1v 0.622
23569 VA4 1st putative VA4 0.580 VC2 0.528 DM5 0.495 DM5 0.439 DL2v 0.398
32214 VA7m 1st VA7m 0.600 VA7m 0.568 DA2 0.457 VM1 0.445 DL2d 0.420
36108 VA7m 1st VA7m 0.634 VA7m 0.629 DL2d 0.470 DL2v 0.463 DL2d 0.460
186573 VA7m 1st VA7m 0.587 VA7m 0.581 VC2 0.490 DA2 0.458 VM1 0.447
45242 VC2 1st VC2 0.640 VC2 0.586 DM5 0.483 DM5 0.470 VM1 0.460
22277 VC3m 1st VC3m 0.605 VC3m 0.589 VC3m 0.584 VC3m 0.584 VC3m 0.576
22744 VC3m 1st VC3m 0.591 VC3m 0.584 VC3m 0.584 VC3m 0.581 VC3m 0.576
400943 VC3m 1st VC3m 0.598 VC3m 0.596 VC3m 0.590 VC3m 0.580 VC3m 0.579
37935 VC4 1st VC4 0.593 VC4 0.592 VC4 0.563 VC4 0.562 VM7 0.500
42927 VC4 1st VC4 0.600 VC4 0.554 VC4 0.532 VC4 0.512 VM7 0.503
55085 VC4 1st VC4 0.607 VC4 0.607 VC4 0.568 VC4 0.557 VM5v 0.516
24726 VM1 1st VM1 0.690 VM1 0.680 VM1 0.679 VM1 0.674 VM1 0.673
775731 VM1 1st VM1 0.642 VM1 0.631 VM1 0.626 VM1 0.624 VM1 0.583
51886 VM2 1st VM2 0.639 VM2 0.620 VM2 0.616 VM2 0.603 VM2 0.574
54072 VM2 1st VM2 0.679 VM2 0.658 VM2 0.657 VM2 0.642 VM2 0.597
23597 VM4 1st VM4 0.465 VM4 0.432 VC3m 0.414 VC3m 0.385 VC3m 0.377
39139 VM5d 1st VM5d 0.598 VM5d 0.597 VM5v 0.589 VM5d 0.583 VM5d 0.570
23512 VM5v 1st VM5v 0.618 VM5v 0.618 VM5v 0.578 VM5v 0.567 VM5v 0.565
30434 VM5v 1st VM5v 0.596 VM5v 0.587 VM5v 0.581 VM5v 0.562 VM5v 0.552
53671 VM5v 1st VM5v 0.596 VM5v 0.580 VM5v 0.559 VM5v 0.538 VM5v 0.530
39254 VM6 1st VM6+VP2 0.596 VC3m 0.499 VC3m 0.481 VC3m 0.478 VC3m 0.478
40306 VM7d 1st VM7 0.654 VM7 0.653 VM7 0.633 VM7 0.632 VM7 0.622
40790 VM7d 1st VM7 0.605 VM7 0.599 VM7 0.595 VM7 0.595 VM7 0.584
24251 VM7v 1st VM7 0.537 VM7 0.524 VM7 0.517 VM7 0.503 VM7 0.503
43539 VM7v 1st VM7 0.541 VM7 0.522 VM7 0.507 VM5d 0.502 VM7 0.499
24622 D 2nd DL1 0.532 D 0.523 DL1 0.513 DL1 0.509 DL1 0.489
40637 D 2nd DL1 0.574 D 0.562 DL1 0.537 DL1 0.521 DL1 0.517
40749 DA4m 2nd DC2 0.531 DA4 0.512 DL4 0.479 DA4 0.476 DA2 0.470
57402 DC2 2nd DL1 0.515 DC2 0.506 VM7 0.482 DA2 0.476 DL1 0.475
27246 VM3 2nd putative VA4 0.539 VM3 0.529 VM2 0.520 VM2 0.516 VC4 0.495
35447 VM5d 2nd VM5v 0.638 VM5d 0.633 VM5v 0.632 VM5v 0.624 VM5v 0.601
49865 VM5d 2nd VM5v 0.603 VM5d 0.568 VM5d 0.546 VM5d 0.542 VM5d 0.540
57459 DL3 4th DA1 0.595 DA1 0.592 DA1 0.581 DL3 0.580 DA1 0.576
62434 VM5d 4th VM5v 0.635 VM5v 0.625 VM5v 0.613 VM5d 0.603 VM5v 0.599
35246 D 5th DL1 0.561 DL1 0.559 DL1 0.549 DL1 0.532 D 0.531
57385 DM5 N DA2 0.530 DM6 0.521 DL2d 0.517 DL2d 0.516 DL2d 0.514
58686 DP1m N putative VA4 0.471 DM5 0.459 VC2 0.440 DL2v 0.410 DL2d 0.405
41308 VM3 N VM2 0.478 VC4 0.456 VM2 0.446 VC4 0.438 VC4 0.413

PN skeleton ids expert identification match
NBLAST results

1st hit 2nd hit 3rd hit 4th hit 5th hit
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