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P1 seems suboptimal, yet within subjects, later P1s were associated with shorter RTs, b=-0.003, 

95%CI = [-.0054, -.0005], t=2.33, p=.02 (no interaction with meaningfulness was observed). 

 

Fig. 5. Time-frequency 
analysis of alpha-band 
power during the cue-
target interval 
(Experiment 4). (A) To 
identify time-frequency-
electrode regions of 
interest while avoiding 
circular inference, we 
averaged time-frequency 
power across all 
electrodes and 
conditions. This revealed 
a prominent increase (~ 
65% from baseline) in 
pre-target (-500 to 0 ms) 
power in the alpha range 
(8-14 Hz) that had a 
posterior topography 
(right panel; left and 
right electrode clusters of 
interest denoted with 
white dots) associated 
with simply performing 
the task. We then focused 
on how meaning training 
impacted this signal in 
subsequent analyses. (B) 
Time-frequency power 
plots showing the 
difference (meaning 
trained – meaning untrained) for left (left panel) and right (right panel) electrodes of interest 
(derived from panel A) reveal greater alpha power just prior to target onset on meaning trained 
trials. The lower panels depicts the time-course of the pre-target alpha signal for meaning 
trained and untrained trials, revealing a significant temporal cluster of increased alpha power 
approximately 480 to 250 ms prior to target onset over left, but not right electrode clusters. 
Shaded regions represent ±1 within-subjects SEM 85. 
 

 
 

-400 0 400

10

20

30

40

50

10

20

30

40

50

-18018

�¨ in % change
from baseline

-400 0 400
Time from target onset (ms) Time from target onset (ms)

F
re

qu
en

cy
 (

H
z)

F
re

qu
en

cy
 (

H
z)

Left sensors
meaning trained - meaning untrained

-20

20

60

100

-600 -400 -200 0 -600 -400 -200 0

-20

20

100

140

60

180

p<0.05, cluster corrected

Prestimulus alpha power Prestimulus alpha power

P
ow

er
 (

%
 c

ha
ng

e 
fr

om
 b

as
el

in
e)

P
ow

er
 (

%
 c

ha
ng

e 
fr

om
 b

as
el

in
e)

Time before target onset (ms) Time before target onset (ms)

Meaning trained
Meaning untrained

Right sensors
meaning trained - meaning untrained

-1200 -800 -400 0 400

10

20

30

40

50

-60

-40

-20

0

20

40

60

Time from target onset (ms)

F
re

qu
en

cy
 (

H
z)

P
ow

er (%
 change from

 baseline)

8-14 Hz power
-500 to 0 ms

All electrodes all conditions

Cue

�Z

A

B

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/076687doi: bioRxiv preprint first posted online Sep. 21, 2016; 



	 16	

Control Analyses. To determine whether participants’ improved performance for the verbally 

cued images could be explained by learning where the object was located and looking to those 

locations we analyzed electrooculograms (EOGs, prior to ocular correction from ICA) recorded 

from bipolar electrodes placed on the lateral canthus and lower eyelid of each participant’s right 

eye during the EEG recording. If participants more frequently engaged in eye movement during 

the cue-target interval of meaning-trained trials we would expect, on average, larger amplitude 

EOG signals following the cue. However, EOG amplitudes, time-locked to the onset of the cue, 

did not reliably distinguish between meaning-trained and meaning-untrained trials in the way 

that alpha power during this same interval did. EOG amplitudes on meaning-trained trials also 

did not reliably differ when trials were sorted by the location of the object in the cue image: 

whether it was on the left or right side, on the top or bottom, or lateral or vertical relative to 

center. Across the whole cue-target interval, no contrast survived the same cluster correction 

procedure applied to the alpha time-course analysis, suggesting that eye movements are unlikely 

to explain our EEG findings.  
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To further investigate the possibility that participants covertly attended to the location of the 

object in the cue image, we tested for well-known effects of spatial attention on alpha 

lateralization. Numerous studies, reviewed in 49, have demonstrated alpha power 

Fig. 6. The magnitude of the 
meaning training effect on 
prestimulus alpha power predicts 
the magnitude of the meaning 
effect on P1 amplitude across 
participants. This indicates that 
individuals who showed a greater 
increase in prestimulus alpha 
power on meaning trained trials 
also showed a greater increase in 
P1 amplitude. Data derived from 
the left hemisphere electrode 
cluster; the correlation using the 
right hemisphere cluster was non-
significant.  
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desynchronization at posterior electrodes contralateral to the attended location. Thus, if subjects 

were maintaining covert attention, for example, to the left side of the image following a cue with 

a left object, then alpha power should decrease over right sensors relative to when a cue has an 

object on the right, and vice versa. Contrary to this prediction, we observed no modulation of 

alpha power at either left or right electrode clusters as a function of object location within the 

Mooney image. Again, no contrasts across the cue-target interval survived cluster correction. 

This suggests that spatial attention is unlikely to be the source of the effects of meaning training. 

 

Discussion 

To better understand when and how prior knowledge influences perception we first examined 

how non-perceptual cues influence recognition of initially meaningless Mooney images. These 

verbal cues resulted in substantial recognition improvements. For example, being told that an 

image contained a piece of furniture produced a 16-fold increase in recognizing a desk. We next 

examined whether ascribing meaning to the ambiguous images improved not just people’s ability 

to recognize the denoted object, but to perform a basic perceptual task: distinguishing whether 

two images were physically identical. Indeed, ascribing meaning to the images through verbal 

cues improved people’s ability to determine whether two simultaneously or sequentially 

presented images were the same or not (Fig. 3 and 4). The behavioral advantage might still be 

thought to reflect an effect of meaningfulness on some relatively late process were it not for the 

electrophysiological results showing that ascribing meaning led to increase in the amplitude of 

P1 responses to the target (Fig. 4B)cf. 50. The P1 enhancement was preceded by an increase in 

alpha amplitude during the cue-target interval when the cue was meaningful (Fig. 5). The effect 

of meaning training on pre-target alpha power and target-evoked P1 amplitude were positively 

correlated across participants, such that individuals who showed larger increases in pre-target 

alpha power as a result of meaning training, also showed larger increases in P1 amplitude (Fig. 

6).  

 

Combined, our results contradict claims that knowledge affects perception only at a very late 

stage 51,20,52 and provide general support for predictive processing accounts of perception, 

positing that knowledge may feed back to modulate lower levels of perceptual processing 3,25,53. 

Our results are also the first to show that making ambiguous images meaningful via 
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nonperceptual linguistic cues enhances not only the ability to recognize the images, but also a 

putatively lower-level process subserving visual discrimination. 

 

The P1 ERP component is associated with relatively early regions in the visual hierarchy (most 

likely ventral peristriate regions within Brodmann’s Area 18 54–57) but is has been shown to be 

sensitive to top-down manipulations such as spatial cueing 58,59, object based attention 60, object 

recognition 61,62, and recently, trial-by-trial linguistic cuing 43. Our finding that averaged P1 

amplitudes were increased following meaning training is thus most parsimoniously explained as 

prior knowledge having an early locus in its effects on visual discrimination (although the failure 

to find this effect in the single-trial EEG suggests some caution in its interpretation). This result 

is consistent with prior fMRI findings implicating sectors of early visual cortex in the recognition 

of Mooney images 17,63 but extends these results by demonstrating that the timing of Mooney 

recognition is consistent with the modulation of early, feedforward visual processing. 

Interestingly, the effect of meaning on P1 amplitude was present only in response to the target 

stimulus, and not the cue. This suggests that, in our task, prior knowledge impacted early visual 

responses in a dynamic manner, such that experience with the verbal cues facilitated the ability 

to form expectations for a subsequently  “target” image. We speculate that this early target-

related enhancement may be accomplished by the temporary activation of the cued perceptual 

features (reflected in sustained alpha power) rather than by an immediate interaction with long-

term memory representations of the meaning-trained features, which would be expected to lead 

to enhancements of both cue and target p1. Another possibility is that long-term memory 

representations are brought to bear on the meaning-trained “cue” images, but these affect later 

perceptual and post-perceptual processes.  

 

Our findings are also in line with two recent magnetoencephalography (MEG) studies reporting 

early effects of prior experience on subjective visibility ratings 38,64. In those studies, however, 

prior experience is difficult to disentangle from perceptual repetition. For example, Aru et al., 

(2016) compared MEG responses to images that had previously been studied against images that 

were completely novel, leaving open mere exposure as a potential source of differences. In our 

task, by contrast, participants were familiarized with both meaning trained and meaning 

untrained images but only the identity of the Mooney image was revealed in the meaning 
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training condition, thereby isolating effects of recognition. Our design further rules out the 

possibility that stimulus factors (e.g., salience) could explain our effects, since the choice of 

which stimuli were trained was randomized across subjects. One possible alternative by which 

meaning training may have had its effect is through spatial attention. For example, it is 

conceivable that on learning that a given image has a boot on the left side, participants 

subsequently were more effective in attending to the more informative side of the image. If true, 

such an explanation would not detract from the behavioral benefit we observed, but would mean 

that the effects of knowledge were limited to spatial attentional gain. Subsequent analyses 

suggest this is not the case (see Control Analyses). 

 

It is noteworthy that, as in the present results, the two abovementioned MEG studies, as well as 

related work from our lab employing linguistic cues43, have all found early effects over left-

lateralized occipito-parietal sensors, perhaps suggesting that the effects of linguistically aided 

perception may be more pronounced in the left hemisphere perhaps owing to the predominantly 

left lateralization of lexical processing46. 

 

Mounting neurophysiological evidence has linked low-frequency oscillations in the alpha and 

beta bands to top-down processing 65–68. Recent work has demonstrated that perceptual 

expectations modulate alpha-band activity prior to the onset of a target stimulus, biasing baseline 

activity towards the interpretation of the expected stimulus 28,38. We provide further support for 

this hypothesis by showing that posterior alpha power increases when participants have prior 

knowledge of the meaning of the cue image, which was to be used as a comparison template for 

the subsequent target. Further, pre-target alpha modulation was found to predict the effect of 

prior knowledge on target-evoked P1 responses, suggesting that representations from prior 

knowledge activated by the cue interacted with target processing. Notably, the positive direction 

of this effect—increased prestimulus alpha power predicted larger P1 amplitudes (Fig. 6)—

directly contrasts with previous findings of a negative relationship between these variables 69–71, 

which is typically interpreted as reflecting the inhibitory nature of alpha rhythms 72,73. Indeed, 

our observation directly contrasts with the notion of alpha as a purely inhibitory or “idling” 

rhythm. We suggest that, in our task, increased prestimulus alpha-band power may reflect the 

pre-activation of neurons representing prior knowledge about object identity, thereby facilitating 
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subsequent perceptual same/different judgments. This is consistent with the finding that evoked 

gamma and multiunit responses in Macaque inferotemporal cortex are positively correlated with 

prestimulus alpha power 74, suggesting that the alpha modulation we observed may have its 

origin in regions where alpha is not playing an inhibitory role. 

 

Although our results are supportive of a general tenant of predictive processing accounts 8,11,25—

that predictions, formed through prior knowledge, can influence sensory representations—our 

results also depart in an important way from certain proposals made by predictive coding 

theorists 8,75,76. With respect to the neural implementation of predictive coding, it is suggested 

that feedforward responses reflect the difference between the predicted information and the 

actual input. Predicted inputs should therefore result in a reduced feedforward response. 

Experimental evidence for this proposal, however, is controversial. Several fMRI experiments 

have observed reduced visual cortical responses to expected stimuli 77–79, whereas visual 

neurophysiology studies describe most feedback connections as excitatory input onto excitatory 

neurons in lower-level regions 80–82, which may underlie the reports of enhanced fMRI and 

electrophysiological responses to expected stimuli 22,38,83. A recent behavioral experiment 

designed to tease apart these alternatives found that predictive feedback increased perceived 

contrast—which is known to be monotonically related to activity in primary visual cortex—

suggesting that prediction enhances sensory responses 84. Our finding that prior knowledge 

increased P1 amplitude also supports the notion that feedback processes enhance early evoked 

responses, although teasing apart the scenarios under which responses are enhanced or reduced 

by predictions remains an important challenge for future research. 
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FOOTNOTES 
*These values are quite different from the peak amplitudes in the waveform traces in Fig. 4B 
because the grand means reflect the average of peaks occurring at different latencies on different 
trials and so the amplitudes are lower. 
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