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Abstract

Fluctuations in brain local field potential (LFP) oscillations reflect emergent network-level signals
that mediate behavior. Cracking the code whereby these LFP oscillations coordinate in time and space
(spatiotemporal dynamics) to represent complex behaviors would provide fundamental insights into
how the brain signals emotional processes at the network level. Here we use machine learning to
integrate LFP activity acquired concurrently from seven cortical and subcortical brain regions into an
analytical model that predicts the emergence of depression-related behavioral dysfunction across
individual mice subjected to chronic social defeat stress. We uncover a spatiotemporal dynamic network
in which activity originates in prefrontal cortex (PFC) and nucleus accumbens (NAc, ventral striatum),
relays through amygdala and ventral tegmental area (VTA), and converges in ventral hippocampus
(VHip). The activity of this network correlates with acute threat responses and brain-wide cellular firing,
and it is enhanced in three independent molecular-, physiological-, and behavioral-based models of
depression vulnerability. Finally, we use two antidepressant manipulations to demonstrate that this
vulnerability network is biologically distinct from the networks that signal behavioral dysfunction after
stress. Thus, corticostriatal to VHip-directed spatiotemporal dynamics organized at the network level are
a novel convergent depression vulnerability pathway.

Main Text

Major depressive disorder is the leading cause of disability in the world[1]. While stress
contributes to the onset of depression[2, 3], only a fraction of individuals that experience stressful
events develop behavioral pathology. Multiple factors including childhood trauma and alterations in
several molecular pathways have been shown to increase disease risk[3, 4]; nevertheless, the neural
pathways on which these factors converge to yield subthreshold changes that render individuals
vulnerable to stress are unknown. Knowledge of these neural pathways would facilitate the
development of novel diagnostic technologies that stratify disease risk as well as preventative
therapeutics to reverse neural circuit endophenotypes that mediate vulnerability to depression. To
achieve this aim it is essential to distinguish the neural alterations that confer vulnerability to depression
from those that accompany the emergence of behavioral dysfunction.

Chronic social defeat stress (cSDS) is a widely validated pre-clinical model of depression[5-7]. In
this paradigm, test mice are repeatedly exposed to larger aggressive CD1 mice. At the end of these
exposures, test mice develop a depression-like behavioral state characterized by social avoidance,
anhedonia- and anxiety-like behavior, and sleep/circadian dysregulation[6, 7]. Critically, only ~60% of
C57 mice subjected to this paradigm exhibit susceptibility to developing this stress-induced syndrome.
While the remaining ~40% of mice subjected to cSDS exhibit resilience[6], susceptible and resilient mice
experience the same degree of aggressive encounters. Thus, the cSDS paradigm provides a framework
to probe putative basal network vulnerabilities that may exist in stress-vulnerable mice prior to stress
exposure.

Multiple regions including subgenual cingulate cortex, amygdala, VHip, or VTA have been
proposed to contribute to a putative depression brain network[5, 8-14]. Supporting this notion,
functional magnetic resonance imaging (fMRI) studies in depressed subjects have discovered distinct
functional connectivity alterations involving these brain regions that predict individual behavioral
phenotypes and antidepressant treatment responses (i.e., pharmacology, psychotherapy, and
transcranial magnetic stimulation)[15, 16]. However, our prior in vivo findings in genetic mouse models
of depression and in mice exposed to cSDS suggest that depression-like behavioral dysfunction also
arises at the level of circuit/network spatiotemporal dynamics, involving altered interactions of neural
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activity between spatially separated brain regions over time that are not captured by the fMRI timescale
[14, 17, 18]. We postulated that a signature predicting depression vulnerability may exist at this dynamic
circuit/network-level as well.

To test this hypothesis, we employed a transdisciplinary strategy integrating cSDS in mice, multi-
circuit in vivo recordings from a subset of depression-related regions including prelimbic cortex (PrL_Cx),
infralimbic cortex (IL_Cx), nucleus accumbens (NAc), central nucleus of the amygdala (CeA), basolateral
amygdala (BLA), VTA, and VHip (Fig. 1a-b), a translational assay of neural circuit reactivity (Fig. 1b) [14,
19], and machine learning[20]. We selected this subset of brain regions since they have each been
validated in contributing to depression-like behavior in multiple human and animal studies across
several different research groups, and each region can be reliably targeted in mice using our multi-
circuit recording technology[18, 21]. Our in vivo recording approach quantified both cellular activity and
local field potentials (LFPs), which reflects the pooled activity of many neurons located up to 1mm from
the electrode tip, their synaptic inputs, and their output signals[22].

We uncovered network-level spatiotemporal dynamic signatures that distinguish the neural
alterations that confer vulnerability to depression from those that accompany the emergence of
behavioral dysfunction after stress. We then utilized three independent mouse models of depression
vulnerability to verify that one spatiotemporal dynamic network represents a convergent network-level
vulnerability pathway for depression-related abnormalities. Finally, we used two distinct antidepressant
manipulations to verify that this network underlying depression vulnerability is biologically distinct from
the neural networks underlying the expression of depression-related behavioral dysfunction after stress
exposure.

Neural model of brain network function

To study the relationship between widespread spatiotemporal dynamics and depression
pathology, we developed a novel probabilistic machine learning approach using LFP activity data
recorded from seven brain regions across multiple frequencies. We term this novel approach “cross-
spectral factor analysis” or CSFA (see Fig. 1e and supplemental methods for full details of CSFA model).
Our CSFA approach yields a descriptive model, such that it discovers LFP patterns across regions that
change together over seconds of time. The model is also predictive such that it discriminates the LFP
patterns that are specific for a number of pre-specified behavioral variables. Our CSFA model parallels
classic fMRI models that describe functional connectivity quantified by ultra-slow correlated activity
across many brain regions over seconds of time. However, in contrast to fMRI models, our approach also
enables the analysis of fast oscillatory electrical signals at the millisecond timescale. Indeed, the faster
timescale features that contribute to the LFP patterns we observe include spectral power (LFP amplitude
across frequencies), synchrony (a neural correlate of brain circuit function that quantifies how two LFPs
correlate over a millisecond timescale), and phase-directionality (a neural correlate of information
transfer which quantifies which of two synchronous LFPs leads the other), across many brain regions
(see supplemental Fig. S1). We therefore refer to these LFP patterns as “Electomes”, “electrical
functional connectomes”. Importantly, our CSFA model also yields an Electome activity score which
indicates the activity of each Electome during each five second window of LFP data. A given brain area or
circuit can belong to multiple Electomes, providing the opportunity for distinct Electomes to functionally
interact to yield a global brain state.

Neural networks signal depression vulnerability

Brain activity was recorded while animals were in their home cage and during a forced
interaction test with an aggressive mouse (Fig. 1b). A subset of the mice were subjected to cSDS, and the
post-stress susceptibility of these mice was characterized using the choice interaction test (Fig. 1c)
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which has been shown to reliably track the expression of the full depression-like behavioral
syndrome[6]. All of the mice were then subjected to another home cage—forced interaction test
recording. We trained our CSFA model using machine learning to determine the oscillatory signals that
are modulated across time and discriminate: 1) all mice subjected to cSDS from non-stressed controls
(post-cSDS; N=19 and 16 mice, respectively), 2) susceptible from resilient mice (post-cSDS; N=10 and 9
mice, respectively) and 3) activity recorded during different segments of the homecage--forced
interaction test recordings (Fig. 1b, pre-cSDS and post-cSDS; N=44 total mice)[14, 19].

To determine which Electomes derived by our CSFA model discriminated these stress conditions,
we used a support vector machine. We found that 4 out of the 25 specified Electomes discriminated
these various behavioral conditions (Fig. 1f, see supplemental materials for detailed CSFA model
description). For discriminating cSDS exposure, Electome 2 activity was higher in mice subjected to cSDS
than in non-stressed controls (Fig. 1f, see also Fig. 2d). Electome 2 was also higher in stress-susceptible
mice compared to the resilient animals (Fig. 1f and 2d). This Electome was defined by co-modulated
delta and beta oscillations, and oscillations in this network exhibited directionality largely from NAc to
VHip and VTA (Fig. 2a-c). Electome 3 was also higher in stress-susceptible mice compared to the resilient
animals (Fig. 1f). This Electome was defined by co-modulated delta oscillations that exhibited
directionality from PFC and NAc to BLA (Fig. 2a-c). Finally, Electome 1 activity was enhanced by acute
exposure to the CD1 mouse during the forced interaction test both before and after cSDS (Figs. 1f and
2d). Electome 1 was largely defined by 8-20Hz oscillations that exhibit directionality from PFC and NAc to
VHip (Fig. 2a-c). Electome 4, defined by local delta (1-4Hz) oscillations in VHip, did not show dramatic
changes with behavioral conditions (Fig. 2d), although was nonetheless associated significantly with the
forced interaction test (Fig. 1f).

Strikingly, two of the Electomes signaled vulnerability prior to the cSDS experience. During acute
exposure to the CD1 mouse (i.e. the second half of the forced interaction test), Electome 1 was higher in
stress-naive mice that later exhibited susceptibility to cSDS than those mice that later exhibited
resilience (P = 0.0057 for comparison of pre-stress Electome 1 activity during the forced interaction with
the CD1; Receiver Operating Characteristic AUC=0.86; N=9-10 mice per group; Fig. 2d). In contrast,
Electome 2 was higher in stress-naive mice that later exhibited susceptibility, specifically when they
were placed in the interaction chamber during the first half of the forced interaction test (P=9.7x10* for
comparison of pre-stress Electome 2 activity during forced interaction test-Empty; Receiver Operating
Characteristic AUC=0.92; N=9-10 mice per group; Fig. 2d). We did not observe significant differences
between stress-naive susceptible mice and stress-naive resilient mice when they were in their home
cage, or across any of the other Electomes (P>0.05 for all comparisons). Thus, Electomes 1 and 2 were
putative biomarkers of vulnerability since they distinguished the stress-naive test mice that would later
show behavioral dysfunction after cSDS from the mice that would later exhibit resilience. Electome 2
was also a biomarker of the emergence of depression-related behavioral dysfunction as activity in this
network was increased in the stress-susceptible mice compared to the resilient mice and the non-stress
controls.

Electome activity correlates with unit firing

Having identified these putative stress-related signatures, we set out to verify that the
Electomes were a bona fide representation of biological activity and not simply abstract mathematical
constructs. To do this, we tested whether Electome activity demonstrated a relationship to the activity
of neurons recorded simultaneously from the seven brain regions, which is a clear reflection of
biological function. Specifically, we quantified the activity of each of the 644 recorded neuronsin 5
second bins and compared this activity to the activity of each Electome (Fig. 3a). To verify that the
degree of correlation of the Electomes with cellular firing rates was meaningful and not due to random
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chance, we compared these results to randomly shuffled firing rates (see Supplemental Methods). Each
of the four Electomes exhibited activity that correlated with 10-15% of the recorded cells (N=644 units
pooled from all brain areas, Fig. 3b). Many neurons (250/644, 39%) showed activity that correlated with
more than one Electome, and 21-51% of the neurons from each individual brain area correlated with at
least one of the four Electomes (Fig. 3b). These data confirmed that the Electomes reflect network-level
neural processes that emerge from cellular firing across large spatiotemporal distributions[23].

Enhanced Electome activity in a three independent models of vulnerability

We tested whether Electome 1 and/or Electome 2 indeed reflect a stress-vulnerability pathway
that predicts susceptibility to future stress. We reasoned that, if these electrical patterns were truly
reflective of general depression vulnerability mechanisms, then manipulations across many different
levels of analysis implicated in depression vulnerability should also generate these electrical signatures.
Thus, we subjected mice to overexpression of a susceptibility hub gene, chronic interferon-alpha
treatment, or an early life stress, and directly tested whether these manipulations increased Electome 1
or Electome 2 activity.

We first exploited a molecular approach to enhance vulnerability in the cSDS model and then
guantified the impact of this manipulation on the Electomes. Both Electome 1 and Electome 2 exhibited
directionality towards VHip. Since we recently found that the Sdk1 gene, which encodes the cell
adhesion protein, sidekick 1, plays a central hub role in mediating susceptibility in VHip[24], we verified
that Sdk1 overexpression in VHip increases stress vulnerability (P=0.0037; N=13-17 mice per group; Fig.
4a), as demonstrated previously. We then tested whether VHip-Sdk1 overexpression influences
Electome 1 or Electome 2 activity, using a within subject design (Fig.4b). After an initial homecage—
forced interaction test recording session, animals were injected intra-VHip with HSV-Sdk1-GFP or an
HSV-GFP control vector (Fig. 4c). Two-days later, we repeated our neurophysiological recording
protocol. By applying these recording data to the Electome model coefficients learned from our initial
model in ¢SDS mice (Fig. 4d), we recovered Electome activity measures for the new testing sessions.
Strikingly, VHip-Sdk1 overexpression, in the absence of stress, increased Electome 1 activity during
exposure to a CD1 mouse (P=0.037; N=5-7 mice; Fig. 4e). VHip-Sdk1 overexpression in the absence of
chronic stress had no impact on Electome 2, nor did it yield the behavioral dysfunction that defines
stress-susceptibility as observed previously (F117=1.03, P=0.32 for overexpression effect on social
interaction; t;,15=0.07, P=0.95 for immobility time; see Fig. 4f-g)[24]. Thus, this molecular manipulation
selectively induced the Electome 1 spatiotemporal dynamic network and stress-vulnerability behavioral
state that our computational model linked previously to enhanced vulnerability to cSDS in stress-naive,
wildtype mice.

Secondly, we tested whether a physiological manipulation, administration of interferon alpha
(IFNa), a drug that induces a depression-like phenotype in humans[25], is sufficient to induce stress-
related Electome activity (Fig. 5a). Prior studies have shown that chronic IFNa treatment induces a
depressive-like behavioral syndrome in mice[26, 27]. Consistent with prior findings, we found that
chronic IFNa treatment modestly reduced normal social behavior in a three-chamber social interaction
test (F1,18=7.14, P=0.008; t1,18=2.1; P=0.03 for post-hoc testing of social time; N=10 mice per group; Fig.
5b). We also found that chronic IFNa treatment suppressed sucrose preference, verifying that this
manipulation induced depression-related behavioral changes (F1,16=4.45, P=0.025; t19=2.3, P=0.024 for
post-hoc testing of sucrose effect in Veh treated mice, N=10; t;,7=0.5, P=0.31 for sucrose effect in IFNa
treated mice, N=8; Fig. 5d; see also supplemental Fig. S2).

We then implanted C57 animals with micro-wire electrodes and treated with IFNa or vehicle.
After 5 weeks of treatment, mice were subjected to the forced interaction test (Fig. 5e). Chronic IFNa
treatment significantly increased Electome 1 activity during CD1 exposure in the forced interaction test
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(P=0.041; N=8 mice per group; Fig. 5f). No difference was observed in Electome 2 activity (P=0.323; Fig.
5f). Thus, IFNa treatment recapitulated the Electome 1 spatiotemporal dynamic network we identified in
the cSDS and Sdk1 models of depression vulnerability (see also supplemental Fig. S3). Notably, a
powerful feature of our CSFA model is that once the original model and coefficients are learned, the
same output features (Electome activity) can be determined from new data with LFP activity from only a
subset of brain areas (Fig 5e). Thus, these mice were only implanted in the most technically accessible
brain areas (PrL_Cx, IL_Cx, NAc, BLA, and CeA).

Thirdly, we sought to determine whether naturally occurring behavioral experiences that
increase stress vulnerability also enhance our putative vulnerability network. Childhood trauma is a
major risk factor for developing depression in adulthood[4]. Since maternal separation stress has been
widely utilized as a mouse model of early life stress (ELS)[28, 29] (Fig. 5g), we first tested whether
maternal separation stress was sufficient to render animals more vulnerable to stress in adulthood. ELS
mice and their normally reared controls were subjected to a sub-threshold cSDS protocol where the
animals were housed independently from the CD1 mice after each defeat. Mice subjected to ELS and
sub-threshold cSDS exhibited the social avoidance that defines the stress-susceptible cSDS phenotype
(F1,34=4.23, P=0.048; t13=5.43; P=0.0001 for post-hoc comparison of ELS/cSDS and ELS/non-stressed
mice; N=7-8 per group; Fig 5h); However, neither ELS nor the sub-threshold cSDS exposure were
sufficient to induce social avoidance on their own (t15=0.81; P=0.43 and t15=0.88; P=0.38, for comparison
of normally reared/non-stressed mice to maternally-separated/non-stressed and normally reared/non-
stressed, respectively, using FDR-corrected t-test; N=10 per group; Fig. 5h). No differences were
observed in the interaction time with the non-social stimulus (F1,34=0.01, P=0.93 for ELS x sub-threshold
cSDS interaction effect using two-tailed two-way ANOVA). Together, these findings verified that ELS
increased vulnerability to adult stress.

We then implanted a new cohort of adult ELS mice and normally-reared controls with recording
electrodes. After recovery, mice were subjected to the forced interaction test assay (Fig. 5i). By
transforming the recorded LFP activity using our initial cSDS CSFA model and coefficients, we found that
ELS increased Electome 1 activity during exposure to the CD1 mouse (P=0.005 using one-tailed Wilcoxon
Rank-sum test; N = 5-7 per group), with no effect on Electome 2 activity (P=0.318 using one-tailed
Wilcoxon Rank-sum test; Fig. 5j). Thus, ELS was sufficient to induce the vulnerability network signature
in adult animals. Together, these findings confirmed that three independent molecular, physiological
and behavioral manipulations that increase depression vulnerability in adult animals all converged on
the same Electome 1 network.

The vulnerability network is distinct from depression-like behavior networks

Our initial cSDS CSFA model found that the network that signals latent stress vulnerability
(Electome 1, prior to stress) was computationally distinct from the putative networks that signal the
emergence of the depression-like behavior state in susceptible mice after cSDS (Electome 2 and
Electome 3, post-stress). After validating Electome 1 as a biological marker of depression vulnerability,
we tested whether depression vulnerability was truly biologically distinct from depression-related
behavioral abnormalities. We reasoned that if the Electome 1 vulnerability signature was indeed
mechanistically distinct from the networks underlying the pathological behavior state, biological
manipulations that reverse depression-related behavioral abnormalities would fail to suppress Electome
1 activity during our forced interaction test assay. Thus, we selected two distinct manipulations that
have been shown to exert antidepressant effects in both humans and rodent models.

Deep brain stimulation (DBS) of subgenual cingulate cortex (Brodmann area 25, BA25) induces
antidepressant effects in select clinical populations with depression[10, 30]. Critically, direct stimulation
of left IL_Cx (the rodent homologue of BA25) exhibits antidepressant-like effects in the cSDS model as
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well[31]. To test the impact of left IL_Cx stimulation on Electome activity, we infected animals with a
stabilized step-function opsin (SSFO, AAV-CaMKII-SSFO) in IL_Cx (Fig. 6a). When stimulated by blue light,
SSFO induces increased firing of neurons for over 20 minutes[32]. Control animals were infected with a
sham virus (AAV-Ef1a-DIO-SSFO), which does not express the opsin (Fig. 6a-b). We then implanted
animals with electrodes and recorded their LFP activity in the forced interaction test immediately after
blue light stimulation (Fig. 6b, see also supplemental Fig. S4). IL_Cx-DBS stimulation had no impact on
Electome 1 activity during exposure to the CD1 mouse (P=0.47 using rank-sum test; N=5-8 mice/group).
However, IL_Cx-DBS stimulation did suppress Electome 2 activity, even though the mice were stress-
naive (Fig. 6d, left; F1,,=6.3, P= 0.015). Electome 3 activity was not suppressed by this manipulation (Fig.
6d, right; F1,,=0.99, P=0.17). Thus, as anticipated, IL_Cx-DBS stimulation had no impact on our
depression-vulnerability signature.

Ketamine is an emerging rapidly-acting antidepressant agent. A single dose of ketamine (10-
20mg/kg, i.p.) has been shown to ameliorate susceptibility in the cSDS model when it is administered
after the last defeat episode but 24 hours prior to behavioral testing[33, 34]. Critically, when this same
ketamine regimen is given 24-hours prior to the first cSDS defeat episode, there is no effect on an
animal’s susceptibility to subsequent cSDS[34]. From a behavioral standpoint, this finding suggests that
this ketamine regimen does not target the biological mechanisms underlying vulnerability in C57 mice.
Thus, we tested whether ketamine (20mg/kg i.p) was sufficient to suppress Electome 1 activity, again in
stress-naive mice. Animals were treated with ketamine, and forced interaction testing was performed 24
hours later (Fig. 6e). Applying our initial cSDS Electome model and coefficients to our recorded LFP data,
we found that ketamine also failed to suppress Electome 1 activity (P=0.41 using rank-sum test; N=8
mice/group). However, ketamine did suppress Electome 3 activity (F,,2s=5.61, P=0.005; P<0.05 using
post-hoc rank-sum test). Electome 2 was not affected by this manipulation (Fig. 6f; F12s= 1.27, P= 0.28).
Thus, as hypothesized, neither manipulation of post-stress behavioral pathology impacted our stress
vulnerability signature, Electome 1, providing clear evidence that neural network mechanisms conferring
stress vulnerability are distinct from those mediating a stress-induced depression-like behavioral state.

Discussion

It has been proposed that depression is a brain circuit/network disorder. Using machine
learning, we discovered a naturally occurring spatiotemporal dynamic network that signals vulnerability
to cSDS in stress-naive mice (Electome 1). We validated this network in three independent models of
depression vulnerability (P=6.2x10"* using Fisher’s combined probability test) and demonstrated this
network was not affected by our two antidepressant-like manipulations (see supplemental Fig. S5 for
summary of findings). Thus, we provide clear evidence that Electome 1 encodes a convergent depression
vulnerability pathway that is biologically distinct from the pathway that signals depression-like
behavioral dysfunction. The identification of a convergent depression neural network in stress-naive
mice with normal behavioral function raises the potential that brain spatiotemporal dynamics can be
exploited to develop a novel class of therapeutics that actually prevent the emergence of depression in
vulnerable individuals in response to stressful experiences.

We discovered two spatiotemporal dynamic networks that together reflect the emergence of
depression-like behavior in susceptible animals after cSDS (Electome 2 and Electome 3). Two distinct
antidepressant-like manipulations each suppressed activity in one, but not both, of these Electomes.
Electome 2 and 3 were only distinguished by their spatiotemporal dynamic features including the
frequency of oscillatory synchrony and the directionality of information flow through the regions. Thus,
our findings suggest that multiple networks may have to synergize in order to yield a global
spatiotemporal dynamic global brain state that mediates depression. Furthermore, suppressing activity
in any one of these networks may be sufficient to reverse depression pathology (i.e., an Electome two
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hit model, see supplemental Fig. S6). Alternatively, each of these Electomes may mediate a different
subset of depression-related behaviors, and suppressing their activity may only normalize these
behaviors. Further experiments will be needed to test these hypotheses.

Our three behaviorally relevant and biologically distinct networks (Electomes 1, 2, and 3) each
involve all of the brain regions we recorded. Future experiments will be needed to clarify the role of
additional depression-related brain regions in the Electome networks. Nevertheless, since these three
Electomes were only distinguished by their spatiotemporal dynamic features, our findings establish
altered spatiotemporal dynamics across wide-spread neural circuits as a key pathophysiological
mechanism underlying emotional disorders.

Methods Summary
Animal Care and Use

C57BL/6J (C57) male mice purchased from the Jackson Labs and CD1 male mice purchased from
Charles River Laboratory were used for cSDS, Sdk1, and IFNa experiments presented in this study. The
C57 mice used for early life stress studies were bred within the Duke Vivarium. C57 mice were housed
3-5 per cage and separated after surgery. All animals were maintained on a 12 hour light/dark cycle, in a
humidity- and temperature-controlled room with water and food available ad libitum. All CD1 mice were
single-housed. Studies were conducted with approved protocols from the Duke University Institutional
Animal Care and Use Committee and were in accordance with the NIH guidelines for the Care and Use of
Laboratory Animals.

Neurophysiological Data acquisition

Neuronal activity was sampled at 30kHz using the Cerebus acquisition system (Blackrock
Microsystems Inc., UT). Local field potentials (LFPs) were bandpass filtered at 0.5-250Hz and stored at
1000Hz. Neurophysiological recordings were referenced to a ground wire connected to two ground
screws.

See supplemental materials for additional methods.

Figures Legends

Figure 1: Identification of stress-related networks using machine learning. a) Partial wiring diagram
describing structural interactions in mice across depression related brain regions. We performed multi-
circuit recordings from the areas shown in red. b) Sample LFP traces recorded concurrently from seven
brain areas: BLA, CeA, PrL_Cx, IL_Cx, NAc, VHip, and VTA (top). Homecage—Forced interaction test (FIT)
used to probe brain network activity during: homecage, exposure to an empty cage while placed inside a
small sub-chamber or to a cage containing a CD1 mouse while still inside small sub-chamber (bottom). c)
Experimental timeline (top), and schematic of choice interaction test (CIT) classically used to identify
susceptible vs. resilient mice after cSDS (bottom). d) Choice interaction ratios after 10 days of cSDS
compared to non-stress controls. e) Cross-spectral factor analysis model where observations are brain
features (LFP power, cross-area synchrony, and cross-area phase offsets) that are shared by latent states
(networks). These networks coordinate distinct ‘emotional brain states’ represented by a given task
label (i.e. susceptibility vs. resilience). We trained 25 descriptive latent networks. Six of these networks
were also trained to be predictive f) Four networks/Electomes identified using a support vector machine
jointly discriminated the stress states (Networks 1, 2, 3, and 4). Example support vectors are shown
above.
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Figure 2: Four Electome networks signal distinct stress states. a) Power and coherence measures that
compose each network. Brain areas and oscillatory frequency bands ranging from 1 to 50Hz are shown
around the rim of the circle plot. Spectral power measures that contribute to each Electome are
depicted by the highlights around the rim, and cross spectral (i.e., synchrony) measures are depicted by
the lines connecting the brain regions through the center of the circle (Electome activity is shown at a
relative spectral density threshold of 0.08). b) Example VHip spectral density plot for is shown for each
Electome. c) Phase offset measures that define directionality within each Electome (phase activity is
shown at a threshold of 0.1 radians). Histograms quantify the number of lead and lagging circuit
interactions for each brain region. d) Electome activation during pre- and post-stress home cage and
forced interaction test (FIT) recordings. The thick colored lines show the average across animals, while
the thin lines in the background show the values from individual mice. Two Electomes (highlighted by
purple) showed test-related statistical differences between susceptible and resilient mice prior to cSDS
exposure (P<0.01; N=5-7 mice/group).

Figure 3: Electome network activity correlates with brain-wide cellular firing. a) Example of PFC neuron
that showed significant firing relative to Electome 2 activity in the home cage. b) Population firing
relative to Electome activity (N = 644 cells). Yellow bars highlight units that showed firing that correlated
with Electome activity. Green bars highlight units that showed anti-correlated firing relative to Electome
activity.

Figure 4: VHip-Sdk1 overexpression selectively increases Electome 1 activity in stress-naive mice. a)
Mice were subjected social defeat twice daily for 4 days (i.e. accelerated defeat). The Sdk1
overexpression group exhibited increased susceptibility. b) Experimental schematic for
neurophysiological recordings. ¢) Cannutrode enables site-specific viral injection in chronically implanted
mice (left), surgical schematic (middle), and image showing GFP expression in chronically implanted
mouse. d) LFPs recorded during the forced interaction test (FIT) were transformed using the initial CSFA
Electome model/coefficients. e) Sdk1 overexpression in VHip increased Electome 1 activity during the
forced interaction test-CD1 (p<0.05 for comparison activity in HSV-Sdk1 and HSV-GFP mice using a one-
tailed Wilcoxon rank-sum test). Purple boxes highlight network biomarkers of vulnerability to chronic
stress in normal mice (see Fig. 2). f-g) Sdk1 overexpression had no significant effect on f) social
interaction or g) immobility during a forced swim test in non-stressed mice.

Figure 5: Enhanced Electome 1 activity in two translational models of depression vulnerability. a)
Experimental schematic. b) Chronic IFNa administration reduced social behavior in the classic three-
chamber test (*P<0.05 for novel-mouse effect using two-way ANOVA, *P<0.05 using unpaired one-tailed
t-test). c) No locomotor differences were observed in the open field (t;,1s=0.599, P=0.56 using an
unpaired two-tailed t-test; N=10 mice per group). d) Social behavior in three chamber social interaction
test (#P<0.05 for sucrose effect using two-way ANOVA, *P<0.05 using paired one-tailed t-test). e)
Schematic for neurophysiological experiments. f) Chronic IFNa treatment recapitulated the
neurophysiological signature of stress vulnerability identified in Electome 1, but not Electome 2. g)
Schematic for ELS paradigm and experimental timeline for neurophysiological testing. h) Impact of ELS
and ¢SDS on social behavior (#P<0.05 for ELS x sub-threshold ¢SDS interaction effect using two-tailed
two-way ANOVA; *P<0.05 using unpaired two-tailed t-test). i) Experimental schematic for in vivo
recording experiments. j) ELS mice exhibited higher Electome 1 activity during exposure to a CD1 mouse
compared to normally reared controls. No difference was observed in Electome 2 activity.

Figure 6: Biologically distinct mechanism underlies depression vulnerability. a) IL_Cx infection strategy.
b) Prominent suppression of IL_Cx gamma (30-50Hz) oscillations was observed after blue light
stimulation in animals expressing SSFO. Representative Prefrontal cortex histological images in SSFO
mice and DIO-SSFO controls. Broad EYFP labeling was observed in PrL_Cx and IL_Cx in SSFO mice. The
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light fiber was implanted at the dorsal IL_Cx border. c) Schematic for SSFO experiments. d) Electome
activity in SSFO mice compared to the DIO-SSFO sham controls (N=5-8 mice/ group). e) Schematic for
Ketamine experiment. f) Electome activity in Ketamine treated mice compared to saline treated controls
(N=8 mice/group).
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