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Abstract: 1	

Human primary motor cortex (M1) is an essential structure for the production of 2	

dexterous hand movements. While distinct subpopulations of neurons are activated 3	

during single finger movements, it remains unknown whether M1 also represents 4	

sequences of multiple finger movements. Using novel multivariate fMRI analysis 5	

techniques, we show here that even after 5 days of intense practice there was little or 6	

no evidence for a true sequence representation in M1. Rather, the activity patterns for 7	

sequences in M1 could be explained by linear combination of patterns associated with 8	

the constituent individual finger movements, with the strongest weight on the finger 9	

making the first response of the sequence. These results suggest that M1 only 10	

represents single finger movements, but receives increased input at the start of a 11	

sequence. In contrast, the reliable differences between different sequences in premotor 12	

and parietal areas could not be explained by a strong weighting of the first finger, 13	

supporting the view that these regions exhibit a true representation of sequences.   14	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 29, 2017. ; https://doi.org/10.1101/157438doi: bioRxiv preprint 

https://doi.org/10.1101/157438


	 2	

Introduction 15	

Primary motor cortex (M1) with its direct projection to spinal motoneurons is 16	

a critical structure for fine hand control (Lawrence and Kuypers, 1968; Muir and 17	

Lemon, 1983). Population of neurons in M1 involved in individuated finger 18	

movement show considerable overlap (Schieber and Hibbard, 1993). Yet, they form 19	

large enough clusters to be detected with functional magnetic resonance imaging 20	

(fMRI) as unique activation pattern associated with each individual finger (Indovina 21	

and Sanes, 2001; Ejaz et al., 2015). Each of these populations can be conceptualized 22	

as a dynamical system (Churchland et al., 2012) (illustrated by arrows inside the two 23	

circles in Fig. 1A), that produces the continuous sequence of muscle activities 24	

necessary for the movement of a single finger. Here we ask whether such sub-25	

populations in M1 can also learn to represent longer sequences that span movements 26	

of multiple different fingers. 27	

 28	

 29	
Figure 1. Two ways of representing sequential movements. (A)Before training 30	

sequences are produced through sequential selection of single finger movements. The 31	

execution layer (M1 and spinal cord) contains populations of neurons that, once 32	

activated, generate the muscle activity patterns necessary for a single finger 33	

movement through their intrinsic population dynamics. (B) After learning, the 34	

repeated sequential activation of two execution primitives leads to the formation of a 35	

new population of neurons that produces the two presses as a single unit. (C) 36	

Alternatively, a neural population in premotor areas could activate the execution 37	

primitives for the two fingers in the correct order.  38	

 39	
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Recent computational work has demonstrated that a randomly connected 40	

recurrent neural network can learn and store multiple dynamically evolving patterns 41	

(Laje and Buonomano, 2013). It is therefore conceivable that M1 develops dedicated 42	

populations of neurons that encode the sequences of two or more finger movements 43	

(Fig. 1B). In this scenario, the neural activity for pressing the 2nd digit would be 44	

different depending on whether it was executed in the sequence 1-2 or 3-2. Such a 45	

representation would be necessary if M1 was to autonomously generate the spatio-46	

temporal activity pattern necessary for sequence production. Indeed, it has been 47	

suggested that M1 acquires such representations of finger movement sequences after 48	

multiple days of training (Karni et al., 1995).   49	

Alternatively, the learned sequences could be represented in secondary motor 50	

areas (Hikosaka et al., 2002; Diedrichsen and Kornysheva, 2015), which then activate 51	

the corresponding execution-related populations in M1 (Fig. 1C). A number of 52	

recording studies have found evidence of neurons that are uniquely activated for 53	

different sequences in dorsal premotor cortex (PMd) and the supplementary motor 54	

area (SMA) (Mushiake et al., 1991; Shima and Tanji, 1998). In this scenario, M1 55	

would have no true sequence representation, as the neural activity would solely reflect 56	

the ongoing elementary movement independent of the sequential context (Mushiake et 57	

al., 1991; Ashe et al., 1993). 58	

Here we sought to distinguish between these two possibilities, by analysing 59	

the fine-grained activity patterns in M1 using functional magnetic resonance imaging 60	

(fMRI) during the performance of well-learned finger sequences. Sequences consisted 61	

of different orderings of the same fingers presses. Because of the low temporal 62	

resolution of fMRI, we could not resolve the activity related to the individual presses, 63	

but could only measure the activity pattern averaged over the whole sequence. 64	

Nonetheless, if activity in M1 represented the movement sequence, we should find 65	

reliable differences between the sequences, as each sequence would activate a partly 66	

separate neuronal subpopulation (Fig. 1B).   67	

Indeed, in previous studies (Wiestler and Diedrichsen, 2013; Kornysheva and 68	

Diedrichsen, 2014; Wiestler et al., 2014), we had found that sequences consisting of 69	

different permutations of the same five fingers can be reliably decoded from M1. 70	

However, the finding of decodeability alone does not provide unequivocal evidence 71	

for a true sequence representation. It is possible that activity in M1 only represents 72	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 29, 2017. ; https://doi.org/10.1101/157438doi: bioRxiv preprint 

https://doi.org/10.1101/157438


	 4	

individual movements (i.e. that the activity for the second press is the same whether it 73	

is executed in the sequence 1-2 or 3-2, Fig. 1C), but that the amount of activity for 74	

each individual finger press depends on the serial position in the sequence. For 75	

example, it is possible that the first finger press in the sequence always elicits more 76	

activity than subsequent presses. Because we can only observe a temporally integrated 77	

signal in fMRI, such unequal weighting would lead to differences in activity patterns 78	

between different sequences. Thus to show evidence for a true sequence 79	

representation, we not only need to show distinguishable activity patterns for different 80	

sequences, but also demonstrate that these differences cannot be explained by a 81	

weighted combination of the activity patterns for individual presses.  82	

To test this idea, we compared the patterns for multi-finger sequence with 83	

those obtained for the execution of repeated presses of each single finger. We found 84	

that in M1 differences between the activity patterns for different sequences could be 85	

fully explained by the combination of activity patterns elicited by single finger presses. 86	

Specifically, sequence activation patterns in M1 reflected a stronger activation for the 87	

first finger in the sequence than subsequent fingers. In contrast, activation patterns in 88	

premotor and parietal cortices could not be explained by a combination of the activity 89	

patterns for the elementary movements. This suggests that premotor areas comprise 90	

representations of movement sequence, which then activate the representations of the 91	

individual component movements in M1 (Fig. 1C).  92	

Results  93	

M1 “encodes” both single finger movements and sequences. 94	

We tested if sequences are represented within M1 by comparing the fine-grained 95	

fMRI brain activation pattern associated with fast finger sequences (6 finger presses 96	

within 2.5 sec) with those associated with single-finger movements. Participants 97	

practiced six sequences that comprised all orders of pressing the thumb, middle and 98	

little finger with their right hand (Fig. 2A,B). They also produced six repetitions of 99	

the same finger press with each of the fingers, as constituents of the sequences. 100	

Participants were trained for 3 days, approximately 6 hrs in total, until they could 101	

perform all sequences from memory without error and at the same speed. We 102	

localized areas that showed reliable differences between either single-finger or multi-103	

finger sequences by using a surface-based search-light approach (Oosterhof et al., 104	
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2011). Based on previous results (Wiestler and Diedrichsen, 2013), we expected that 105	

different single finger movements and different movement sequences would elicit 106	

differentiable activity patterns in M1.  107	

 108	

 109	
Figure 2. Methods for Experiment 1. (A) Participants generated isometric finger 110	

presses on a custom-built keyboard with force transducers and pneumatic pistons 111	

embedded within each key. (B) Participants were trained on five single-finger and 6 112	

multi-finger sequences. (C) Schematic illustration for a trial during scanning. A 113	

roman numeral indicated the sequence to be executed. Participants then executed the 114	

sequence twice, receiving online visual feedback for each correct press. fMRI activity 115	

measurements were averaged across the two executions of the sequence, thereby 116	

removing temporal information from the activity profiles.  117	

 118	

To characterize the representation, we calculated the cross-validated 119	

Mahalanobis distance (Walther et al., 2016) between the activity patterns for different 120	

conditions. As expected, we found evidence for a representation of single fingers in 121	

the hand area of primary motor (M1) and somatosensory cortex (S1, Fig 3A). 122	

Consistent with previous studies (Wiestler et al., 2011; Diedrichsen et al., 2013; Ejaz 123	

et al., 2015), weaker differences between activity patterns of single finger movements 124	

were also found in secondary motor areas such as dorsal and ventral premotor (PMd 125	

and PMv), supplementary motor (SMA) areas, and in the anterior superior parietal 126	

lobules, (aSPL, for stats see Figure 3-Supplement A,B), and the ipsilateral hemisphere 127	

(Diedrichsen et al., 2013).  128	

	129	
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	130	
Figure 3. Searchlight map for movement representation. (A) Averaged distance for 131	

single finger sequences. (B) Averaged distance for multi finger sequences. Results are 132	

shown on an inflated view of the left and right hemisphere, with the inset showing 133	

distance on the medial wall.   134	

 135	

The multi-finger sequences elicited differentiable activity patterns in premotor 136	

and parietal areas (Wiestler and Diedrichsen, 2013; Kornysheva and Diedrichsen, 137	

2014; Wiestler et al., 2014) (Fig 3B). Importantly, we also found significantly 138	

different activity patterns for different sequences in M1 and S1 (Figure 3-Supplement 139	

C). The pattern distances for sequences were only 19±9% of those for single-finger 140	

movements, but they were reliable enough to decode which of the six sequences was 141	

performed with a cross-validated accuracy of 25±5% (chance-level is 16.67%).  142	

One may argue that, if M1 only represented the individual finger presses, the 143	

activity patterns for the different sequences should have been indistinguishable. 144	

However, this argument relies on the assumption that all component actions elicit the 145	

same amount of activation regardless of the order in which they were made. Before 146	

concluding that M1 exhibits a genuine sequence representation (i.e. is in a different 147	

neuronal state for each sequence), we therefore need to consider the possibility that 148	

the input from premotor areas (Fig. 1C) varied depending on whether the finger press 149	

was in the beginning or middle of the sequence. As different sequences start with 150	

different fingers, this effect could lead to distinguishable BOLD activity patterns for 151	

different sequences, without implying a true representation of the sequence in M1.  152	

	153	
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 154	
Figure 3-Supplement. ROI analysis of movement representation. (A) Seven ROIs 155	

were defined on the left hemisphere of reconstructed cortical surface. (B,C) Mean 156	

distances calculated for single finger sequences (B), and multi finger sequences (C). 157	

Asterisks indicate significance based on the group t-test. *: p<0.05, **: p<0.01, ***: 158	

p<0.001. 159	

	160	

Differences in sequences depend on the first finger.  161	

To test for this possibility, we systematically compare the activation patterns for the 162	

multi-finger sequences to those of the single-finger presses and in M1. We calculated 163	

the cross-validated distances between all pairs of conditions in an anatomically 164	

defined region-of-interest (ROI; Figure 3-Supplement A) for contralateral M1. The 165	

resultant matrix of pair-wise distances (55 pairs in total) – the representational 166	

dissimilarity matrix (RDM) - effectively summarizes the representational structure of 167	

the whole ROI (Fig. 4A).  168	

To obtain insight into the representational structure, we applied a 169	

dimensionality reduction to the RDM by projecting it into a 2-dimensional space (Fig. 170	

4B, for detail, see Materials and Methods). For single-finger movements (111, 333, 171	

etc.) we replicated the characteristic representational structure with the thumb 172	

showing the most unique pattern and the other fingers arranged in a semi-circle (Ejaz 173	

et al., 2015).  174	

 175	
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 176	
Figure 4. Representational structure in the left M1. (A) Representational 177	

dissimilarity matrix (RDM) calculated from the activation pattern within left M1 178	

(contralateral to the performing hand). (B) Low-dimensional projection of the RDM 179	

by multi-dimensional scaling (MDS). Each dot represents a movement condition (1-5: 180	

single finger, 135-531: multi finger). (C, D) Test for first-finger effect (see Materials 181	

and Methods). (C) Mean distance between the single-finger movement (1, 3, or 5) and 182	

the multi-finger sequence that starts with the same finger MINUS the distance 183	

between the same single finger movement and sequences that start with a different 184	

finger. A positive difference indicates that the pattern for each multi-finger sequence 185	

is weighted towards the pattern of the first finger. (D) Mean distance (calculated for 186	

M1) between two multi-finger sequences that start with different fingers MINUS the 187	

mean distance between fingers that start with the same finger. A positive difference 188	

indicates that difference between sequences can partly be explained by the difference 189	

between the first finger. Asterisks indicate statistical significance assessed by one-190	

sided paired t-test (*: p<0.05, **: p<0.01). 191	

 192	

The multi-finger sequences are arranged such that two sequences starting with 193	

the same finger are clustered together (shown in the same colour in Fig. 4B). 194	

Furthermore, among all multi-finger sequence patterns, each pattern was also the most 195	

similar to the pattern associated with the first finger in the sequence. It should be 196	

noted, however, that low-dimensional projections (here designed to maximize the 197	

distances between single-finger movements, see Materials and Methods) do in general 198	
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not capture all the aspects of the representational structure. Therefore, to fairly 199	

quantify these two key observations, we compared the cross-validated distances 200	

between activity patterns of single- and multi-finger sequences in the (un-projected) 201	

high-dimensional space.  202	

If the activity pattern of each sequence is the most similar to the starting finger, 203	

then the pattern for each individual finger should be closer to sequences starting with 204	

this finger than to other sequences. For instance, the pattern for the thumb (111, in Fig. 205	

4B) should be closer to sequence 135 and 153 than to other sequences (e.g., 351 or 206	

315). This was indeed the case in contralateral M1 (t8=6.18, p=1.3×10-4) and S1 207	

(t8=4.09, p=0.0018) (Fig. 4C).  208	

Furthermore, two sequences starting with the same finger should be more 209	

similar to each other than other pairs (e.g., the distance 135 vs. 153 should be smaller 210	

than 135 vs. 315). Again, this effect was significant in M1 (Fig. 4D, t8=2.87, 211	

p=0.0104) and S1 (t8=3.08, p=0.0075). In contrast, no other tested ROI showed 212	

significance on both tests simultaneously (Fig. 4D).  213	

One possible scenario which can explain both observations is that the activity 214	

patterns for sequences in M1 are a weighted sum of patterns elicited by the constituent 215	

single-finger presses, with the first finger having the highest weight. This would 216	

imply that there is no true sequence representation in M1.  To evaluate whether this 217	

simple idea could fully explain the pattern differences between the multi-finger 218	

sequences in M1, we tested different candidate models for the activity patterns 219	

elicited by sequences using the framework of pattern component modeling (PCM) 220	

(Diedrichsen et al., 2011; Diedrichsen and Kriegeskorte, 2016; Diedrichsen et al., 221	

2017). PCM allows us to directly compare different models for the representational 222	

structure inherent in the pattern of multi-voxel activities. Importantly, we can 223	

compare the model likelihood to a noise ceiling, to assess whether the model can fully 224	

account for the data given the level of measurement noise and inter-subject variability 225	

(see Materials & Method).  226	

As a starting point, we assessed the “first-finger” model, in which the patterns 227	

for multi-finger sequences are the weighted sum of the single finger presses, with the 228	

first finger having the highest weight and all the subsequent fingers a lower, but equal, 229	

weights (see Materials & Method). This model predicts that sequences that start with 230	

the same finger do not have different patterns (Fig. 5A). We found that this model 231	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 29, 2017. ; https://doi.org/10.1101/157438doi: bioRxiv preprint 

https://doi.org/10.1101/157438


	 10	

could almost fully account for the representational structure found in M1: the 232	

difference in log-likelihood to the Null-model (log-Bayes factor, see Materials & 233	

Method) fell between the upper and lower bound of the noise ceiling (Fig. 5B: 6.95 vs 234	

6.45).  235	

 236	
Figure 5. Evaluating representational models of multi finger sequences.  237	

(A) The empirical second moment of the activity patterns is modelled using a 238	

combination of the predicted second moment matrices for each of the models. (B) 239	

Difference in log-likelihood as compared to the null-model (log-Bayes-factor) for 240	

each component model. The grey area demarks the upper and lower noise ceiling. 241	

The combination of the first-finger model and the 6-finger transition model (1F.S) is 242	

shown below the horizontal dashed line. Winning model is marked by the arrow. 243	

Significant differences (assessed by Wilcoxon’s rank sum test on individual log-244	

Bayes-factors ) in the fit between the winning and the other models are marked by 245	

asterisks (*: p<0.05, **: p<0.01, ***: p<0.001). Error bars represent SE across 246	

subjects. (C) Log-Bayes-factor of the first-finger model compared to the lower noise 247	

ceiling for each ROI. Dashed line shows the typical threshold value for model 248	

selection (e.g., Kaas and Raftery 1995).  249	

 250	
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 251	
Figure 5-Supplement. Model fitting result for other ROIs. 252	

 253	

We then tested whether M1 might represent movement transitions between 2 254	

or more fingers (see Fig 5A). Note that a representation of a 6-finger transition would 255	

mean that each sequence would have a unique activity pattern. The log-Bayes factor 256	

for these models was clearly lower than that for the first-finger model (Fig. 5B), 257	

indicating a poorer fit of these models.   258	

We then explored linear combinations of models. Because the relative weight 259	

of each component was an additional free parameter, we evaluated the model 260	

likelihood using cross-validation across participants (see Materials & Methods). 261	

When we combined the first-finger model with the sequence model, we achieved a 262	

slightly lower likelihood than the first-finger model alone for M1, the average log-263	

Bayes factor reduced by 0.05. For S1, however, the addition of sequence model 264	

achieved a slightly higher likelihood (9.37 for first-finger model alone, vs 9.87 for 265	

combined model, Fig. 5B). However, on a common scale of Bayes factors (Kass and 266	

Raftery, 1995), such a small difference would be considered “not worth more than a 267	

bare mention”.  268	

In premotor areas, on the other hand, the representational structure was not 269	

well explained by the first-finger model. For example, in SMA and SPLa, the fit of 270	

the sequence model was systematically better than the first-finger model (Fig. 5B, for 271	

other ROIs, see Figure 5-supplement), indicating that the activity patterns in these 272	

regions represented sequential information. Importantly, the likelihood of the first-273	

finger model was systematically below the lower bound of the noise ceiling (Fig. 5C): 274	
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The mean difference in log BF to the lower noise ceiling was substantially larger than 275	

1, indicating strong evidence (Kaas and Raftery, 1995) that for these regions a better 276	

model exists.  277	

In summary, on the group level our results provided very limited evidence for 278	

a true, unique sequence representation, or the representation of transitions between 279	

fingers in M1. Instead, the representational structure for sequences in this area could 280	

almost fully be explained by the first-finger model – i.e assuming that the patterns for 281	

multi-finger sequences are a linear combination of the patterns associated with the 282	

individual finger presses, with the first finger weighted more strongly than the others. 283	

The same observation held true for S1. In contrast, in premotor regions the first-finger 284	

model could not account for the differences between sequences, suggesting genuine 285	

encoding of sequential information in these regions.  286	

 287	

First-finger effect in M1 is related to neural planning and execution processes   288	

We hypothesize that that the prominent activity for the first finger press in M1 is 289	

related to active planning and execution processes. Given that the BOLD signal more 290	

closely reflects synaptic input than spiking activity of output neurons (Logothetis et 291	

al., 2001), one possible explanation is that M1 receives strong input from premotor 292	

regions at the beginning of the sequence to push the neural state from resting to active 293	

state at movement initiation. While M1 would still rely on premotor input to produce 294	

the subsequent finger presses, the amount of this input would be smaller as M1 is 295	

already in an active state.  296	

Alternatively, the prominence of the first finger pattern could be due to the passive 297	

properties of M1. Specifically, the effect could have hemodynamic rather than 298	

neuronal causes. That is, the neural activity for each finger in the sequence could be 299	

exactly the same, but because of the non-linear integration of the BOLD signal for 300	

inter-stimulus intervals of <6s (Dale and Buckner, 1997), it may be that the first 301	

finger press achieved the majority of the vasodilatory response and hence dominates 302	

the overall activity pattern.  303	

To rule out this possibility, we exploited the fact that the single-finger patterns 304	

in M1 and S1 can also be elicited by passive stimulation (Wiestler et al., 2011). In the 305	

scanner, we therefore “replayed” the recorded force traces during the active trials 306	

through pneumatic pistons mounted under each finger. If we can elicit comparable 307	
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single-finger activity patterns in M1 through both active and passive movements, and 308	

if the timing of the presses is identical across conditions, then any hemodynamic, or 309	

passive neural effect, should apply equally in both situations. Thus, if the first-finger 310	

effect is due to the non-linear translation from neural to BOLD signals, we should 311	

find a similar representational structure for active and passive multi-finger movements.  312	

 313	
Figure 6. Passive stimulation elicited comparable single finger representation, but 314	

reduced multi-finger sequence representation. (A) Averaged distance for single 315	

finger sequences, and (B) multi finger sequences shown on an inflated view of the left 316	

and right hemisphere, with the inset showing distance on the medial wall. Scaling for 317	

the multi finger sequences were determined based on the reduction of distance from 318	

active movement condition for single finger sequences. 319	

 (C) Average distance in the cortical ROIs (see Fig. 3 supplement) for single finger 320	

sequences for active (red) and passive (blue) conditions. (D) Average distance across 321	

all pairs for multi-finger sequences. Error bars represent SE across subjects. 322	

 As can be seen from Figure 6A, the spatial distribution of single finger 323	

representations was comparable to that obtained in the active condition (Fig. 3A). For 324	

a direct comparison, we calculated the average distances in each of the cortical ROIS 325	

(Fig. 6C). The distance in M1 was 82±11% of what was elicited in active condition, 326	

and 101±10% in S1. Additionally, the elicited patterns matched the active patterns on 327	

a finger-by-finger basis. The average correlation between active and passive patterns 328	

(after subtracting out the mean activity pattern) of the same finger were r=0.76±0.37, 329	

p=8.86×10-5, and r=0.89±0.05, p=6.8×10-11, respectively for M1 and S1. Therefore, 330	
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we confirmed that almost comparable single-finger activity patterns are elicited in M1 331	

through the passive stimulation.  332	

In contrast to single-finger representations, encoding of multi-finger sequences  333	

reduced dramatically over the whole cortical surface (Fig. 6B). The distances between 334	

sequences reduced to 47±29% in M1 and 42±42% in S1 compared to the active 335	

condition (Fig. 6D). Critically, the reduction was larger than what would be expected 336	

from the reduction in the single-finger representations (Fig. 6B, M1: t16=1.7601, 337	

p=0.049, and S1: t16=2.587, p=0.001). If the first-finger effect had been solely due to a 338	

hemodynamic non-linearity, or to a passive adaptation of neural activity, then the 339	

effect should have equally applied to both active and passive conditions. Instead, the 340	

differences between active and passive conditions indicate that the high weighting of 341	

the first-finger press in M1 is caused by active preparation or initiation of the 342	

sequence.  343	

 The results also show that the sequence representations found in premotor 344	

regions are due to the active planning and execution of a sequence, and not to 345	

processing of the sensory inflow.  The distances for multi-finger movements were 346	

substantially lower (24% on average) in premotor regions (Fig 6B) and not 347	

significantly different from zero in 4 of the 5 premotor ROIs. Furthermore, the 348	

remaining representational structure was relatively inconsistent between subjects, as 349	

can be seen in the low noise ceiling of the model fits (Supplemental Fig 6). These 350	

findings clearly indicate that the sequence representation observed in premotor 351	

regions requires the active execution of a sequence.  352	
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 353	
Figure 6-Supplement. Model-fitting of multi-finger sequences for passive 354	

stimulation evaluated at each ROI. We applied the same model-fitting procedure as 355	

shown in Figure 5 to the data of passive stimulation condition. In contrast to the 356	

active movement case, the models performed almost equally poor for all ROI tested. 357	

Furthermore, group-wise consistency of representational structure (blue shaded 358	

areas, lower and upper noise-ceilings) was much lower compared with active 359	

movements (red shaded areas).  360	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 29, 2017. ; https://doi.org/10.1101/157438doi: bioRxiv preprint 

https://doi.org/10.1101/157438


	 16	

A sequence representation with longer training?  361	

So far, we have found little or no evidence for a real sequence representation in M1. 362	

We considered two reasons for this failure. First, it may be that the training period 363	

was too short. Secondly, the simple structure of our sequences (i.e. permutations of 364	

digit 1, 3, and 5) may have reduced the chances of forming representations of finger 365	

transitions.  366	

We therefore conducted a second experiment, this time with 5-6 days of 367	

training of 2 hrs each, during which participants learned 8 arbitrary sequences, each 368	

11 presses long consisting of all five fingers. The trained sequences were executed at 369	

preferred speed (average 4.3 presses / s) in the scanner (see Material & Methods).  370	

 371	

 372	
Figure 7. More intensive training with complex sequences (Experiment 2) revealed 373	

highly similar results. Participants in the second experiment practiced 8 different 374	

sequences of 11 presses-long for 5 days and 2 hrs per a day before the imaging 375	

session. (A) log-Bayes-factor (Fig. 5) for the data of M1 and S1 for the first finger 376	

model (1F), the 2-finger transition model (2T), sequence model (S) and the 377	

combination between first finger and sequence model (1F+S). The arrow again 378	

indicates the winning model. Error bars represent SE across subjects. (B) Log-Bayes 379	

factor between first-finger and noise ceiling model. As in Experiment 1, the first-380	

finger model provides an adequate explanation for M1 and S1, but not for secondary 381	

motor areas. Dashed line shows the typical threshold value for model selection (e.g., 382	

Kaas and Raftery 1995).   383	

 384	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 29, 2017. ; https://doi.org/10.1101/157438doi: bioRxiv preprint 

https://doi.org/10.1101/157438


	 17	

First, due to the fact that experiment 2 had more data, the evidence for 385	

movement representation was substantially stronger. The scale of log-Bayes factor 386	

was approximately 3~4 times larger in Figure 7 compared with Figure 5. However, 387	

despite increased signal and despite ample opportunity to form representations of at 388	

least two or three finger transitions, the representational structure in M1 was again 389	

fully explained by the first finger model. The log-Bayes factor of the first-finger 390	

model was above the noise ceiling. Addition of the sequence representation or a 2-391	

finger transition model did not substantially improve the fit (Fig. 7A, 18.95 vs 19.16 392	

for single model and combined model, respectively). Similar result was obtained for 393	

S1. However, in this region the addition of the sequence model slightly improved the 394	

likelihood of the model (Fig. 7A, 45.84 vs 47.84 for single model and combined 395	

model, respectively). In contrast, the representational structure in premotor and 396	

parietal regions could not be explained by the first-finger model, suggesting the 397	

presence of a more complex and higher-level sequence representation (Fig. 7B). The 398	

content of these representations, and their dependence on cognitive mechanisms of 399	

movement chunking, will be reported in a subsequent paper. For M1, however, these 400	

results confirm that even after week-long training, the activity pattern reflect 401	

processes related to the individual finger presses, but not to their sequential context. 	  402	
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Discussion 403	

We demonstrated that even after 5-6 days of intensive practice, there was very little 404	

evidence for a genuine sequence representation in M1. We also did not find evidence 405	

for a representation of partial sequences, such as the transition between 2 or more 406	

finger presses. Instead, we found that the activity patterns for sequences could be 407	

explained by a linear combination of the activity patterns for single finger presses, in 408	

which the weight of the first finger was higher than for the other presses. This resulted 409	

in an above-chance classification accuracy for sequences beginning with different 410	

fingers. We also provided evidence that this first-finger effect was much larger during 411	

active compared to passive sequence production, arguing that it is related to active 412	

movement preparation and initiation. These results also indicate that the first-finger 413	

effect had a neural origin, rather than being based on a hemodynamic non-linearity. In 414	

contrast to the absence of any sequential information in M1, sequences were robustly 415	

represented in secondary motor areas, such as PMd, SMA, and the anterior SPL. 416	

These areas have been shown to represent sequences such that the neural activity 417	

pattern reflects the sequential order of movement elements (Mushiake et al., 1991; 418	

Tanji and Shima, 1994; Wiestler and Diedrichsen, 2013; Wiestler et al., 2014).  419	

 420	

Advances from the earlier studies. 421	

Although there have been numerous imaging studies on sequence production and 422	

acquisition (Karni et al., 1995; Honda et al., 1998; Karni et al., 1998; Doyon et al., 423	

2002), our approach makes several advances over these earlier studies. First, we 424	

designed our experiment specifically for multi-voxel pattern analysis, which allowed 425	

us to test directly for sequence representations in M1. This is not possible when 426	

looking only at the average BOLD activity within a region. Indeed, the increases and 427	

decreases reported in previous studies (Grafton et al., 1995; Karni et al., 1995; Honda 428	

et al., 1998; Karni et al., 1998; Kawashima et al., 1998; Sakai et al., 1998) may not 429	

necessarily reflect plastic changes in M1. Rather, they could equally well reflect 430	

changes in the input to M1, caused by sequences being learned and represented in 431	

secondary motor regions. Multi-voxel pattern analysis is also sensitive to inputs from 432	

other regions, but reveals the local organization of how these inputs arrive in M1. 433	

Specifically, our results suggest that the activity patterns for the first finger press are 434	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 29, 2017. ; https://doi.org/10.1101/157438doi: bioRxiv preprint 

https://doi.org/10.1101/157438


	 19	

especially high, but that the underlying activity patterns still only reflect the 435	

individual finger movements.  436	

Second, we not only measured the activation pattern for the sequences, but 437	

also compared them to the patterns of their constituent single finger movements. This 438	

allowed us to determine whether the activity patterns for multi-finger sequences could 439	

be explained by a combination of single-finger movements, or whether there was 440	

evidence for a new representation that encoded the sequential context (Fig 1B). Our 441	

results clearly argue for the former, implying that the significant differences between 442	

sequence patterns in M1 in our earlier work (Wiestler and Diedrichsen, 2013; 443	

Kornysheva and Diedrichsen, 2014; Wiestler et al., 2014) did not reflect an encoding 444	

of the order of finger presses (i.e. a genuine sequence representation), but of the 445	

sequential position of finger presses.  In these studies, the different sequences started 446	

with a different finger, such that we could not distinguish a real sequence 447	

representation from one caused by the first-finger effect. Importantly, our current 448	

result confirmed that the pattern differences reported in secondary motor areas reflect 449	

genuine sequence encoding.  450	

Finally, we demonstrated that in secondary motor areas no robust sequence 451	

representation could be elicited using passive sensory stimulation. This suggests that 452	

the sequence representations observed in these areas actually reflects active 453	

movement planning/execution process, rather than sensory re-afferent signals. Of 454	

course, the sensory feedback during the passive stimulation condition was not exactly 455	

the same as during active sequence production. However, nearly identical activity 456	

patterns in the single-finger conditions elicited in primary sensory cortex by the 457	

passive stimuli demonstrated that the sensory feedback closely mimicked that during 458	

active presses.  459	

 460	

The origin of the first-finger effect  461	

The results from the passive stimulation also argue that the first-finger effect is related 462	

to the active preparation and initiation of the sequence, rather than just to the sensory 463	

inflow. More generally, the results show that the effect has a neural origin, and is not 464	

purely caused by a non-linear integration of neural events in the production of the 465	

hemodynamic response (Dale and Buckner, 1997). Recent electrophysiological 466	

findings seem to support this conclusion (Hermes et al., 2012; Siero et al., 2013). 467	
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These studies recorded the electrophysiological potentials using intracranial ECoG 468	

electrodes above M1 while human participants performed rhythmic open and close 469	

movements of hand at ~2Hz. Power in the high-gamma frequency band was much 470	

more pronounced for the first movement of a sequence as compared to subsequent 471	

movements (Hermes et al., 2012). Siero et al. (2013) also showed that the high-472	

gamma activity tightly related to the observed BOLD activity recorded when subjects 473	

performed the same task in the scanner. While the “sequence” in these experiments 474	

consisted of the repetition of the same movement elements, our results lead to the 475	

prediction that similar effect should occur for more complex, multi-finger sequences.  476	

What is the neural origin of this first-finger effect? First note that both BOLD 477	

and high-frequency gamma power relate mainly to synaptic input to a region. Thus, it 478	

is not unlikely that this effect arises only on the input side and that the firing of output 479	

neurons would be matched for the different finger presses (Picard et al., 2013). The 480	

most likely explanation therefore is that the neural circuits in M1 require a large input 481	

drive to initiate a series of movements. Recent results have shown that the largest 482	

change in neural activity occurs when transitioning between a “resting” sub-space to 483	

the active sub-space (Elsayed et al., 2016). In our case the driving input for this 484	

movement would arrive in form of the intention to move the first finger. Subsequent 485	

finger presses would still require input from higher-order areas, as M1 would not be 486	

able to generate the sequence autonomously, but the input drive would be much 487	

smaller as the state of the neurons would already be in the vicinity of the active 488	

subspace. This idea also predicts that if the sequence is executed slowly enough, the 489	

state in M1 should relax back to the resting sub-space and the first-finger effect 490	

should disappear.  491	

 492	

Limitations: length of training and sequence representation in M1. 493	

Our data provides very little or no evidence for a sequence representation in M1 after 494	

1 week of intensive training (1.5-2 hours per a day). However, this does not exclude 495	

the possibility that longer period of training might result in the unique neural circuits 496	

for sequences acquired within M1. After 2 years of training, a single-cell recording 497	

study in the monkey revealed some evidence for sequential representations in M1 498	

(Matsuzaka et al., 2007). Note however, that in this study, sequence representations 499	

were assessed as the difference between neuronal responses to trained and untrained 500	
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sequences, not as in our study between different trained sequences. On a much shorter 501	

time scale, Karni et al. (1995) reported an expansion of activated area in M1 over 4 502	

weeks of daily practice.  The total amount of practice was similar for the experiments 503	

reported here (approx. 3.5~7 hrs vs. 6~10 hrs in our study). Again, the results only 504	

indicated that trained sequences elicited more activity than untrained sequences (a 505	

result that we failed to replicate, Wiestler and Diedrichsen, 2013), but does not show 506	

the presence of neural processes that would relate to the sequential order of movement 507	

elements.  508	

Using our methods, we did not find evidence for the representation of short 509	

sequence components, such as the transition between 2 or 3 fingers. There was some 510	

indication that there was a weak component of the activity pattern in M1 which may 511	

reflect the sequence itself. We are now investigating whether these patterns constitute 512	

the beginning of a “true” sequence representations that will increase in strength with 513	

extended training.  514	

 515	

Conclusion. 516	

Using representational fMRI analysis, we demonstrated that up to about 1 week of 517	

intensive practice, activity in M1 relates to individual finger presses, but not to 518	

transitions between multiple fingers or even full sequences. At the same time, we 519	

found robust and genuine sequence representation in other higher motor areas, such as 520	

PMd, SMA, or aSPL, which is consistent with previous studies (Mushiake et al., 521	

1991; Shima and Tanji, 1998). The next challenge is to dissect the content of these 522	

representations in detail (Lashley, 1951). 523	

  524	
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Materials & Methods 525	

Participants  526	

Nine healthy, right-handed volunteers (3 females, age: 23±4) participated in 527	

Experiment 1, and 14 healthy, right-handed volunteers (8 females, age: 23±3) 528	

participated in Experiment 2, after providing written informed consent. The 529	

experimental procedures were approved by local ethics committees at the University 530	

of Western Ontario (London, Canada) and University College London (London, UK). 531	

None of the participants was professional musician nor has any known neurological 532	

history.  533	

 534	

Apparatus 535	

We used custom-build five-finger keyboards (Fig. 2A) with a force transducer 536	

(Honeywell FS series) mounted underneath each key (Wiestler and Diedrichsen; 537	

Wiestler et al.). The keys were immobile and measured isometric finger force 538	

production. Dynamic range of the force transducers was 0-16N and the resolution 539	

<0.02 (N). A finger press/release was detected when the force value crossed a 540	

threshold of approximately 3 N. This threshold was slightly adjusted for each finger to 541	

ensure that each key could be pressed easily. The signal from the keyboard were low-542	

pass filtered, amplified and sent to PC for online task control and data recording. The 543	

forces were recorded at 200 Hz. For passive stimulation of the fingers, a pneumatic air 544	

piston was mounted underneath each key. The pistons were driven by compressed air 545	

(100 psi) from outside the MRI scanning room through poly-vinyl tubes. The force 546	

exerted by each piston was controlled by a pressure-regulating valves. The 547	

movements of the fingers was restricted by a device mounted above the fingers.  548	

 549	

Sequence production task for Experiment 1 550	

During the training sessions, participants were seated in front of the LCD monitor and 551	

placed their fingers on the keyboard. They learned to produce five single finger 552	

sequences and six multi-finger sequences. For the single-finger sequences, one of five 553	

fingers had to be pressed 6 times (e.g., 3 3 3 3 3 3); for the multi-finger sequences one 554	

of the six possible permutations of fingers 1, 3, and 5 was pressed twice (e.g., 5 3 1 5 555	

3 1) (Fig. 2B). All fingers remained on the keyboard at all times, such that the overt 556	

movement of the fingers was minimized. 557	
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The participants practiced the sequences for 3 days so they were able to 558	

produce the sequences in the scanner within 2.5 seconds from memory given only 559	

visual cue, which was presented for 1.5 seconds at the start of each trial (Fig. 2C). 560	

Each sequence was indicated by a different Roman numeral (I, II, …, XI).  In the 561	

beginning of training we provided both the sequence cue (roman numeral) and all six 562	

to-be-pressed digits on the screen. Subsequently, we replaced the digits with asterisks 563	

(*), to encourage the participants to memorise the sequences (Fig. 2C).  564	

A total 1716 sequence executions were made (156 executions per one 565	

sequence type). The order of 11 sequences was pseudo-randomised throughout the 566	

sessions. The colour of a asterisks turned to green immediately after a press was 567	

correctly registered, while it turned to red if the press was incorrect. To guide 568	

participants’ speed, the sequence cue blinked at a reference frequency that gradually 569	

increased during the training sessions at constant rate until it reached to 4 Hz. On the 570	

last day of training sessions, participants practiced actual task for the scanning session, 571	

lying on the mock MRI scanner bed for familiarisation.  572	

 573	

Sequence production task for Experiment 2 574	

The general methods were similar to the first experiment. Participants learned to 575	

produce 8 different sequences with 11 presses from the memory. Initially we trained 576	

participants for 5 days, but for the other half added a 6th day, such that all could 577	

correctly produce the sequences within 2.5 seconds. On average, the training lasted 578	

cumulatively 10-12 hrs. As in Experiment 1, the sequences were cued with Roman 579	

numerals I –VIII. All the sequences were matched with the number of finger presses 580	

used; 2 presses with thumb, middle, ring, and little fingers, and 3 presses with index 581	

finger, respectively. Four of the sequences started with the thumb, two sequences 582	

started with middle finger, and the rest of two sequences started with little finger. The 583	

detailed training protocol and the behavioural results of training and transfer test 584	

(conducted after the imaging) will be reported in a separate paper. 585	

 586	

Imaging session  587	

During the imaging session, the participants lay supine on the scanner bed with knees 588	

slightly bent supported by a wedge-shaped cushion. The pneumatic keyboard was 589	
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comfortably placed on their lap, and visual stimuli were presented on a back-590	

projection screen which was viewed through a mirror attached to the head coil.  591	

For Experiment 1, we conducted both active and passive conditions. In each 592	

trial of the active condition, the participants were first provided with the sequence cue 593	

for 1.5 seconds and then they were required to execute the specified sequence twice 594	

within the time limit of 2.5 seconds for each execution (Fig. 2C). Each execution was 595	

triggered by the fixation cross turning green. During the execution period, the fixation 596	

cross blinked at the reference frequency (4 Hz) to provide the participants with a 597	

pacing signal. The order of the 11 sequences was pseudo-randomised and included 1 598	

rest trial of 8 seconds, during which the participants only passively viewed the 599	

fixation cross. This set of sequences was repeated three times within each imaging run, 600	

resulting in a total of 66 sequence executions per run. We conducted seven runs in the 601	

active condition. For these runs, there was also no significant difference in the 602	

pressing frequency (Hz) between single and multi-finger sequences (4.58±0.36, 603	

4.59±0.39, t8=-0.176, p=0.865). The average number of incorrect presses per each 604	

execution was close to zero, but slightly larger for multi finger sequences (0.02±0.02, 605	

0.22±0.13, t8=-4.884, p=0.001).  606	

Alternating with the active runs, we conducted seven imaging runs in the 607	

passive condition. During the active run, we recorded the force data to replay these 608	

forces through the pistons in the passive run. The visual stimuli and timing were 609	

exactly the same as in the active runs, except that the participants were told not to 610	

produce any active finger movement, but to only passively receive stimulations to 611	

their fingers. Each passive run used the exact timings of the preceding active run, only 612	

that the sequence of trials was randomly shuffled on each run. Due to the nonlinear 613	

response property of pneumatic pistons, the resultant passive forces were lower than 614	

the forces in the active condition. We confirmed, however, that we could elicited 615	

robust single finger representation almost comparable to the active condition, 616	

especially in S1 (see Results). 617	

The structure of Experiment 2 was similar. In the beginning of each trial, the 618	

sequence cue (I-VIII) was presented for 2.5 seconds. This was followed by two 619	

execution phases of 4 seconds each, with 0.5-second ITI. During the execution phase, 620	

only fixation cross and asterisks were presented. The order of sequences was 621	

randomised, and each of the 8 sequences was repeated three times during each run. 622	
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During scanning the average pressing frequency was 4.47±1.05 Hz, which was not 623	

significantly different from that in the Exp 1 (t19 = 0.298, p = 0.769). Four resting 624	

trials of 10.5 seconds were randomly interspersed. We conducted a total of 9 runs, 625	

each of which lasted a total of about 7 min. Short breaks (up to a few minutes) were 626	

interleaved when subjects required. There was no passive condition for this 627	

experiment. The average number of incorrect presses per each execution was again 628	

close to zero, but significantly larger than that in the Exp 1 (0.40±0.16, t19=4.84, 629	

p=1.13×10-4). 630	

 631	

Imaging data acquisition.  632	

Experiment 1 was conducted on a Siemens Magnetom Syngo 7T MRI scanner system 633	

with a 32-channel head coil at the Centre for Functional and Metabolic Mapping, 634	

Robarts Research Institute (London, Ontario, Canada). Inhomogeneity of main 635	

magnetic field was adjusted by B0 and B1 shimming at the beginning of the whole 636	

session. Functional images were acquired for 14 imaging runs of 300 volumes per 637	

each using multi-band 2-D echo-planer imaging sequence (TR = 1.00 sec, multi-band 638	

acceleration factor = 2, in-plane acceleration factor = 3, resolution: 2.0 mm isotropic 639	

with 0.2 mm gap between slices, and 44 slices interleaved). The first 4 volumes were 640	

discarded to ensure stable magnetization. The slices were acquired close to axial to 641	

cover the dorsal aspects of the brain, including most of the frontal, parietal, occipital 642	

lobes, and basal ganglia. The ventral aspects of the frontal and temporal lobes, 643	

brainstem, and the cerebellum were not covered. Each functional imaging run lasted 644	

for 5 minutes. T1 weighted anatomical image was obtained on a separate session 645	

using MP2RAGE sequence (TR = 6.0 sec, resolution: 0.75 mm isotropic).  646	

Experiment 2 was conducted on a Siemens Trio 3T scanner system with a 32-647	

channel head coil at the Welcome Trust Centre for Neuroimaging (London, United 648	

Kingdom). B0-field maps were acquired at the beginning of the whole session to 649	

correct for inhomogeneity of main magnetic field (Hutton et al., 2002). Functional 650	

images were acquired for 9 runs of 135 volumes each using 2-D echo-planer imaging 651	

sequence (TR=2.72 sec, in-plane acceleration factor = 2, resolution = 2.3mm isotropic 652	

with 0.3 mm gap between each slice, and 32 slice interleaved). The first 5 volumes 653	

were discarded to ensure stable magnetization. The coverage was similar to 654	
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Experiment 1. A T1 weighted anatomical image was obtained using MPRAGE 655	

sequence (1mm isotropic resolution). 656	

 657	

Behavioural data analysis  658	

Recorded force data were analyzed offline. The data for both the training and 659	

scanning sessions was first smoothed with second-order Butterworth filter with cutoff 660	

frequency of 10 Hz to remove remaining RF noise and then submitted to the 661	

subsequent analysis. Press and release timings were defined as the time point where 662	

the press force first crossed the threshold (3 N) and then returned to the below-663	

threshold level. Reaction time (RT) from the go cue, movement time (MT) starting 664	

from first press time to the last release time, inter-press intervals (IPIs), and the 665	

number of incorrect presses at each execution were calculated.  666	

 667	

Imaging data analysis  668	

Preprocessing and first-level model 669	

Experiment	1:	Functional imaging data were pre-processed using SPM12 670	

(http://www.fil.ion.ucl.ac.uk/spm/). Functional images were first motion corrected, 671	

and the mean images were co-registered to the individual anatomical image. As we 672	

had relatively fast TR (1.0 sec), we did not correct for slice acquisition timing. The 673	

data were then submitted to the 1st-level GLM to estimate the size of the evoked 674	

activity for each sequence type and run. We modelled the temporal autocorrelation 675	

using the “fast” option, which provides a flexible basis function to model 676	

dependencies on longer time scales. High-pass filtering was achieved by temporally 677	

pre-whitening the matrix using the temporal autocorrelation estimate.  678	

Experiment 2: Pre-processing and GLM was conducted as in Experiment 1 – with the 679	

exception that we corrected for slice timing (given the slower TR). We also corrected 680	

for B0 inhomogeneity by using field map images. Given the slower TR, for the 1st-681	

level GLM we used the standard high-pass filtering with a cut-off frequency of 128s 682	

and robust-weighted least square (RWLS, Diedrichsen and Shadmehr, 2005). The 683	

data from two participants in Experiment 2 was excluded from further analyses due to 684	

poor behavioural performance during scanning. These participants lacked a single 685	

correct trial in one of sequence types at more than one session. Hence, only the data 686	

from the remaining 12 participants were submitted to subsequent analyses.  687	
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 688	

 689	

Searchlight and ROI definition 690	

Individual cortical surfaces (i.e., the pial and white-grey matter surfaces) were 691	

reconstructed from the anatomical image by using Freesurfer software (Fischl et al., 692	

1999). We defined a continuous surface-based searchlight (Oosterhof et al.) as small 693	

circular cortical patches (approximately 11 mm radius) centred on each node defined 694	

on the reconstructed cortical surface that contains 160 voxels. Anatomical regions of 695	

interest (ROIs) were defined on this reconstructed surface (Fig. 3-SA) exactly as 696	

reported in previous studies (Wiestler and Diedrichsen; Kornysheva and Diedrichsen, 697	

2014; Wiestler et al.).  698	

	699	

Multivariate fMRI analysis  700	

Within each of these groups of voxels (surface-based searchlight or anatomically-701	

defined ROIs) we extracted the beta-weights for each sequence type and imaging run. 702	

We then spatially pre-whitened this the activity estimates across voxels in each area 703	

using multivariate noise-normalization with a regularized estimate of the overall 704	

noise-covariance matrix (Walther et al., 2016). This procedure renders the resultant 705	

voxels approximately uncorrelated in the noise (Diedrichsen and Kriegeskorte, 2016).  706	

 For these voxels, we then analyzed how the different multivariate activity 707	

patterns represented the sequences, using the representation model framework 708	

(Diedrichsen and Kriegeskorte, 2016). In this framework, the representational 709	

structure is described either by asking how the measured activity profiles of individual 710	

voxels are distributed in the space of experimental conditions, or – equivalently - how 711	

distinguishable each pair of activity patterns associated with these conditions are from 712	

each other. Both viewpoints rely on a single central sufficient statistic, namely the 713	

second moment matrix of the activity patterns.  714	

If U represents the true pattern of interest for the K experimental conditions 715	

times P voxels, then the second moment between the activity patterns is defined as  716	

𝐆 = 𝐔𝐔𝑻/𝑃 717	

We analyzed this quantity using two complementary approaches: representational 718	

similarity analysis (RSA) to establish basic features of the representation and for 719	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 29, 2017. ; https://doi.org/10.1101/157438doi: bioRxiv preprint 

https://doi.org/10.1101/157438


	 28	

visualization and Pattern component modelling (PCM) to compare more complex 720	

representational models.  721	

 722	

Representational Similarity Analysis (RSA) 723	

In RSA, we quantify the representational structure by measuring how distinct each 724	

pair of activity patterns are from each other. The squared Euclidean distance between 725	

the activity pattern 𝐮) and 𝐮* for example is:  726	

𝒅𝟏,𝟐 = 𝐮𝟏 − 𝐮𝟐 𝐮𝟏 − 𝐮𝟐 𝑻 = 𝑮𝟏,𝟏 − 𝟐𝑮𝟏,𝟐 + 𝑮𝟐,𝟐. 727	

Calculated on spatially pre-whitened data, this distance is equal to the squared 728	

Mahalanobis distance. One problem is that estimates of this distance based on noisy 729	

data are positively biased. We therefore used here a cross-validated estimate of the 730	

second moment matrix 𝐆,  731	

𝐆 =
1
𝑀 𝐔5𝐔~57 /𝑷

9

5:)
. 732	

where M is the total number of partitions (e.g. imaging runs), 𝐔5 is estimated pre-733	

whitened activity pattern for partition m, and 𝐔~5 is the estimate of the pattern 734	

independent of the partition m.  The “crossnobis estimator” (Diedrichsen and 735	

Kriegeskorte, 2016; Walther et al., 2016) is a distance calculated using this second 736	

moment matrix. This distance estimator is unbiased – meaning it can be used to 737	

directly test whether a distances is larger than zero. Finding consistently positive 738	

distance estimates therefor implies that the two condition activity patterns differ from 739	

each other more than expected by chance.  740	

To visualize the representational structure, we used classical multi-741	

dimensional scaling. We first projected the activity patterns into a lower dimensional 742	

sub-space by finding the Eigenvectors of group-averaged 𝐆 matrix, which were then 743	

weighted by the square root of corresponding Eigenvalues. The projection displayed 744	

in Fig. 4B was then rotated to maximize the differences between the single-finger 745	

movements.  746	

 747	

Pattern component modelling (PCM) 748	

To compare full models of the representational structure, we used PCM (Diedrichsen 749	

et al., 2011; Diedrichsen et al., 2017), which directly evaluates the likelihood of the 750	

data under the linear model  751	
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𝐘 = 𝐙𝐔 + 𝐗𝐁 + 𝐄. 752	

Here, Y is a N-by-P matrix representing noise-normalized activity pattern after the 753	

1st-level GLM (Walther et al., 2016), where N is the number of estimates (number of 754	

conditions x number of runs) and P is the number of voxels. Z (N-by-K matrix) is the 755	

design matrix that associates U and Y. B represents the patterns of no interest, in our 756	

case the mean activity pattern in each run. Finally, E represents trial-by-trial 757	

measurement errors.  758	

Importantly, PCM considers the true activity patterns U to be a random 759	

variable that follows multivariate normal distribution as, 𝐔~𝐍 𝟎, 𝐆 , where G is the 760	

second moment matrix of activity pattern U, which determines the similarity structure 761	

across movement conditions. In evaluating models, PCM integrates the actual activity 762	

patterns out, i.e. it evaluates the marginal likelihood (simply termed likelihood in this 763	

paper);  764	

𝑝 𝐘 𝛉 = 𝑝(𝐘|𝐔, 𝛉)𝑝(𝐔|𝛉)𝑑𝐔 765	

, where 𝛉 represents model parameters that determine the shape of G and the signal 766	

and noise variances (see Diedrichsen et al., 2017). We fitted a number of models to 767	

explain the representational structure of the patterns associated with the multi-finger 768	

sequences. 769	

 770	

 1st-finger model: In this model, we assumed that the activity patterns for the 771	

multi-finger sequences are a weighted linear combination of the patterns for the 772	

constituent single finger presses. If all fingers were weighted equivalently, the overall 773	

patterns would identical, as each sequence contains exactly the same fingers. The 1st-774	

finger model assumes that the first finger press is more strongly weighted than 775	

subsequent presses. Thus, the activity pattern for the multi-finger sequences are 776	

modelled as weighted sum of the activity pattern for the single-finger sequences, 777	

𝐔HI = 𝐌)K𝐔HK, 778	

where Usq is the pattern for multi-finger sequences (6xP matrix), Usf is the activation 779	

patterns for the single finger presses of thumb, middle, and little fingers (3xP matrix), 780	

and 𝐌)K  is the weight matrix. Because each finger is present in each sequence equally 781	

often, we can simply model the difference in weight between the first and the 782	

subsequent fingers, such that 𝐌)K  is set to 1 for the first finger, and 0 otherwise (6x3 783	

matrix). Therefore, the predicted similarity structure across multi-finger sequences 784	
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(i.e., the second moment of the pattern 𝐆)K) is fully determined from the similarity 785	

across the single finger presses (i.e., 𝐆HK)  786	

𝐆)K =
1
𝑃𝐔HI𝐔HI

7 =
1
𝑃𝐌)K𝐔HK𝐔HK7𝐌)K

7 = 𝐌)K𝐆HK𝐌)K
7 . 787	

This results in the specific similarity structure depicted in Figure 5A. For modelling 788	

the activity at different ROIs, the empirical estimate of Gsf was derived for each ROI 789	

from the data – therefore no free parameter was required for this model. 790	

N-finger transition model: This model family predicts the similarity structure 791	

based on neural circuits that encode the transitions between finger presses. Unique 792	

transitions can be defined between pairs of presses, or based on 3 or more presses. For 793	

instance, each sequence has five specific two-finger transitions, four three-finger 794	

transitions, etc. Thus, the predicted activity patterns of the multi-finger sequences are 795	

𝐔HI = 𝐌LMNOH𝐔LMNOH. 796	

In this case the weighting matrix 𝐌LMNOH indicates, for each sequence, how many of 797	

the possible 2-digit transitions (9 total), 3-digit transitions (27 total), etc. the 798	

sequences contained, and 𝐔LMNOH represents specific activation patterns for each 799	

possible transition. Because we did not measure patterns for individual transitions, we 800	

assumed that each transition would be equally-strongly and independently represented, 801	

i.e., 𝐔LMNOH𝐔LMNOH7 = 𝛼𝐈, where 𝛼 is constant and I is identity matrix. Thus, the 802	

predicted second moment matrix is 803	

𝐆LMNOH =
1
𝑃𝐌LMNOH𝐔LMNOH𝐔LMNOH7 𝐌LMNOH

7 =
𝛼
𝑃𝐌LMNOH𝐌LMNOH

7 . 804	

The resultant predicted similarity structure for each N-finger transition model 805	

can be seen in (Fig. 5A). Note that the six-finger transition model predicts that all 806	

sequences are equally distinct from each other, as each sequence has only one unique 807	

six-finger transition (the sequence). 808	

  809	

Model comparison: We first fitted the six individual models (see previous section) 810	

separately. To account for individual differences in the signal-to-noise ratio, we 811	

maximized the likelihood in respect to a noise and signal strength parameter 812	

(Diedrichsen et al., 2017) – thus each model had the same two free parameters, 813	

allowing us to compare their likelihoods directly. We also fitted combinations of 814	

models, where the overall representation was a mixture of the hypothesized 815	

representations (i.e., the second moment matrix the weighted sum of those models). In 816	
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this case, each component weight added an additional free parameter. Therefore, each 817	

single model has 2 free parameters (i.e., signal and noise parameters), and each 818	

mixture of two models has 3 free parameters (i.e., signal, noise, and the mixing ratio 819	

of one model over the other). Note that the 𝛼 in the finger transition models is 820	

absorbed into the signal parameter. 821	

To compare models with different number of parameters, we used group 822	

cross-validation: We fitted the parameters using the data from n-1 subjects, and then 823	

use the estimated G to fit the data from the left-out subject, fixing the parameters for 824	

G (for more details, see Diedrichsen et al., 2017). Note that in this process an overall 825	

signal and noise parameter was always fitted individually to each subject. Through 826	

this process, we obtained a cross-validated likelihood for each candidate models and 827	

subject, which serves as an estimate of the model evidence for each model.  828	

We then compared models by calculating the log-Bayes factor which tells us 829	

to what degree one model can better describe the observed data over the other 830	

calculated (Hackett and Kaas, 2004) as the difference between the log-likelihoods:  831	

 832	

log 𝐵𝐹 model	A	vs	model	B = log 𝐿 model	A − log 𝐿 model	B . 833	

 834	

logBF were computed separately for each subject. We then used standard 835	

criteria for the average logBF proposed by Kaas and Raftery (1995) to judge if a 836	

model is meaningfully “better” than the other. Instead of using the group log-Bayes 837	

factor (Stephan et al., 2009), i.e. the sum of the individual log-Bayes factor, we report 838	

here the average logBF, which is invariant to the number of participants. This 839	

provides a much more stringent criterion for model selection.  840	

 841	

Noise ceiling: We also estimated the likelihood that the best achievable model should 842	

reach, called noise ceiling. The noise ceiling is an important measure to assess 843	

whether the selected model is a sufficient model, or whether the model misses a 844	

substantial aspect of the representational structure that is consistently observed across 845	

individuals. For this we used a free (fully flexible) model, which has as many 846	

parameters as the number of the elements in the second-moment matrix. For an 847	

estimate of the free model, we simply used the mean of cross-validated second 848	
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moment matrix 𝐆 across subject, which gives nearly identical results as using the 849	

maximum-likelihood estimate (for details see Diedrichsen et al., 2017).  850	

To determine the free model, we first used the data of all subjects combined. 851	

This results in the best achievable likelihood for a group model and therefore 852	

constitutes an upper bound for the likelihood. Because this estimate is over-fitted, we 853	

also determined the cross-validated likelihood of the free model, which constitutes a 854	

lower bound estimate of noise ceiling. Therefore, even if a model performs better than 855	

the lower noise ceiling, it remains be possible that a better model still exists. However, 856	

based on the absolute performance we can conclude that the model captures all clearly 857	

consistent effects in the data.  858	

Statistics  859	

We used one-sided, one-sample t-test for the evaluation of positive mean distance 860	

across subjects. To assess the first-finger effect, we performed two kinds of separate 861	

paired-t tests; a) if distances between two multi-finger sequences sharing the same 862	

first finger are smaller than distances between any other pair of multi-finger 863	

sequences not sharing the same first finger, b) if distances between a single-finger 864	

sequence and a multi-finger sequence sharing the same first finger are smaller than 865	

distances between any other pairs between single-finger and multi-finger sequences 866	

not sharing the same first finger. Significant difference for both of above comparisons 867	

(a and b) was deemed as the evidence of the first-finger effect. The ratio between 868	

active and passive distances (i.e., the reduction of passive distance) was estimated 869	

using linear-regression without intercept. Estimated slopes between single- and multi-870	

finger sequences were then compared using simple t-contrast.  871	

For the model comparison using PCM, we employed the standard 872	

interpretation of the size of the BF (Kaas and Raftery, 1995, see above. Additionally, 873	

we also report a Wilcoxon’s rank sum test on the log-Bayes factors between the 874	

winning and other models. Significance level was set to p=0.05. All the statistical 875	

analyses were performed on MATLAB (Mathworks, Inc.).   876	
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