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ABSTRACT  

We introduce Multi-Trait Analysis of GWAS (MTAG), a method for joint analysis of 
summary statistics from GWASs of different traits, possibly from overlapping 
samples. We apply MTAG to summary statistics for depressive symptoms (Neff = 
354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). 
Compared to 32, 9, and 13 genome-wide significant loci in the single-trait GWASs 
(most of which are themselves novel), MTAG increases the number of loci to 64, 37, 
and 49, respectively. Moreover, association statistics from MTAG yield more 
informative bioinformatics analyses and increase variance explained by polygenic 
scores by approximately 25%, matching theoretical expectations.  
  

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/118810doi: bioRxiv preprint 

mailto:paturley@broadinstitute.org
mailto:bneale@broadinstitute.org
mailto:dac12@nyu.edu
mailto:daniel.benjamin@gmail.com
https://doi.org/10.1101/118810
http://creativecommons.org/licenses/by/4.0/


2 

  

INTRODUCTION 

The standard approach in genetic-association studies is to analyze a single trait. 

Such studies do not exploit information contained in summary statistics from 

genome-wide association studies (GWASs) of related traits. In this paper, we 

develop a method, Multi-Trait Analysis of GWAS (MTAG), which enables joint 

analysis of multiple traits, thus boosting statistical power to detect genetic 

associations for each trait. 

Compared to the many existing multi-trait methods,1–5 MTAG has a unique 

combination of four features that make it potentially useful in many settings. First, it 

can be applied to GWAS summary statistics (without access to individual-level data) 

from an arbitrary number of traits. Second, the summary statistics need not come 

from independent discovery samples: MTAG uses bivariate linkage disequilibrium 

(LD) score regression6 to account for (possibly unknown) sample overlap between 

the GWAS results for different traits. Third, MTAG generates trait-specific effect 

estimates for each single-nucleotide polymorphism (SNP). Finally, even when 

applied to many traits, MTAG is computationally quick because every step has a 

closed-form solution. 

The MTAG estimator is a generalization of inverse-variance-weighted meta-analysis 

that takes summary statistics from single-trait GWASs and outputs trait-specific 

association statistics. The resulting P values can be interpreted and used like P 

values from a single-trait GWAS, e.g., to prioritize SNPs for subsequent analyses 

such as biological annotation or to construct polygenic scores. 

The key assumption of MTAG is that all SNPs share the same variance-covariance 

matrix of effect sizes across traits. This assumption is strong and is violated in many 

circumstances, most intuitively in scenarios where some SNPs influence only a 

subset of the traits. Even if this assumption is not satisfied, however, we show 

analytically that MTAG is a consistent estimator and that its effect estimates always 

have a lower genome-wide mean squared error than the corresponding single-trait 

GWAS estimates. Hence, polygenic scores constructed from MTAG results are 

expected to outperform GWAS-based predictors very generally.  

The main potential problem arises for SNPs that are truly null for one trait but non-

null for another trait. For such SNPs, MTAG’s effect-size estimates for the first trait 

are biased away from zero, leading to an increased rate of false positives. We derive 

an analytic formula for the resulting false discovery rate (FDR), given any specified 

mixture-normal distribution of effect sizes (including multivariate spike-and-slab 

distributions), and we illustrate how the formula can be used to probe the credibility 

of MTAG-identified loci. 

To demonstrate the utility of MTAG empirically, we analyze three traits: depressive 

symptoms (DEP, Neff = 354,862), neuroticism (NEUR, N = 168,105), and subjective 

well-being (SWB, N = 388,538). Prior GWASs of each of these traits have identified 

only a handful of loci.7–11 Because of the high genetic correlations between the three 
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traits—in our data, roughly 0.7 in absolute value between each pair—some papers 

have conducted cross-trait analyses to replicate findings for one of the traits11 or joint 

meta-analysis to identify new loci.5 We apply MTAG to these traits because we 

expected the gains in power would be substantial, violations of MTAG’s assumptions 

would be limited, and the substantive results would be of interest. 

Finally, we compare MTAG to the three existing multi-trait methods we are aware of 

that can be applied to GWAS summary statistics from an arbitrary number of traits 

with unknown sample overlap.12,13 We find that MTAG has greater power across a 

wide range of simulation scenarios and in two separate applications to real data. 

RESULTS 

Overview of MTAG 

The key idea underlying MTAG is that when GWAS estimates from different traits 

are correlated, the effect estimates for each trait can be improved by appropriately 

incorporating information contained in the GWAS estimates for the other traits.  

Correlation between GWAS estimates can arise for two reasons. First, the traits may 

be genetically correlated, in which case the true effects of the SNPs are correlated 

across traits. Second, the estimation error of the SNPs’ effects may be correlated 

across traits. Such correlation will occur if (a) the phenotypic correlations are non-

zero and there is sample overlap across traits, or if (b) biases in the SNP-effect 

estimates (e.g., population stratification or cryptic relatedness) have correlated 

effects across traits. MTAG boosts statistical power by incorporating information 

about these two sources of correlation. 

MTAG Framework 

In the framework that follows, all traits and genotypes are standardized to have 

mean zero and variance one. For SNP 𝑗, we denote the vector of marginal (i.e., not 

controlling for other SNPs), true effects on each of the 𝑇 traits by 𝜷𝑗. We treat these 

true effects as random effects with E(𝜷𝑗) = 𝟎 and Var(𝜷𝑗) = 𝛀. If the true effects are 

correlated across traits, then the off-diagonal elements of 𝛀 are non-zero. MTAG’s 

key assumption is that 𝛀 is homogeneous across SNPs, i.e., it does not depend on 𝑗.  

We denote the vector of GWAS estimates of SNP 𝑗’s effects on the traits by 𝜷̂𝑗. We 

assume that the GWAS estimates are unbiased, E(𝜷̂𝑗|𝜷𝑗) = 𝜷𝑗, and we denote the 

variance-covariance matrix of their estimation error by Var(𝜷̂𝑗|𝜷𝑗) = 𝚺𝑗. The off-

diagonal elements of 𝚺𝑗 are non-zero whenever the estimation errors are correlated. 

MTAG is the efficient generalized method of moments (GMM) estimator based on 

the moment condition 

E (𝜷̂𝑗 −
𝝎𝑡
𝜔𝑡𝑡

𝛽𝑗,𝑡) = 𝟎, 

where 𝝎𝑡 is a vector equal to the 𝑡th column of 𝛀 and 𝜔𝑡𝑡 is a scalar equal to the 𝑡th 

diagonal element of 𝛀. This equality is a necessary condition derived from the best 
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linear prediction of the vector of GWAS estimates, 𝜷̂𝑗, from the SNP’s true effect on 

a single trait, 𝛽𝑗,𝑡. 

The MTAG estimator is a weighted sum of the GWAS estimates: 

𝛽̂MTAG,𝑗,𝑡 =

𝝎𝑡
′

𝜔𝑡𝑡
(𝛀 −

𝝎𝑡𝝎𝑡
′

𝜔𝑡𝑡
+ 𝚺𝑗)

−1

𝝎𝑡
′

𝜔𝑡𝑡
(𝛀 −

𝝎𝑡𝝎𝑡
′

𝜔𝑡𝑡
+ 𝚺𝑗)

−1
𝝎𝑡
𝜔𝑡𝑡

𝜷̂𝑗. (1) 

It is a consistent and asymptotically normal estimator for 𝛽𝑗,𝑡 (Supplemental Note). 

There are several useful special cases of MTAG (see Online Methods). When all 

estimates are for the same trait (implying 
𝝎𝑡𝝎𝑡

′

𝜔𝑡𝑡
= 𝛀 and 

𝝎𝑡

𝜔𝑡𝑡
= 𝟏), equation (1) 

simplifies to: 𝛽̂MTAG,𝑗,𝑡 =
𝟏′𝚺𝑗

−1

𝟏′𝚺𝑗
−1𝟏
𝜷̂𝑗. When the GWAS estimates are obtained from 

non-overlapping samples (i.e., 𝚺𝑗 is diagonal), this formula specializes to the well-

known formula for inverse-variance-weighted meta-analysis. When the genetic 

correlations across all traits are zero and there is no sample overlap (i.e., both 𝛀 and 

𝚺𝑗 are diagonal), the MTAG estimates are identical to the GWAS estimates. This 

equivalence is intuitive, since it corresponds exactly to the case of no correlation 

between the GWAS estimates that can be leveraged. 

To make equation (1) operational, we use consistent estimates of 𝚺𝑗 and 𝛀, 

described next (see Supplementary Note for details). 

Estimation of 𝜮𝑗. In standard meta-analysis, the diagonal elements of 𝚺̂𝑗 would be 

constructed using the squared standard errors from the GWAS results, and the off-

diagonal elements of 𝚺̂𝑗 would be set to zero. In MTAG, however, we want to allow 

the estimation error to include bias (in addition to sampling variation) and to be 

correlated across the GWAS estimates. 

Therefore, MTAG proceeds by running linkage disequilibrium (LD) score 

regressions14 on the GWAS results and using the estimated intercepts to construct 

the diagonal elements of 𝚺̂𝑗. Next, bivariate LD score regressions6 are run using 

each pair of GWAS results, and the estimated intercepts are used to construct the 

off-diagonal elements of 𝚺̂𝑗. Under the assumptions of LD score regression (including 

that the LD reference sample and GWAS samples are all drawn from the same 

population), the resulting matrix 𝚺̂𝑗 captures all relevant sources of estimation error, 

including not only sampling variation but also population stratification, unknown 

sample overlap, and cryptic relatedness. Because the LD-score-intercept adjustment 

is already built into the MTAG estimates, MTAG-generated association results do not 

require further adjustment for these biases. 

Estimation of 𝜴. We estimate 𝛀̂ by method of moments using the moment condition 
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E(𝜷𝑗𝜷𝑗
′ − 𝛀 − 𝚺𝑗) = 𝟎, 

with 𝚺̂𝑗 substituted in place of 𝚺𝑗. This is the step that relies on the homogeneous-𝛀 

assumption: the assumption justifies using all SNPs when estimating 𝛀̂. 

Summary. The MTAG results for SNP j are obtained in three steps: (i) estimate the 

variance-covariance matrix of the GWAS estimation error, 𝚺̂𝑗, by using a sequence of 

LD score regressions, (ii) estimate the variance-covariance matrix of the SNP 

effects, 𝛀̂, using method of moments, and (iii) for each SNP, substitute these 

estimates into equation (1). We have made available for download a Python 

command line tool that runs our MTAG estimation procedure (see URLs). Because 

each of the above steps has a closed-form solution, genome-wide analyses using 

the MTAG software run quickly (see Online Methods). 

 

Theoretical Analysis of MTAG’s Performance 

This section briefly discusses three analytic formulas we have derived regarding the 

expected performance of MTAG for each trait: its mean squared error (MSE) across 

SNPs, its statistical power to detect a true single-SNP association, and its false 

discovery rate (FDR) (Online Methods). All the formulas hold for an arbitrary 

number of traits. Supplementary Note contains illustrative calculations. The 

formulas depend on 𝛀 and 𝚺𝑗 but can be approximated in applications using 𝛀̂ and 

𝚺̂𝑗. 

The MSE formula is very general: it holds under any distribution of effect sizes, 

including distributions that violate the homogeneous-𝛀 assumption. The formula 

implies that for each trait, the MTAG estimates always have a lower genome-wide 

MSE than corresponding GWAS estimates. That in turn suggests that polygenic 

predictors constructed from MTAG results are likely to outperform GWAS-based 

predictors very generally. 

The power and FDR formulas (in contrast to the fully general MSE formula) assume 

that the true effect sizes 𝜷𝑗 are drawn from some known mean-zero mixture of 

multivariate normal distributions. This class of distributions includes multivariate 

spike-and-slab distributions and other fat-tailed distributions that may be relevant in 

applications of MTAG. 

 

Potential Biases in MTAG’s Test Statistics 

The derivation of MTAG relies on three important assumptions: (1) 𝛀 is 

homogeneous across SNPs, (2) sampling variation in 𝛀̂ and 𝚺̂𝑗 can be ignored, and 

(3) the off-diagonal elements of 𝚺̂𝑗 (estimated by bivariate LD score regression) 

accurately capture sample overlap. In light of each assumption, here we probe when 
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and to what extent MTAG’s test statistics for individual-SNP associations may be 

biased. 

Homogeneous-𝜴 assumption. If the homogeneous-𝛀 assumption is violated, then 

there are different types of SNPs with different 𝛀’s. Because MTAG combines the 

GWAS estimates using the genome-wide (i.e., across-SNP) variance-covariance 

matrix, in general the MTAG estimates will be biased in finite samples. For a type of 

SNP that is null for one trait but non-null for other traits, the effect estimate on the 

first trait will be biased away from zero. For that reason, the FDR will be inflated. 

Replication is the best way to assess the credibility of individual-SNP associations. In 

addition, their credibility can be probed using the FDR formula, computed under 

plausible assumptions about genetic architecture. In our application below, we 

calculate what we call maxFDR, which is an upper bound for the FDR under certain 

assumptions (Online Methods). In particular, we assume that the effect-size 

distribution is a multivariate spike-and-slab distribution in which at least 10% of SNPs 

are non-null for each trait. Illustrative calculations indicate that a trait’s maxFDR can 

become high when the GWAS for the trait is low powered while the GWAS for 

another trait is higher powered (Supplementary Note). 

Sampling variation in 𝜴̂ and 𝜮̂𝑗 ignored. To assess the magnitude of the finite-sample 

bias in MTAG’s standard errors from ignoring sampling variation in 𝛀̂ and 𝚺̂𝑗, we 

simulate GWAS summary statistics for up to 𝑇 = 20 traits and apply MTAG using 𝛀̂ 

and 𝚺̂𝑗 (as in any real-data application of MTAG). We then calculate the inflation of 

the mean 𝜒2-statistic, defined relative to what the mean 𝜒2-statistic would be if the 

true values 𝛀 and 𝚺𝑗 were used. Figures 1a and 1b plots the inflation as a function 

of 𝑇, where each GWAS has mean 𝜒2-statistic of 1.1, 1.4, or 2.0. The effect-size 

correlation between every pair of traits is 𝑟𝛽 = 0 (Figure 1a) or 𝑟𝛽 = 0.7 (Figure 1b); 

we set the correlation in estimation error between every pair of traits to 𝑟𝜀 = 0 in 

these simulations. The figure shows that inflation increases roughly linearly in the 

number of traits. The bias is larger when the GWASs are lower powered and when 𝑟𝛽 

is smaller. Our application to DEP, NEUR, and SWB (discussed below) corresponds 

roughly to a mean 𝜒2-statistic of 1.4 with 𝑇 = 3 in Figure 1b. In that setting, inflation 

is negligible. Even when inflation is largest—the low-powered GWAS with 𝑇 = 20 in 

Figure 1a—it is only 3%. 

These simulations suggest that in most realistic applications of MTAG, the bias from 

ignoring sampling variation in 𝛀̂ and 𝚺̂𝑗 is negligibly small. A possible exception, not 

discussed so far, arises if MTAG is used for GWAS meta-analysis across a large 

number of cohorts (in which case 𝑇 is large). MTAG may be valuable for that 

purpose because (i) it accounts for sample overlap and cryptic relatedness across 

cohorts and (ii) different cohorts often have phenotypic data from different measures, 

which may be imperfectly genetically correlated and have different heritabilities. For 

such applications, to reduce bias in the MTAG standard errors, we recommend 

imposing reasonable parameter restrictions on the 𝛀̂ and 𝚺̂𝑗 matrices (e.g., assuming 
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that within groups of cohorts that analyzed identical phenotype measures, the 

heritability is equal and all pairwise genetic correlations are one). 

𝜮̂𝑗 accurately captures sample overlap. MTAG relies on bivariate LD score 

regression (and by extension its assumptions) to estimate the correlation in GWAS 

estimation error due to sample overlap. To gauge MTAG’s performance, we simulate 

an extreme case of sample overlap using real data from the UK Biobank (UKB). We 

run three GWASs of height, each using two-thirds of the data, with 50% overlap 

between each pair of GWAS samples. Then we run MTAG on the three GWASs. 

Figure 2a is a scatterplot of the resulting MTAG z-statistics against the z-statistics 

from a single GWAS run on the entire UKB sample. Figure 2b is the scatterplot from 

an analogous analysis of DEP in UKB. The regression slope and R2 are both 

essentially one for both phenotypes, indicating that MTAG generates the correct z-

statistics in these cases. Supplementary Figure 2.1 shows that the results are 

similar when we repeat this analysis using four other phenotypes. 

 

GWAS Summary Statistics for Depression, Neuroticism, and Subjective Well-

Being 

For our empirical application of MTAG, we build on a recent study by the Social 

Science Genetic Association Consortium (SSGAC) of three traits that have been 

found to be highly polygenic and strongly genetically related: depressive symptoms 

(DEP), neuroticism (NEUR), and subjective well-being (SWB). In these analyses, we 

combine data from the largest previously published studies7–9,11 with new genome-

wide analyses from the genetic testing company 23andMe, Inc., and the first release 

of the UK Biobank (UKB) data. Relative to the previous SSGAC study, we reran the 

association analyses in UKB using a slightly revised analysis protocol, and much 

more importantly, we expanded the SSGAC meta-analyses for DEP and SWB. For 

DEP, we added the results from a recently published GWAS of depression in a large 

23andMe cohort7, and for SWB, we added new association analyses of SWB in a 

23andMe cohort. As depicted in Figure 3, there is substantial overlap between the 

estimation samples for the three traits. For additional details, see Online Methods 

and Supplementary Note.  

 

MTAG Results 

We applied MTAG to the summary statistics from the three single-trait analyses 

described above. To enable a fair comparison between the MTAG and GWAS 

results, we restrict all analyses to a common set of SNPs (see Online Methods for 

details and recommended filters for MTAG). 

Figure 4 shows side-by-side Manhattan plots from the GWAS and MTAG analyses 

for each trait. Approximately independent genome-wide significant SNPs, hereafter 

“lead SNPs,” were defined by clumping with an R2 threshold of 0.1 (Online 
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Methods). From GWAS to MTAG, the number of lead SNPs increases from 32 to 64 

for DEP, from 9 to 37 for NEUR, and from 13 to 49 for SWB. A list of all clumped 

SNPs with a P value less than 10−5 is in Supplementary Table 4.5. 

For the MTAG hits, we calculate the maxFDR assuming that at least 10% of SNPs 

are non-null for each trait (our estimates of the actual percentage non-null are 59-

65% across the three traits; see Online Methods). The maxFDR is 0.0014 for DEP, 

0.0080 for NEUR, and 0.0044 for SWB. This calculation suggests that the hits are 

unlikely to be an artifact of the homogeneous-𝛀 assumption. 

For each trait, we assess the gain in average power from MTAG relative to the 

GWAS results by the increase in the mean χ2-statistic. We use this increase to 

calculate how much larger the GWAS sample size would have to be to attain an 

equivalent increase in expected χ2 (Online Methods). We find that the MTAG 

analysis of DEP, NEUR, and SWB yielded gains equivalent to augmenting the 

original samples sizes by 27%, 55%, and 55%. The resulting GWAS-equivalent 

sample sizes are thus 449,649 for DEP, 260,897 for NEUR, and 600,834 for SWB. 

 

Replication of MTAG-identified Loci 

To test the lead SNPs for replication, we use the Health and Retirement Study (HRS) 

and the National Longitudinal Study of Adolescent to Adult Health (Add Health), 

which both contain high-quality measures of DEP, NEUR, and SWB. Because HRS 

was included in the SSGAC discovery sample for SWB, we re-ran the GWAS and 

MTAG analyses for SWB after omitting it. Although our replication samples are too 

small for well-powered replication analyses of single-SNP associations, we are well 

powered to test the SNPs jointly. For the set of MTAG-identified lead SNPs for each 

trait, we regressed the effect sizes in HRS and in Add Health on the MTAG effect 

sizes, after correcting the MTAG effect-size estimates for the winner’s curse (Online 

Methods). The regression slope for each replication cohort was then meta-analyzed. 

If the SNP effect sizes taken altogether replicate, then we expect a slope of one. The 

regression slopes are 0.88 (s.e. = 0.22) for DEP, 0.76 (s.e. = 0.21) for NEUR, and 

0.99 (s.e. = 0.33) for SWB (Figure 5). In all cases, the slope is statistically 

significantly greater than zero (one-sided 𝑃 = 2.16 × 10−5, 1.87 × 10−4, and 1.52 ×

10−3, respectively) but not statistically distinguishable from one. 

 

Polygenic Prediction 

We next compare the predictive power of polygenic scores constructed from GWAS 

versus MTAG association statistics. We again use the HRS and Add Health as our 

prediction samples (and we obtain the SNP effect estimates for SWB from the 

analyses that omit HRS from the discovery sample).  

We measure the predictive power of each polygenic score by its incremental 𝑅2, 

defined as the increase in coefficient of determination (𝑅2) as we move from a 
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regression of the trait only on a set of controls (year of birth, year of birth squared, 

sex, their interactions, and 10 principal components of the genetic data) to a 

regression that additionally includes the polygenic score as an independent variable.  

Figure 6 and Table 1 summarize the results from our pooled analysis of Add Health 

and HRS. The GWAS-based polygenic scores have incremental 𝑅2’s of 1.00% for 

DEP, 1.27% for NEUR, and 1.20% for SWB. The corresponding MTAG-based 

polygenic scores all have greater predictive power: 1.17% for DEP, 1.65% for NEUR, 

and 1.57% for SWB. The proportional improvement in incremental 𝑅2 is in the range 

17-30% for each trait, with 95% confidence intervals that do not overlap zero. The 

absolute levels of predictive power are clearly too small to be of clinical utility, but the 

improvements in 𝑅2 are close to those we would expect theoretically based on the 

observed increases in mean χ2-statistics (see Online Methods). Polygenic scores 

based on trait-specific MTAG results have greater predictive power than scores 

based on MTAG results for the other traits (Figures 6c and 6d), consistent with the 

theoretical result that MTAG results can be interpreted as trait-specific estimates. 

 

Biological Annotation 

For a final comparison, we analyze both the GWAS and MTAG results using the 

bioinformatics tool DEPICT15. We present the prioritized genes, enriched gene sets, 

and enriched tissues identified by DEPICT at the standard FDR threshold of 5%. 

Table 1 summarizes the results (see Supplemental Tables 7.1 to 7.10 for the 

complete set of findings). In the GWAS-based analysis, very little enrichment is 

apparent. For DEP, 3 genes are identified, but no gene sets and only 10 tissues. For 

NEUR and SWB, no genes, gene sets, or tissues are identified. In contrast, the 

MTAG-based analysis is more informative. The strongest results are again for DEP, 

now with 72 genes, 347 gene sets, and 22 tissues. For NEUR, there are 51 genes, 1 

gene set, and 21 tissues, and for SWB, zero genes, 7 gene sets, and 12 tissues. 

For brevity, we discuss the specific results only for DEP; the results for NEUR and 

SWB are similar but more limited. For the tissues tested by DEPICT, Figure 7a plots 

the P values based on both the GWAS and MTAG results. As expected, nearly all of 

the enrichment of signal is found in the nervous system. To facilitate interpretation of 

the enriched gene sets, we used a standard procedure16 to group the 347 gene sets 

into ‘clusters’ defined by degree of gene overlap. Many of the resulting 46 clusters, 

shown in Figure 7b, implicate communication between neurons (‘synapse,’ ‘synapse 

assembly,’ ‘regulation of synaptic transmission,’ ‘regulation of postsynaptic 

membrane potential’). This evidence is consistent with that from the DEPICT-

prioritized genes, many of which encode proteins that are involved in synaptic 

communication. For example, PCLO, BSN, SNAP25, and CACNA1E all encode 

important parts of the machinery that releases neurotransmitter from the signaling 

neuron.17 
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The results contain some intriguing findings. For example, while hypotheses 

regarding major depression and related traits have tended to focus on monoamine 

neurotransmitters, our results as a whole point much more strongly to glutamatergic 

neurotransmission. Moreover, the particular glutamate-receptor genes prioritized by 

DEPICT (GRIK3, GRM1, GRM5, and GRM8) suggest the importance of processes 

involving communication between neurons on an intermediate timescale,18,19 such as 

learning and memory. Such processes are also implicated by many of the enriched 

gene sets, which relate to altered reactions to stress and novelty in mice (e.g., 

‘decreased exploration in a new environment,’ ‘increased anxiety-related response,’ 

‘behavioral fear response’). 

 

Comparison to Other Multi-Trait Methods 

We compared MTAG to three multi-trait methods that can be applied to an arbitrary 

number of GWAS summary with unknown overlap12,13 (see Online Methods and 

Supplementary Note). Unlike MTAG, these methods do not provide trait-specific 

SNP effect estimates but instead test whether the SNP is associated with none of 

the traits. We generate a (conservative) MTAG-based test of the same null 

hypothesis by using the minimum of the trait-specific MTAG P values, Bonferroni-

adjusted for the number of traits. In two-trait simulations, we find that MTAG has 

greater power when the correlation in true effect sizes or GWAS estimation error is 

non-zero, especially when the traits’ GWASs are higher powered. In real-data 

applications to (i) DEP, NEUR, and SWB, and (ii) six anthropometric traits, MTAG 

identifies more loci. We test the anthropometric loci in GIANT consortium results and 

find that the loci identified by MTAG and missed by the other methods replicated at a 

higher rate than the loci identified by one of the other methods and missed by 

MTAG. 

 

DISCUSSION 

We have introduced MTAG, a method for conducting meta-analysis of GWAS 

summary statistics for different traits which is robust to sample overlap. Both our 

theoretical and empirical results confirm that MTAG can increase the statistical 

power to identify trait-specific genetic associations. In our empirical application to 

DEP, NEUR, and SWB, we found that relative to the separate GWASs for the traits, 

MTAG led to substantial improvements in number of loci identified, predictive power 

of polygenic scores, and informativeness of a bioinformatics analysis. Table 1 

summarizes the gains from MTAG across these analyses. 

Because large-scale GWAS summary statistics are accessible for an ever-increasing 

number of traits and tools are now available for using summary statistics to easily 

identify clusters of genetically correlated traits,20 there will be many sets of traits to 

which MTAG could be applied. Which potential applications will be most fruitful? Our 

theoretical results indicate that, relative to the single-trait GWASs, MTAG will 
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improve polygenic prediction quite generally. For identifying individual loci, MTAG 

will yield the greatest gains in statistical power and little inflation of the FDR for traits 

with high genetic correlation. We caution, however, that the FDR can become 

substantial if MTAG is applied to a large number of low-powered GWASs or to 

GWASs that differ a great deal in power—conditions that do not apply to our 

empirical application here. In all applications of MTAG, we recommend conducting 

FDR calculations and, of course, conducting replication analyses if possible. 

 

URLs: 

Social Science Genetic Association Consortium (SSGAC) website: 
http://www.thessgac.org/#!data/kuzq8. 

MTAG software available at: 

https://github.com/omeed-maghzian/mtag. 
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Fig. 1. Bias in standard errors from ignoring sampling variation in 𝚺̂ and 𝛀̂. The 

y-axis is the percent increase in (𝜒2 − 1) of the MTAG test statistics from using 

estimated values of 𝚺 and 𝛀 rather than the true values. Each line corresponds to 

results from applying MTAG to identically powered single-trait GWASs of T traits. For 

every pair of traits, the correlation in true effect sizes is (a) 𝑟𝛽 = 0, (b) 𝑟𝛽 = 0.7. 

Complete results for the full set of simulation scenarios can be found in 

Supplementary Note. 

  
  
 

(a)                       𝒓𝜷 = 𝟎 

 

(b)                       𝒓𝜷 = 𝟎. 𝟕 
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Fig. 2. Evaluation of MTAG’s standard errors when there is sample overlap. 
The x-axis is a SNP’s z-statistic from a baseline GWAS conducted in UK Biobank. 
The y-axis is a SNP’s z-statistic from applying MTAG to three GWASs of each trait 
conducted on equally sized subsamples of the baseline sample, in which every pair 
of samples has 50% overlap. (a) Height. (b) Depressive symptoms. The figure 
illustrates near-perfect alignment. See Supplementary Note for details and results 
from analogous analyses on additional phenotypes. 
 
(a)                         Height (b)                        DEP 
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Fig. 3. Cohorts included in GWAS meta-analyses for DEP, NEUR, and SWB. In 
UKB, the sample overlap in the summary statistics across the traits is known, 
whereas in 23andMe, the sample overlap in the summary statistics is unknown. 
MTAG accounts for both sources of overlap. SSGAC results,20 GPC results,19 GERA 
results,18 and 23andMe results for DEP21 all come from previously published work. 
The data from 23andMe for SWB are newly analyzed data for this paper. Data from 
the UKB for all three traits has been previously published,20 although we re-analyze it 

in this paper with slightly different protocols. 𝑁eff is used instead of 𝑁 when the cohort 
has case-control data (Supplementary Note). The sample size listed for each 
cohort corresponds to the maximum sample size across all SNPs available for that 
cohort. The total sample size for each trait corresponds to the maximum sample size 
among the SNPs available after applying MTAG filters. For details, see 
Supplementary Note. 
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Fig. 4. Manhattan plots of GWAS and MTAG results. (a) DEP, (b) NEUR, (c) SWB. 
The left and right plots display the GWAS and MTAG results, respectively, for a fixed 
set of SNPs. The x-axis is chromosomal position, and the y-axis is the significance on a 

−log10 scale. The upper dashed line marks the threshold for genome-wide significance 

(𝑃 = 5 × 10−8), and the lower line marks the threshold for nominal significance (𝑃 =
10−5). Each approximately independent genome-wide significant association (“lead 

SNP”) is marked by ×. The mean 𝜒2-statistic across all SNPs included in the analysis is 
displayed in the top left corner of each plot. 
 
(a)   

 
 
(b) 

  

 
 
(c) 
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Fig. 5. Regression-based test of replicability of MTAG-identified loci. For each trait 
and in each of two independent replication cohorts (HRS and Add Health, combined N = 
12,641), we regressed the estimated effect sizes of the MTAG-identified loci on their 
winner’s-curse-adjusted MTAG effect sizes. The intercept is constrained to zero in these 
regressions. The plotted regression coefficients are the sample-size-weighted means 
across the replication cohorts, with 95% intervals. See Supplementary Note for details 
and cohort-level results. 
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Fig. 6. Predictive power of GWAS- and MTAG-based polygenic scores. Incremental 

𝑅2 is the increase in 𝑅2 from a linear regression of the trait on the polygenic score and 
covariates, relative a linear regression of the trait on only covariates. The plotted 

incremental 𝑅2’s (and differences in incremental 𝑅2’s) are the sample-size-weighted 
means across the replication cohorts (HRS and Add Health, combined N = 12,641), with 
95% intervals. See Supplementary Note for details and cohort-level results. (a) 

Incremental 𝑅2 of MTAG-based and GWAS-based polygenic scores. (b) Difference in 

incremental 𝑅2 between the GWAS- and the MTAG-based PGS. Red dots indicate the 
theoretically predicted gains in prediction accuracy (Online Methods). (c) Incremental 

𝑅2 of polygenic scores constructed from the MTAG results for the predicted trait (“own-
trait score”) or MTAG results for each of the other traits (“other-trait score”). The x-axis 
indicates the trait being predicted, and the bar color indicates which trait’s polygenic 

score is used. (d) Difference in incremental 𝑅2 between own-trait scores and the mean 

of the incremental 𝑅2’s from the other-trait scores. 
 
(a) (b) 

 
 
(c) (d) 
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Fig. 7. Biological annotation for DEP using the bioinformatics tool DEPICT. (a) 
Results of the tissue-enrichment analysis based on the GWAS and MTAG results. 
The x-axis lists the tissues tested for enrichment, grouped by the location of the 

tissue. The y-axis is statistical significance on a −log10 scale. The horizontal dashed 
line corresponds to a false discovery rate of 0.05, which is the threshold used to 
identify prioritized tissues. (b) Gene-set clusters as defined by the Affinity 
Propagation algorithm23 over the gene sets from the MTAG results. The algorithm 
names clusters after an exemplary member of the gene set. The color of the point 
signifies the P value of the most significant gene set in the cluster. The line thickness 
between the gene-set clusters corresponds to the correlation between the named 
gene sets for each pair of clusters. 
 
(a) 
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(b) 
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Table 1. Summary of comparative analyses of GWAS and MTAG results 
 

 
DEP 

 
NEUR 

 
SWB 

 
GWAS MTAG 

 
GWAS MTAG 

 
GWAS MTAG 

SNP-based comparisons 

         Lead SNPs 
(P < 5×10

-8
) 

32 64 
 

9 37 
 

13 49 

Mean χ
2
 1.43 1.55 

 
1.29 1.45 

 
1.30 1.47 

Neff 354,861 449,649 
 

168,105 260,897 
 

388,538 600,834 

Polygenic score 
incremental R

2
 

1.00% 1.17%  1.27% 1.65%  1.20% 1.57% 

         
Biological Annotation (DEPICT FDR < 0.05) 

         

# Prioritized Genes  3 72  0 51  0 0 

# Gene Sets 0 347  0 1  0 7 

# Tissues and cell 
types 

10 22  0 21  0 12 
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ONLINE METHODS 

This article is accompanied by a Supplementary Note with further details. 

 

Theory. There are 𝑇 traits, which may be binary or quantitative. We standardize 

each trait and the genotype for each single-nucleotide polymorphism (SNP) 𝑗 so that 

they all have mean zero and variance one. The length-𝑇 vector of marginal (i.e., not 

controlling for other SNPs), true effects of SNP 𝑗 on each of the traits is denoted 𝜷𝑗. 

We assume that these are random effects with mean 𝟎 and variance-covariance 

matrix 𝛀 that is the same across 𝑗. The mean is zero because we treat the choice of 

reference allele as arbitrary. We make the common assumption14,21,22 that the 𝜷𝑗 ’s 

are identically distributed across 𝑗. The assumption implies that the expected amount 

of phenotypic variance explained is equal for each SNP, regardless of SNP 

characteristics such as allele frequency. 

The length-𝑇 vector of GWAS estimates is denoted 𝜷̂𝑗, which is equal to the true 

effect vector plus estimation error, 𝜷𝑗 + 𝜺𝑗. The estimation error is the sum of 

sampling variation and biases (such as population stratification or technical artifacts). 

With any standard GWAS estimator (such as OLS or logistic regression), sampling 

variation is uncorrelated with 𝜷𝑗. We assume that the biases are also uncorrelated 

with 𝜷𝑗. The variance-covariance matrix of 𝜺𝑗, denoted 𝚺𝑗, may differ across SNPs 𝑗 

due to differences in the SNPs’ sample sizes per trait and the SNPs’ sample overlap 

between traits, although we only account for the former in our estimation of 𝚺𝑗. 

MTAG is a generalized method of moments (GMM) estimator. To obtain the key 

moment conditions we will use, we consider the best linear prediction of the GWAS 

estimate for trait s, 𝛽̂𝑗,𝑠, from the SNP’s true effect on trait t, 𝛽𝑗,𝑡. We use a first-order 

condition of this best linear prediction as the moment condition for trait s: E (𝛽̂𝑗,𝑠 −

𝜔𝑠𝑡

𝜔𝑡𝑡
𝛽𝑗,𝑡) = 0, where 𝜔𝑠𝑡 is the (𝑠, 𝑡)th element of 𝛀. There are 𝑇 such moment 

conditions for 𝑠 = 1,2, … , 𝑇, giving us the vector of moment conditions: 

 

E (𝜷̂𝑗 −
𝝎𝑡
𝜔𝑡𝑡

𝛽𝑗,𝑡) = 𝟎. (1) 

 

where 𝝎𝑡 is a vector equal to the 𝑡th column of 𝛀. Although 𝛽𝑗,𝑡 is a random effect, 

we aim to estimate its (unknown) realized value. The efficient GMM estimator for 𝛽𝑗,𝑡 

based on the vector of moment conditions in equation (1) solves 
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𝛽̂MTAG,𝑗,𝑡 = argmin𝛽𝑗,𝑡 (𝜷̂𝑗 −
𝝎𝑡
𝜔𝑡𝑡

𝛽𝑗,𝑡)
′

𝑾𝑄 (𝜷̂𝑗 −
𝝎𝑡
𝜔𝑡𝑡

𝛽𝑗,𝑡) (2) 

 

where 𝑾𝑄 = [Var (𝜷̂𝑗 −
𝝎𝑡

𝜔𝑡𝑡
𝛽𝑗,𝑡)]

−1

= (𝛀 −
𝝎𝑡𝝎𝑡

′

𝜔𝑡𝑡
+ 𝚺𝑗)

−1

 is the efficient weight matrix. 

Intuitively, the GMM estimator chooses the value of 𝛽𝑗,𝑡 that minimizes a weighted 

sum of the squared deviations from the moment conditions, with deviations weighted 

more heavily if they are estimated more precisely. In the Supplementary Note, we 

show that the solution to the minimization problem in equation (2) is: 

 

𝛽̂MTAG,𝑗,𝑡 =

𝝎𝑡
′

𝜔𝑡𝑡
(𝛀 −

𝝎𝑡𝝎𝑡
′

𝜔𝑡𝑡
+ 𝚺𝑗)

−1

𝝎𝑡
′

𝜔𝑡𝑡
(𝛀 −

𝝎𝑡𝝎𝑡
′

𝜔𝑡𝑡
+ 𝚺𝑗)

−1
𝝎𝑡
𝜔𝑡𝑡

𝜷̂𝑗. 

 

Standard asymptotic properties of GMM relate to 𝑇 → ∞. In the Supplementary 

Note, we show that for fixed number of traits 𝑇, as the sample size for the GWAS of 

any trait 𝑡 becomes large, the MTAG estimator 𝛽̂MTAG,𝑗,𝑡 is consistent and 

asymptotically normal. 

The sampling variance of the estimator is 

Var(𝛽̂MTAG,𝑗,𝑡 − 𝛽𝑗,𝑡) =
1

𝝎𝑡
′

𝜔𝑡𝑡
(𝛀 −

𝝎𝑡𝝎𝑡
′

𝜔𝑡𝑡
+ 𝚺𝑗)

−1
𝝎𝑡
𝜔𝑡𝑡

. 

For each trait 𝑡, the standard error of the estimate is the square root of this quantity. 

As is standard, we obtain a P value using the fact that in large samples, 𝛽̂MTAG,𝑗,𝑡 

divided by its standard error follows a standard normal distribution under the null 

hypothesis. 

Because of the homogeneous-𝛀 assumption, the above formulas for the MTAG 

estimator and its standard error effectively use the variance-covariance matrix of true 

SNP effects across all SNPs, 𝛀, to calculate the MTAG estimate for each SNP. If in 

fact there are different types of SNPs characterized by different variance-covariance 

matrices, then the MTAG estimator remains consistent but could be made more 

efficient if it took into account the different types of SNPs. In addition, the standard 

error formula is conservative on average across SNPs, which reduces MTAG’s 

statistical power to identify truly associated SNPs. Most importantly, the MTAG 

estimator is in general biased in finite samples, and it is biased away from zero for 

SNPs that are truly null, which causes the false positive rate to be inflated. 

For each SNP 𝑗, given 𝚺𝑗, the matrix 𝛀 is estimated using the method of moments 

(see the Supplementary Note for discussion of the relationship to GMM). For each 
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(𝑡, 𝑠)th entry of 𝛀, 𝜔𝑡𝑠, we use the moment condition E(𝛽̂𝑗,𝑡𝛽̂𝑗,𝑠 − 𝜔𝑡𝑠 − Σ𝑗,𝑡𝑠) = 0. This 

moment condition is derived from observing that E(𝛽̂𝑗,𝑡𝛽̂𝑗,𝑠) = E[(𝛽𝑗,𝑡 + 𝜀𝑗,𝑡)(𝛽𝑗,𝑠 +

𝜀𝑗,𝑠)] = E[𝛽𝑗,𝑡𝛽𝑗,𝑠] + E[𝜀𝑗,𝑡𝜀𝑗,𝑠] = 𝜔𝑡𝑠 + Σ𝑗,𝑡𝑠. The estimator simply replaces the 

population expectation with the sample mean: 

𝜔̂𝑡𝑠 =
1

𝑀
∑𝛽̂𝑗,𝑡𝛽̂𝑗,𝑠

𝑀

𝑗=1

− Σ𝑗,𝑡𝑠, 

where 𝑀 is the number of SNPs in the analysis. Intuitively, the estimated covariance 

in true genetic effects between trait 𝑡 and trait 𝑠 is equal to the covariance in their 

observed GWAS coefficients minus the covariance in GWAS coefficients that is due 

to correlated estimation error. 

For expositional simplicity, our derivations above and in Supplementary Note are 

parameterized in terms of the parameter vector 𝜷̂𝑗. We note, however, that the input 

to the MTAG software is the standard output from meta-analysis software: z-

statistics and sample sizes. Because MTAG is applied to z-statistics, the GWAS 

summary statistics do not need to have been estimated using traits and genotypes 

that were standardized. 

 

Special Cases. There are three special cases of MTAG that may often be relevant 

in practice and for which the estimation procedure is made faster and more efficient. 

The MTAG software offers the option to specialize the analysis for these cases. 

No sample overlap across traits. In this case, the off-diagonal elements of 𝚺𝑗 can be 

set equal to zero, so LD score regression needs to be run only 𝑇 rather than 

𝑇(𝑇 + 1)/2 times. Note that this version of MTAG does not take into account 

correlation in estimation error across traits that is due to bias. For this reason, LD 

score regression should be run on the MTAG results, and the resulting MTAG 

standard errors should be inflated by the square root of the estimated intercept. 

Perfect genetic correlation but different heritabilities. This case arises when the 

“traits” are different measures of the same trait, some with more measurement error 

than others, or when the variance in the trait due to non-genetic factors differs. Here 

the 𝛀 matrix has only 𝑇 rather than 𝑇(𝑇 + 1)/2 unique parameters to be estimated. 

Perfect genetic correlation and equal heritabilities. This special case corresponds to 

the “traits” being (the same measure of) a single trait; in other words, applying MTAG 

instead of inverse-variance-weighted meta-analysis to 𝑇 GWAS results. Doing so 

can be useful if there is sample overlap in the GWAS results. In this case, as noted 

in the main text, MTAG specializes to 𝛽̂MTAG,𝑗,𝑡 =
𝟏′𝚺𝑗

−1

𝟏′𝚺𝑗
−1𝟏
𝜷̂𝑗 for all 𝑡, and it is no longer 

necessary to estimate 𝛀. 

 

Computational Run-time. MTAG is computationally quick because all its steps 
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have closed-form solutions. In the real-data application described in this paper—with 

three traits and 6.1M SNPs—the median run time across five identical runs using 

one core of a 2.20 GHz Intel(R) Xeon(R) CPU E5-2650 v4 processor was 

approximately 28 minutes. Of course, run time may vary as a function of the 

computing environment. 

 

MTAG’s Genome-Wide Mean Squared Error (MSE). The genome-wide MSE of the 

MTAG estimates is simply equal to their sampling variance (given above): 

MSE(𝛽̂MTAG,𝑗,𝑡) ≡ E [(𝛽̂MTAG,𝑗,𝑡 − 𝛽𝑗,𝑡)
2
] 

= Var(𝛽̂MTAG,𝑗,𝑡 − 𝛽𝑗,𝑡) =
1

𝝎𝑡
′

𝜔𝑡𝑡
(𝛀 −

𝝎𝑡𝝎𝑡
′

𝜔𝑡𝑡
+ 𝚺𝑗)

−1
𝝎𝑡
𝜔𝑡𝑡

, 

where the first equality follows because both the true effects 𝛽𝑗,𝑡 and the MTAG 

estimates 𝛽̂MTAG,𝑗,𝑡 are mean zero. This formula for the MSE holds very generally; in 

particular, it does not require assuming that 𝛀 is homogeneous across SNPs 

(because the genome-wide MSE is a property regarding the mean across all the 

SNPs included in the analysis). In the formula, 𝛀 is (re-)defined as the genome-wide 

(i.e., across-SNP) variance-covariance matrix of the SNPs’ true effects on the traits. 

In Supplementary Note, we show that the MSE of the MTAG estimates are always 

weakly smaller than the MSE of the corresponding single-trait GWAS estimates, 

which equals MSE(𝛽̂𝑗,𝑡) ≡ E [(𝛽̂𝑗,𝑡 − 𝛽𝑗,𝑡)
2
] = E(𝜀𝑗,𝑡

2 ). 

 

MTAG’s Power and False Discovery Rate (FDR) When Effect Sizes Are Mixture-

Normal Distributed. Suppose that the vector of SNP 𝑗’s effects on the traits 𝜷𝑗 is 

drawn from a mixture of mean-zero multivariate normal distributions. The distribution 

of component 𝑐 = 1,2, … , 𝐶 is 𝜷𝑗|𝑐 ~ 𝑁(𝟎,𝛀𝑐), and its mixture weight is denoted 𝑝𝑐, 

where ∑ 𝑝𝑐
𝐶
𝑐=1 = 1. In this case, the z-statistic associated with the MTAG estimate 

𝛽̂MTAG,𝑗,𝑡 is a mixture distribution with component distributions  

𝑍𝑗,𝑡|𝑐 ~ 𝑁

(

 
 
𝟎,

𝝎𝑡
′

𝜔𝑡𝑡
(𝛀 −

𝝎𝑡𝝎𝑡
′

𝜔𝑡𝑡
+ 𝚺𝑗)

−1

(𝛀𝑐 + 𝚺𝑗) (𝛀 −
𝝎𝑡𝝎𝑡

′

𝜔𝑡𝑡
+ 𝚺𝑗)

−1
𝝎𝑡
𝜔𝑡𝑡

𝝎𝑡
′

𝜔𝑡𝑡
(𝛀 −

𝝎𝑡𝝎𝑡
′

𝜔𝑡𝑡
+ 𝚺𝑗)

−1
𝝎𝑡
𝜔𝑡𝑡 )

 
 
. 

 

To define power and FDR, let 𝐷 denote the set of components such that a SNP is 

null for trait 𝑡 (i.e., the 𝑡th element of 𝜷𝑗 is drawn from a degenerate distribution with 

all mass on 0). Power for trait 𝑡 can be calculated as 
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Power ≡ Pr(|𝑍𝑗,𝑡| > 𝑧0|𝑐 ∉ 𝐷) =
∑ Pr(|𝑍𝑗,𝑡| > 𝑧0|𝑐)𝑝𝑐𝑐∉𝐷

∑ 𝑝𝑐𝑐∉𝐷
, 

 

where 𝑧0 is the z-statistic associated with genome-wide significance. The FDR for 

trait 𝑡 can be calculated as 

 

FDR ≡ Pr(null | |𝑍𝑗,𝑡| > 𝑧0) =
Pr(|𝑍𝑗,𝑡|  >  𝑧0 | null)Pr(null)

Pr(|𝑍𝑗,𝑡|  >  𝑧0)
=
∑ Pr(|𝑍𝑗,𝑡| > 𝑧0|𝑐)𝑝𝑐𝑐∈𝐷

∑ Pr(|𝑍𝑗,𝑡| > 𝑧0|𝑐)𝑝𝑐
𝐶
𝑐=1

. 

 

Maximum FDR (MaxFDR) When Effect Sizes Are Multivariate Spike-and-Slab 

Distributed. Starting with the mixture-normal setup in the derivation of power and 

the FDR, we assume that there are 𝐶 = 2𝑇 components, corresponding to all 

possible combinations of the SNP being null for some subset of traits and non-null 

for the others. Let 𝛀̃ denote the variance-covariance matrix of true effect sizes for the 

component in which the SNP is non-null for all the traits. We assume that the 

variance-covariance matrix of true effect sizes for any component 𝑐, denoted 𝛀𝑐, is 

equal to 𝛀̃ but with the rows and columns zeroed out that correspond to null traits in 

component 𝑐. Given our estimate of 𝛀, for any vector of mixing weights 𝒑 =

(𝑝1, 𝑝2, … , 𝑝𝐶), we construct an estimate of 𝛀̃: we set the (𝑡, 𝑠)th entry of 𝛀̃(𝒑) equal 

to 𝜔̃𝑡𝑠(𝒑)  =
𝜔𝑡𝑠

∑ 𝑝𝑐𝑐∈𝐸𝑡,𝑠

, where 𝐸𝑡,𝑠 is the set of components in which the SNP is non-null 

for both traits 𝑡 and 𝑠. We call the mixing weights 𝒑 feasible if the resulting matrix 

𝛀̃(𝒑) is positive semi-definite. We maximize the FDR (given by the formula above) 

over all feasible mixing weights 𝒑. Given that the FDR may not be a unimodal 

function of 𝒑, we maximize using a grid search. Since 𝒑 has 2𝑇 elements, it may be 

computationally infeasible to perform a fine grid search when 𝑇 is larger than three or 

four traits. 

 

Simulations. To speed computations, instead of simulating data and then estimating 

effect sizes, we directly generated effect-size estimates by adding multivariate-

normally-distributed noise to the simulated effect sizes. The variance of the noise for 

each trait was pinned down by the assumed GWAS expected 𝜒2-statistics, and the 

covariance of the noise between the traits was pinned down by the assumed GWAS 

expected 𝜒2-statistics and correlation of GWAS estimation error across traits. 

In our simulations, we cannot estimate 𝚺𝑗 using LD score regressions because we 

directly simulate effect sizes rather than data. Nonetheless, we would like to use a 

matrix for 𝚺̂𝑗 that contains the same amount of sampling variance that would have 

been present if we had simulated data and then ran LD score regressions. To 

accomplish this, in each replication we directly generated 𝚺̂𝑗 by adding noise to the 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/118810doi: bioRxiv preprint 

https://doi.org/10.1101/118810
http://creativecommons.org/licenses/by/4.0/


29 

  

true value of 𝚺𝑗. The variance of the noise was calibrated against the LD-score-

regression intercept standard errors for the GWAS results of DEP, NEUR, and SWB 

that we estimate in our empirical application but scaled to be larger or smaller when 

the simulated GWAS had more power (see Supplementary Note). 

 

GWAS Meta-analyses of DEP, NEUR, and SWB. Details on the cohorts, phenotype 

measures, genotyping, quality-control filters, and association models are provided in 

Supplementary Note and Supplementary Table 3.1 to 3.4. As shown in Figure 3, 

there is substantial overlap in samples across the three GWAS meta-analyses. 

All analyses were based on autosomal SNPs from cohorts with genotypes imputed 

against the 1000 Genomes reference panel. The input files in each meta-analysis 

were subject to a uniform set of quality-control and diagnostic procedures. These are 

described in the previous SSGAC study11 and Supplementary Note. 

As expected under polygenicity23, we observe inflation of the median test statistic in 

each GWAS (λGC,DEP = 1.36, λGC,NEUR = 1.24, λGC,SWB = 1.28; see Supplementary Fig 

3.2). The intercept estimates from LD score regression are all below 1.02, however, 

suggesting that nearly all of the observed inflation is due to polygenic signal.14 When 

we report GWAS results, as in the SSGAC study11 we account for the potential bias 

due to this small amount of stratification by inflating the standard errors of our GWAS 

estimates by the square root of the LD score regression intercept.  

Manhattan plots from each of the GWAS meta-analyses are shown in 

Supplementary Figs 3.3a, b, and c. Our NEUR meta-analysis was based on the 

same cohort-level data as the SSGAC study11 and unsurprisingly yielded 

substantively identical results: 10 lead SNPs. Consistent with what studies have 

reported for other complex traits, the increased discovery samples for DEP and SWB 

relative to the SSGAC study increased the number of lead SNPs: from 2 to 32 for 

DEP (Neff = 149,707 to 354,862) and from 3 to 13 for SWB (N = 298,420 to 388,538). 

Applying bivariate LD score regression6 to the GWAS results, we estimate the 

genetic correlations to be 0.72 (s.e. = 0.026) between DEP and NEUR, -0.67 (s.e. = 

0.027) between NEUR and SWB, and -0.69 (s.e. = 0.024) between DEP and SWB 

(see Supplementary Table 3.6). 

 

Clumping Algorithm. We applied the same clumping algorithm to the GWAS and 

MTAG results to identify each set of “lead SNPs.” Our clumping algorithm is the 

same as in the previous SSGAC study.11 First, the SNP with the smallest P value 

was identified in the meta-analysis results. This SNP was designated the index SNP 

of clump 1. Second, we identified all SNPs on the same chromosome whose LD with 

the index SNP exceeds R2 = 0.1 and assigned them to clump 1. To generate the 

second clump, we removed the SNPs in clump 1 and then iterated the process to 

identify further index SNPs and their corresponding clumps until no SNPs remain. 
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MTAG SNP Filters. Since the derivation of MTAG relies on some assumptions 

regarding features of the distributions of the effect sizes and estimation error, its 

performance may be sensitive to violations of those assumptions. To reduce the risk 

of extreme violations, when we apply MTAG, we impose three additional SNP filters 

beyond the standard filters used in a GWAS. 

First, we restrict the set of SNPs to those with a minor allele frequency greater than 

1%. This filter is motivated by the homogeneous-𝛀 assumption and by the 

assumption that each SNP explains the same amount of phenotypic variation in 

expectation. Rare variants may follow a different effect-size distribution both in terms 

of the variance and covariance of their effect sizes, which could bias the MTAG 

estimates. 

Second, for each trait, we restrict variation in SNP sample sizes by calculating the 

90th percentile of the SNP sample-size distribution and removing SNPs with a 

sample size smaller than 75% of this value. This filter is similar to, though slightly 

more strict than, the sample-size filter recommended for LD Score regression.14 If a 

SNP’s effect is estimated in a relatively small subset of the sample, then the sample 

overlap across traits will likely be different for that SNP than for other SNPs in the 

sample. In that case, the covariance of the estimation error across traits as 

estimated by LD score regression may not be a good approximation to the 

covariance of the estimation error for that particular SNP. 

Third, we drop SNPs in genomic regions containing SNPs that are outliers with 

respect to their effect-size estimates. Because the effect sizes of these SNPs appear 

to have a different variance-covariance matrix than the rest of the genome, including 

these regions would likely lead to the biases and inefficiencies that can occur when 

the homogeneous-𝛀 assumption is violated. In our empirical application, in the 

GWAS of NEUR, the effect sizes of SNPs in a region of chromosome 8 that tag an 

inversion polymorphism have been found to be strongly inflated relative to the effects 

estimated for SNPs in all other regions of the genome.10,11 Therefore, we omit SNPs 

in chromosome 8 between base-pair positions 7,962,590 and 11,962,591. 

 

GWAS-Equivalent Sample Size for MTAG. The increase in the mean 𝜒2-statistic 

for each trait from the GWAS results to the MTAG results can be used to calculate a 

“GWAS-equivalent sample size” for MTAG. Under the assumptions of LD score 

regression,14 the expected 𝜒2-statistic for some SNP with LD score ℓ𝑗 is  

 

E(𝜒𝑗
2 | ℓ𝑗) =

𝑁𝑗ℎ
2ℓ𝑗

𝑀
+𝑁𝑗𝑎 + 1, 
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where 𝑁𝑗 is the sample size for SNP 𝑗; ℎ2 is the SNP heritability of the trait; 𝑀 is the 

number of SNPs for which we define the SNP heritability; and 𝑎 is the variance due 

to biases (e.g., due to population stratification). Note that E(𝜒𝑗
2 | ℓ𝑗) − 1 scales 

linearly with 𝑁𝑗 as long as 𝑀 and ℓ𝑗 are held constant in the additional samples.24–26 

Since the individuals included in all GWASs are of European ancestry, 𝑀 and ℓ𝑗 are 

indeed expected to be approximately constant.24–26 Thus, we can use the mean 𝜒2-

statistic from the GWAS and the MTAG results to calculate how much larger the 

GWAS sample size would have to be to give a mean 𝜒2-statistic equal to that 

attained by MTAG: 

 

𝑁GWAS-equiv,𝑗 = 𝑁GWAS,𝑗
𝜒MTAG
2̅̅ ̅̅ ̅̅ ̅̅ − 1

𝜒GWAS
2̅̅ ̅̅ ̅̅ ̅̅ − 1

, 

 

where 𝜒GWAS
2̅̅ ̅̅ ̅̅ ̅̅  is the mean 𝜒2-statistic in the GWAS results and 𝜒MTAG

2̅̅ ̅̅ ̅̅ ̅̅  is the mean 𝜒2-

statistic in the MTAG results. Put another way, conducting MTAG gives the same 

power (as measured by mean 𝜒2-statistic) as conducting GWAS in sample size that 

is larger by a factor of 
𝜒MTAG
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −1

𝜒GWAS
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −1

. 

For DEP, going from GWAS to MTAG, the mean 𝜒2-statistic increases from 1.44 to 

1.60, implying an increase in the GWAS-equivalent sample size by a factor of 

1.550 − 1

1.434 − 1
= 1.26. 

Thus, the MTAG analysis has statistical power equivalent to a GWAS of DEP 

conducted in 354,861 × 126% = 449,649 individuals. For NEUR, the mean 𝜒2-

statistic rises from 1.284 to 1.557, implying a GWAS-equivalent sample size for 

MTAG that is 96% larger than the GWAS sample size: the effective sample size is 

168,105 × 196% = 329,835 individuals. For SWB, the mean 𝜒2-statistics rises from 

1.308 to 1.570, implying a GWAS-equivalent sample size 85% larger than the 

GWAS: 388,538 × 185% = 718,284 individuals. 

 

Expected Increase in Mean 𝝌𝟐-statistic from MTAG. The expected 𝜒2-statistic of 

the GWAS summary statistics for trait 𝑡 is 

E(𝜒GWAS,𝑡
2 ) =

𝜔𝑡𝑡 + 𝜎𝑡
2

𝜎𝑡
2  

where 𝜎𝑡
2 is the 𝑡th diagonal element of 𝚺𝑗. The expected 𝜒2-statistic of the MTAG 

summary statistics for trait 𝑡 is  
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E(𝜒MTAG,𝑡
2 ) =

𝝎𝑡
′

𝜔𝑡𝑡
(𝛀 −

𝝎𝑡𝝎𝑡
′

𝜔𝑡𝑡
+ 𝚺𝑗)

−1

E(𝜷̂𝑗𝜷̂𝑗
′ )𝚺𝑗 (𝛀 −

𝝎𝑡𝝎𝑡
′

𝜔𝑡𝑡
+ 𝚺𝑗)

−1
𝝎𝑡
𝜔𝑡𝑡

𝝎𝑡
′

𝜔𝑡𝑡
(𝛀 −

𝝎𝑡𝝎𝑡
′

𝜔𝑡𝑡
+ 𝚺𝑗)

−1
𝝎𝑡
𝜔𝑡𝑡

, 

where we can substitute E(𝜷̂𝑗𝜷̂𝑗
′ ) = (𝛀 + 𝚺𝑗). 

Plugging our estimates 𝛀̂ and 𝚺̂𝑗 into the above equations, we can use the expected 

𝜒2-statistics to calculate the theoretically expected gain in GWAS-equivalent sample 

size from applying MTAG (as derived previously): 

E(𝜒MTAG,𝑡
2 ) − 1

E(𝜒GWAS,𝑡
2 ) − 1

. 

Note that 𝚺̂𝑗 is a function of the sample sizes used to generate the GWAS summary 

statistics, and we use the 𝚺̂𝑗 corresponding to the maximum sample size among the 

SNPs used in MTAG. Based on this formula, the theoretically expected increases in 

the GWAS-equivalent sample sizes are 28%, 58%, and 56% for DEP, NEUR, and 

SWB, respectively. These are very close to the observed increases of 27%, 55%, 

and 54%. 

 

Winner’s Curse Correction for Replication Analysis. MTAG estimates are 

corrected for winner’s curse following procedures previously described.11 Briefly, for 

each trait, we use maximum likelihood to fit the MTAG results to a (univariate) spike-

and-slab distribution such that 

𝛽𝑗~ {
0 with probability 𝜋

𝑁(0, 𝜏2) otherwise.
 

For DEP, NEUR, and SWB, we estimate 𝜋̂ to be 0.598, 0.652, and 0.633 and 𝜏̂2 to 

be 3.12 × 10−6, 5.05 × 10−6, and 2.15 × 10−6, respectively. We then use these 

estimates as the parameters of the prior distribution and calculate the posterior 

distribution of the effect size 𝛽𝑗 given the estimate 𝛽̂MTAG,𝑗 for each SNP as 

𝛽̂adj,𝑗 = (1 − 𝜋post,𝑗)
𝜏̂2

𝜏̂2 + 𝑠̂𝑗
2 𝛽̂MTAG,𝑗, 

where 𝜋post,𝑗 is the posterior probability that 𝛽𝑗 = 0 and 𝑠̂𝑗
2 is the squared standard 

error of the MTAG estimate. 

 

Polygenic Prediction. We used the Health and Retirement Study27 (HRS) and the 

National Longitudinal Study of Adolescent to Adult Health (Add Health) as our 

prediction cohorts. We applied the same SNP filters as in the main MTAG analyses. 

Additionally, we restricted the set of SNPs used to construct the scores to HapMap3 

SNPs for comparability across the two prediction cohorts. We calculated the SNP 
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weights using the software package LDpred, assuming a fraction of causal SNPs 

equal to 1. The scores were constructed in PLINK using genotype probabilities 

obtained from 1000 Genomes imputation. 

Bootstrapped confidence intervals were calculated by drawing, with replacement, a 

sample of equal size to the prediction sample, and then calculating the incremental 

𝑅2 for the GWAS-based polygenic score, the MTAG-based polygenic score, and the 

difference between them. Our pooled results were obtained as a sample-size-

weighted sum of HRS and Add Health results. As the bounds of the 95%-confidence 

intervals, we use the 2.5th- and 97.5th-percentile values of the incremental 𝑅2’s 

across 1000 bootstrap draws. 

 

Expected Increase in Polygenic-Score Predictive Power from MTAG. The 

phenotypic value of a trait in individual 𝑖, denoted 𝑦𝑖, can be decomposed into the 

sum of the additive genetic variance component and a residual: 

𝑦𝑖 = 𝑔𝑖 + 𝜀𝑖
𝑦
. 

We denote the GWAS- and MTAG-based polygenic scores for the trait by 𝑔̂GWAS,𝑖 

and 𝑔̂MTAG,𝑖, respectively. Note that GWAS and MTAG produce consistent estimates 

of the SNP effect sizes, and LDpred22 produces a consistent estimate of the additive 

genetic variance component. Therefore, each polygenic score 𝑘 ∈ {GWAS,MTAG} is 

approximately equal to 𝑔𝑖 plus estimation error: 

𝑔̂𝑘,𝑖 = 𝑔𝑖 + 𝑒𝑘,𝑖. 

By the central limit theorem, the estimation error is approximately normally 

distributed, 

𝑒𝑘,𝑖 ~ 𝑁(0, 𝑉𝑘). 

The variance 𝑉𝑘 is inversely proportional to the sample size as long as the effective 

number of chromosome segments, 𝑀𝑒, is the same in every GWAS sample in the 

analysis.24–26 As in the calculation of the GWAS-equivalent sample size, where we 

assume that 𝑀𝑒 is the same in every GWAS sample and in the prediction sample, 

the expected predictive power of a polygenic score is 

E(𝑅𝑘
2) =

(ℎ2)2

ℎ2 + 𝑉𝑘
, 

where ℎ2 is the SNP heritability of the trait.28–30 (Note that if 𝑀𝑒 were to differ greatly 

across samples, then it would be important to take this into account when calculating 

the expected predictive power.24,25) 

Using the GWAS results, we obtain an estimate of ℎ2 using LD score regression14 

and an estimate of E(𝑅𝑘
2) from the predictive power of the GWAS-based polygenic 

score. Plugging these estimates into the above formula, we solve for an estimate of 
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𝑉GWAS. We then multiply this value by 
𝜒GWAS
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −1

𝜒MTAG
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −1

 (which we showed previously is equal 

to the ratio of the GWAS sample size to the MTAG’s GWAS-equivalent sample size) 

to obtain an estimate of 𝑉MTAG. Substituting this back into the above formula along 

with our estimate of ℎ2 gives us the expected predictive power of the MTAG-based 

PGS. 

Results of this calculation are found in Panel C of Supplementary Table 6.1. For 

DEP, NEUR, and SWB, respectively, we anticipated increases in predictive power of 

0.21, 0.56, and 0.39 percentage points. All three anticipated increases are within 

their respective estimated confidence intervals: [0.04, 0.31], [0.16, 0.61], and [0.12, 

0.65]. Overall, the observed gains in predictive power relative to conventional 

GWAS-based polygenic scores are thus consistent with theoretical expectations. 

 

Biological Annotation. For the identification of genes, we supplemented the 

DEPICT inventory with protein-coding genes that have a status of ‘known’ in 

GENCODE (downloaded February 26, 2015). Specifically, we assigned such a gene 

to a lead SNP in Supplementary Tables 7.1, 7.4, and 7.7 if it either encompasses 

the SNP in a DEPICT-defined locus or has the start site closest to such a SNP. 

 

Comparative Analyses. We conducted analyses comparing MTAG to other multi-

trait methods that can be applied in the specific setting for which MTAG was 

developed: the only available inputs are summary statistics from an arbitrary number 

of genome-wide analyses conducted in samples with unknown overlap. We identified 

three methods satisfying these criteria: 𝑆Hom, 𝑆Het, and a method we call 

Bolormaa.12,13 Theoretically, we highlight two properties of MTAG that distinguish it. 

First, the alternative methods only provide an omnibus P  value from the test of the 

joint null hypothesis that the SNP is not associated with any of the traits analyzed. In 

settings where the purpose of the multi-trait analysis is to test for association 

between a SNP and a single trait or to improve the prediction accuracy of a 

polygenic score, the alternative methods are not readily applicable. Second, the 

other methods lose efficiency by not distinguishing between variance and covariance 

in the GWAS test statistics that is due to true genetic signal versus estimation error. 

In the Supplementary Note we provide a more detailed theoretical overview and 

simulation evidence consistent with our theoretical conclusions (Supplementary 

Fig. 8.1). 

We also performed comparative analyses based on summary statistics from actual 

GWASs. In our first such empirical application, we used summary statistics from the 

three single-trait GWASs (DEP, NEUR, and SWB) analyzed in this paper’s main 

MTAG analysis. In our second application, we applied MTAG and each of the three 

alternative methods to summary statistics from sex-stratified genome-wide analyses 

of height, body mass index (BMI) and waist-to-hip-ratio adjusted for BMI 
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(WHRadjBMI) published by the GIANT consortium in 2013.31 In order to compare 

MTAG to the other methods, we use the Bonferroni P value of the joint null 

hypothesis: 𝑃 = 𝑇 ×  min{𝑃𝑡}, where 𝑃𝑡 is MTAG’s trait-𝑡 P value for the SNP. This P 

value is conservative because the trait-specific P values are in general correlated. 

Nonetheless, in both applications, we found that MTAG compares favorably in terms 

of the number of loci identified. We also leveraged more recent studies by the GIANT 

consortium to examine the replicability of the loci identified by the multi-trait 

methods.32–34 We found that MTAG-identified loci that evaded detection by the 

alternative methods appeared to replicate at a higher rate than loci identified by one 

of the alternative methods and missed by MTAG (Supplementary Figs. 8.2-8.3 and 

Supplementary Table 8.1). 

We did not compare MTAG to PleioPred,4 a new method that is closely related to 

MTAG, because it can be applied only to two traits and is designed only for 

polygenic prediction (not identification of SNP associations). We expect that 

PleioPred will outperform MTAG in polygenic prediction when the genetic 

architecture of the traits aligns with the spike-and-slab distribution assumed by the 

method, as seems to be the case for the empirical application studied in that paper. 
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