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Abstract 

 

Alternative splicing (AS) is a widespread process underlying the generation of 

transcriptomic and proteomic diversity in metazoans. Major challenges in 

comprehensively detecting and quantifying patterns of AS are that RNA-seq datasets 

are expanding near exponentially, while existing analysis tools are computationally 

inefficient and ineffective at handling complex splicing patterns.  Here, we describe 

Whippet, a method that rapidly, and with minimal hardware requirements, models and 

quantifies splicing events of any complexity without significant loss of accuracy. 

Using an entropic measure of splicing complexity, Whippet reveals that 

approximately 33% of human protein coding genes contain complex AS events that 

result in substantial expression of multiple splice isoforms. These events frequently 

affect tandem arrays of folded protein domains. Remarkably, high-entropy AS events 

are more prevalent in tumour relative to matched normal tissues, and these differences 

correlate with increased expression of proto-oncogenic splicing factors.  Whippet thus 

affords the rapid and accurate analysis of AS events of any complexity, and as such 

will facilitate biomedical research.  
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Introduction 

 

High-throughput RNA sequencing (RNA-seq) technologies are producing vast 

repositories of transcriptome profiling data at an ever expanding pace1. This explosion 

in data has enabled genome-wide investigations of the role of alternative pre-mRNA 

splicing (AS) in gene regulation and dysregulation.  Initial investigations of tissue 

transcriptomes using RNA-seq data revealed that more than 95% of human multi-

exon genes undergo AS2,3. These and more recent studies analyzing ribosome-

engaged splice-variant transcripts suggest that AS is potentially the most widespread 

process underlying the generation of transcriptomic and proteomic complexity4-6. 

Furthermore, numerous AS events belonging to co-regulated exon networks have 

been shown to provide critical functions in diverse normal and disease-associated 

processes and pathways in multicellular organisms7.  

A major challenge confronting the advancement of knowledge of AS-complexity 

regulation and function is that existing methods for analyzing RNA-seq data require 

extensive computational resources and expertise. The first steps in the analysis of AS 

using RNA-seq data involve the alignment of reads to a transcriptome or reference 

genome, followed by quantification of AS levels by downstream methods. Both steps 

can be time-consuming. For example, aligning 50 million paired-end reads with the 

widely-used program Tophat28 takes over 15 hours on 15 processing cores, and 

quantification of AS using the aligned reads can take an additional seven hours using 

Mixture-of-Isoforms (MISO), one of the most highly cited AS analysis tools9. 

Because RNA-seq data is being generated at a rate that is outpacing parallel 

advancements in computational hardware required for analysis, new methods that are 

both efficient and accurate are necessary. 
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To address these challenges, recent developments in transcript-level expression 

quantification have circumvented the read alignment step by extracting and 

quantifying k-mers (i.e. all possible subsequences of length k) from reads, which can 

decrease processing times by over 20 fold10,11. Unfortunately, transcript-level 

quantification is not well-suited for the analysis of splice isoforms. This is because 

transcript-level quantification assumes dependency between multiple alternatively 

processed sequences of a gene. However, these regions are often regulated 

independently such that the assumption of dependency is invalid. (Supplemental Fig. 

1a). Short read-based RNA-seq analyses therefore require that event-level approaches 

are used for the quantification of AS. While considerable advancements have been 

made on this front12, most existing tools analyze individual AS events using simple 

binary models (i.e. a single alternative exon surrounded by two constitutive exons) 

and are not suited for the analysis of relatively complex AS patterns.   

Accordingly, an important goal for understanding how transcriptomes shape key 

biological processes and pathways is to develop new analysis methods that are 

capable of efficient detection and quantification of both simple and complex splicing 

patterns.  To address these challenges, we have developed Whippet, an easy to use 

software for the rapid detection and quantification of AS events of any complexity 

that has computational requirements compatible with a laptop computer. We 

demonstrate the utility of Whippet in the discovery of previously unknown AS 

complexity in vertebrate transcriptomes associated with the regulation of tandem 

domains and other protein sequence features, as well as an unexpected increase in AS 

complexity and entropy in cancer transcriptomes. 

 

Results 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/158519doi: bioRxiv preprint 

https://doi.org/10.1101/158519
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 5	

 

Using contiguous splice graphs to quantify alternative splicing at the event-level 

To facilitate event-level quantification, Whippet creates `Contiguous Splice 

Graphs` (CSGs) using transcript features extracted from gene annotations. These are 

directed graphs whose nodes are exonic sequences and whose edges can either be 

spliced (intron excision) or unspliced (between two adjacent nodes). Single isoforms 

transcribed from a gene represent individual paths through the CSG. Representing 

transcript architecture in this manner thus allows a vast number of different isoforms 

from a gene to be represented by a single CSG. 

 Whippet aligns reads to exon-exon junction-spanning sequences represented 

by a CSG to detect pre-mRNA splicing events. For each CSG, adjacent non-

redundant exonic sequences (nodes) are arranged into a single sequence (Fig. 1a, 

Supplemental Fig. 1b-d). The CSG sequences are concatenated and a global 

transcriptome Full-text index in Minute space (FM-index)13 is built, which 

compresses the input data and facilitates efficient full-text pattern searching (Fig. 1a). 

Raw sequence reads are seeded to the transcriptome FM-Index, and alignments are 

extended in the forward and reverse directions (Fig. 1b). Nucleotide k-mers flanking 

each annotated 5´ or 3´ splice-site are used as an index for two hash-tables (i.e. 

associative maps) that link to gene-node pairs. Reads intersecting two sets of (gene, 

node) pairs for an exon-exon junction sequence (upstream 9mer + downstream 9mer 

= exon-exon junction 18mer by default) produce compatible nodes that are 

recursively extended along the CSG for the remaining length of the read (Fig. 1b, 

Supplemental Fig. 2; see Methods).  Performing read alignments in this manner 

affords Whippet considerable efficiency by storing minimal data while still 

supporting pseudo-de novo AS event identification (see below). 
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After alignment of all sequencing reads to the CSG transcriptome, Whippet 

builds each node’s local splicing event (LSE), which is defined as the set of nodes and 

observed edges between the farthest overlapping or connecting upstream and 

downstream boundary nodes (Fig. 1c, see Methods).  Since observed CSG paths in an 

LSE may share common nodes or edges, the proportional abundance of each path in 

the LSE is determined through maximum likelihood estimation using the EM 

(expectation-maximization) algorithm (see Methods). The percent-spliced-in (PSI, Y) 

of a node is then defined as the sum of the proportional abundance of the paths 

containing the node (Fig. 1c).   

 

Whippet facilitates rapid and accurate analysis of RNA-seq data for low- and 

high-complexity splicing events 

To assess the performance of Whippet, we compared its efficiency and 

accuracy with established and newer analysis methods, using both simulated and 

experimental RNA-seq datasets. Whippet’s CSG alignment algorithm correctly maps 

94-96% of simulated spliced junction reads, which is within ±2-4% of the percentage 

of reads correctly mapped by widely used spliced-read aligners such as STAR14 and 

TOPHAT28, although it achieves this task at a faster rate and with lower memory 

usage than these aligners (Fig 1e, Supplemental Fig. 3a). To assess the accuracy of 

AS-quantification, we compared published RT-PCR-derived Y values for AS events 

in liver and cerebellum samples with Whippet-derived Y values obtained from RNA-

seq data from the same tissue types12. Whippet-derived Y values correlated highly 

with the RT-PCR measurements (r=0.963, Pearson’s correlation coefficient) and with 

a comparable error rate as the best other methods tested (Fig. 1d, Supplemental Fig. 

4).  
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We next assessed whether the unique architecture of Whippet increased its 

speed and performance relative to other AS quantification methods that have a 

comparable degree of accuracy (Supplemental Fig. 4b, p > 0.05, Wilcoxon rank-sum 

one sided test, Whippet vs other algorithms). To this end, we compared its speed and 

memory usage to those of eight other highly-cited splicing tools9,12,15-19 when 

analyzing several paired-end RNA-seq datasets from HeLa cells with increasing read 

depth (~10M, ~25M and ~50M). Remarkably, Whippet quantifies AS on an event-

specific basis from a raw paired-end 25M RNA-seq read dataset in less than forty-five 

minutes on a typical cluster node (Dual-Core AMD Opteron(tm) Processor 8218, 2.5 

GHz, 60GB RAM, 1,024KB cache), and uses less than 1.5GB of memory. This 

represents a considerable increase in performance over all other event-level tools 

tested both in terms of speed and memory usage (Fig. 1e, Supplemental Fig. 3a and 

d). For example, MISO, the most highly-cited splicing tool, took more than 24 hours 

and used 30 GB of memory to analyze the same data (Fig. 1e).  Moreover, on a 

personal laptop with a solid-state hard drive (Macbook Pro 3.1 GHz Intel i7), Whippet 

was able to quantify the 25M read paired-end dataset in only 13.4 minutes, whereas 

this was not feasible with other tools using the same hardware due to excessive RAM 

usage and computational time. Together, these results demonstrate that Whippet is 

both a highly efficient and accurate method for the analysis of AS using RNA-seq 

data. 

The benchmarks described so far focus on “simple” AS events, such as single 

cassette alternative exons that are flanked by two pre-defined constitutive exons and 

that have binary splicing outcomes. However, some AS events are more complex and 

can involve situations where a splice site is variably paired with two or more other 

sites20. Whippet’s graph-based algorithm is designed to detect and quantify such AS 
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event complexity in two related ways: first, it classifies events into discrete categories 

of splicing complexity based on total numbers of possible combinatorial outcomes 

(i.e. K(n) = 2n spliced outcomes for K1, …, K6; Fig. 2a, Supplemental Fig. 5), and 

second, it calculates a Y-dependent measure of AS complexity using Shannon’s 

entropy (i.e., entropy = − Ψ## 𝑙𝑜𝑔'Ψ# such that the maximum entropy for an event 

in K(n) is n; Fig. 2b, Supplemental Fig. 6a). This entropic measure of alternative 

splicing formalizes the total number of possible outcomes for an AS event and the 

degree of their proportional contribution to the transcriptome in a read-depth and 

read-length-independent manner (Supplemental Fig. 6b-c) 

To assess whether Whippet can accurately quantify AS events with increasing 

degrees of complexity and entropy, we simulated RNA-seq datasets and 

corresponding Y values for events in these formalized categories of increasing 

complexity and distributed entropy (Fig. 2a-b). Importantly, in contrast to other 

methods, the accuracy of Whippet-derived estimates for Y did not decrease as the 

complexity and entropy of the simulated AS events increased (Fig. 2c). Moreover, in 

contrast to most other compared methods – with MAJIQ being the exception –, 

Whippet also reported a higher number of total alternative exons when analyzing 

increasingly complex AS events. These analyses thus indicate that Whippet offers a 

significant advantage over other methods in terms of its combined capacity to both 

detect and quantify AS events ranging from simple, independent cassette exons to 

complex patterns of AS involving different combinations of splice sites.  

To experimentally validate Whippet-derived predictions of high AS event 

entropy, RNA-seq data21 from mouse neuroblastoma (N2a) cells were analyzed and 

10 events with different predicted degrees of entropy and complexity involving 

tandem arrays of alternative exons were tested by RT-PCR (see Methods).  
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Importantly, the RT-PCR assays yielded amplification products consistent with the 

Whippet predictions for 9/10 (90%) of the tested events (Fig. 2d, Supplemental Fig. 

7). This analysis thus demonstrates a strong correlation between the AS event entropy 

and complexity predicted by Whippet and detected by RT-PCR assays. 

 

Detection of high-entropy, tissue-regulated AS events in transcripts from >20% 

of human genes 

To investigate the prevalence and possible biological relevance of high-

complexity AS events in the mammalian transcriptome, we applied Whippet to an 

analysis of AS across more than 60 diverse human and mouse tissue RNA-seq 

datasets. Remarkably, this analysis revealed that 32.97% of human (or 28.90% of 

mouse) protein coding genes harbor an AS event predicted by Whippet to have a 

high-entropy (entropy > 1.0; see Methods) event in at least one tissue.  Moreover, the 

majority of these events are predicted to undergo large tissue-dependent changes in 

splicing entropy that affect the regulation of approximately 21% of genes (Fig. 2e). 

These regulated, high-entropy AS events display substantial expression of multiple 

isoforms and the corresponding genes are significantly enriched in functional 

annotations associated with the cytoskeleton, extracellular matrix organization, cell 

communication, signaling and muscle biology (Fig. 2f, p < 0.05; FDR corrected 

hypergeometric test). Clustering of the AS events based on pairwise comparisons of 

their overall entropy scores across different tissues highlighted subsets of AS events 

that display differences related to both tissue origin (e.g. neural- and muscle-

dependent) as well as cell state (e.g. post-mitotic versus proliferative cells and tissues) 

(Fig. 2g, Supplemental Fig. 8a for mouse). 
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To further assess the possible functionality of high-entropy events detected by 

Whippet, we investigated their evolutionary conservation. Accordingly, Whippet was 

used to analyze RNA-seq data from six of the same organs from seven vertebrate 

species1 and entropy values for the orthologous exons from each species were 

compared.  This analysis revealed a lower variance in AS event entropy values 

between the analyzed species than expected by chance (i.e. when compared to a 

randomly-permuted set of exons from the same data) (Fig. 2h; Supplemental Fig. 8 

and Methods). This observation thus suggests that the entropy of AS events tends to 

be conserved across vertebrate species.  

We next asked whether high-entropy AS events are potentially translated and thus 

contribute to proteomic complexity. Whippet was applied to RNA-seq data from 

HeLa whole cell, nuclear, and cytosolic fractions, as well as mono- and polysomes5.  

This analysis reveals comparable distributions of AS event entropy across all samples 

(Fig. 2i; d < 0.25, Cohen’s D statistic, Nuclear vs High Polyribosome), suggesting 

that high-entropy AS events contribute substantially to the translated transcriptome. 

Furthermore, the enrichment of high entropy events within the 5´-UTR of transcripts 

(Supplemental Fig. 8d, p < 4.37 x 10-38, Fisher’s exact test) suggests an additional 

role in regulating translation. 

 

High-entropy alternative splicing regulates genes encoding proteins with 

extensive domain repeats and disordered regions 

Given that previous studies have illustrated the importance of AS in rewiring 

protein-protein interaction networks, as well as controlling additional aspects of 

protein function22,23, we hypothesized that increasing levels of AS event entropy may 

be associated with specific protein structural features. We observe a significant 
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monotonic increase in the frequency of overlap with intrinsically disordered regions 

as a function of increasing entropy of AS events (Fig. 3a; p < 1.02 x 10-43, Wilcoxon 

Rank Sum Test, low- vs highest-entropy events). As expected, an overall inverse 

trend is observed for overlap with structured protein domains (Fig. 3a, p < 1.78 x 10-

41, Wilcoxon Rank Sum Test). An interesting exception is that highest-entropy AS 

events (entropy > 2.0) display significant overlap with structured tandem repeat 

domains (Fig. 3a p < 2.14 x 10-05, Wilcoxon Rank Sum Test), particularly nebulin-

like and epidermal growth factor (EGF)-like domains (p < 0.05, Fisher-exact test).  

Further analysis of the highest-entropy events (>2.0) overlapping tandem protein 

domain repeats reveals that they are significantly more likely to arise from exon 

duplication than lower-entropy events (<2.0) AS events (Fig. 3b, p < 4.57 x 10-42, 

Fisher’s exact test; Supplemental Fig. 9). As an example, Whippet detected and 

quantified high-entropy splicing events overlapping two classes of tandem repeat 

domains, LDL-receptor class A and EGF-like domains, within the low-density 

lipoprotein receptor-related protein 8 (LRP8). These events were confirmed by RT-

PCR analysis (Supplemental Fig. 9d). Moreover, supporting the likely functional 

importance of AS events in this tandem array, one of them is specifically 

differentially regulated by the neural and muscle-enriched splicing regulator Rbfox2 

(Supplemental Fig. 9d). These data support an important role for Whippet-detected, 

high-entropy AS events in the expansion of proteomic diversity, principally through 

changes to intrinsically disordered protein regions as well as through combinatorial 

changes to the composition of tandem arrays of specific-classes of protein domains. 

 

High-entropy AS events display prototypical alternative splicing signals 
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We hypothesized that high-entropy AS events may be associated with specific 

sequence features that facilitate their complex patterns of regulation.  To investigate 

this, we binned AS events by entropy and compared the strengths of their 3´- and 5´-

splice site consensus sequences, flanking intron lengths, and exonic splicing enhancer 

(ESE) and silencer (ESS) motif densities. Remarkably, the highest-entropy AS events 

show significant decreases in both 3´- and 5´-splice site strength compared to low-

entropy AS events (Fig. 3c, Supplemental Fig. 10; p < 3.73 x 10-4 and 1.83 x 10-3, 

Wilcoxon). Additionally, we observe monotonic decreases in both flanking intron 

length (Fig. 3d, p < 1.78 x 10-18, Wilcoxon, highest vs lowest entropy events) and 

ESS motif density (Fig. 3e; ESS: p < 6.06 x 10-05; Wilcoxon, highest vs lowest 

entropy events) as a function of decreasing entropy. In contrast, the density of ESE 

elements displayed a monotonic increase between high- and low- entropy AS events 

(Fig. 3e; ESE: p < 4.20 x 10-06, Wilcoxon, highest vs lowest entropy events). These 

results thus suggest that weak splice sites, reduced intronic length, and altered 

frequencies of exonic splicing elements, are important features underlying the 

regulation and therefore function of high-entropy AS events (Fig. 3f).     

 

Whippet detects global increases in high-entropy AS in cancer samples 

Aberrant pre-mRNA splicing is a hallmark of cancer and contributes to 

numerous aspects of tumour biology24,25. Cancer associated changes in AS have been 

linked to altered expression of numerous RNA binding proteins, some of which are 

oncogenic or act as tumour suppressors, as well as to splicing-sensitive disease 

mutations that impact the levels or activities of other cancer-associated genes26. 

Despite evidence for altered patterns of AS in cancer27,28, the extent to which these 

changes relate to altered levels of splicing complexity has not been previously 
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determined. Accordingly, we applied Whippet to compare AS entropy using RNA-seq 

data (Supplementary Table 1) from 15 matched tumour and control liver samples of 

patients with hepatocellular carcinoma (HCC), the third leading cause of cancer 

deaths worldwide. Remarkably, this analysis revealed an overall significant and 

reproducible (i.e. between replicate samples) increase in AS event entropy in tumour 

compared to control samples (Fig. 4a-c; 3.00 x 10-07, Wilcoxon). Functional analysis 

of genes with the largest changes in entropy of AS display a striking enrichment for 

categories known to be dysregulated in liver cancer including DNA repair and cell-

cycle regulation (Fig. 4d, p < 0.05; FDR corrected hypergeometric test). Further 

investigation of these events revealed a number of AS events previously identified as 

aberrant in cancer samples (Fig. 4e), including those associated with over-expression 

of the splicing regulator SRSF129,30. Consistent with this observation, differential 

gene expression analysis revealed a number of RNA binding proteins, including 

SRSF1, that are significantly over-expressed in tumour compared to control samples 

(Fig. 4f-g and Supplemental Fig. 10c; DESeq2, False Discovery Rate-adjusted p-

value < 0.001). To further investigate the possible role of SRSF1 over-expression in 

the expansion of AS entropy observed in cancer samples, we used Whippet to analyze 

RNA-seq data29 from an MCR-10A cell line transiently over-expressing SRSF1. 

These data revealed a significant increase in high-entropy AS events associated with 

SRSF1 over-expression (Fig. 4h; p < 9.41 x 10-9, Wilcoxon rank-sum test, compared 

to control) and a significant overlap with events differentially regulated between 

tumour versus normal tissues (Fig. 4i; p < 2.09x10-5, Fisher’s exact test). These data 

thus demonstrate the utility of Whippet in the detection of disease-associated changes 

involving high-entropy AS events and further reveal that overall splicing entropy 
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increases in specific tumour types in response to changes in the expression of 

oncogenic splicing regulars, such as SRSF1.  

 

Discussion 

 

In this study, we present a high-performance graph-based approach for the 

rapid quantification of transcriptome diversity generated by AS. Whippet applies the 

concept of lightweight algorithms10,11 to event-level splicing quantification by RNA-

seq, thus enabling a significant advancement in terms of both speed and resource 

usage for AS analysis relative to previously published methods. Whippet also 

simplifies AS analysis by eliminating the requirement for extensive computational 

resources and user knowledge. Importantly, Whippet further affords rapid and 

accurate quantification of both low- and high-entropy AS events, thereby providing 

new insight into transcriptomic complexity.  

Our results from applying Whippet indicate that high-entropy AS events occur 

more frequently in vertebrate transcriptomes than previously appreciated12,31, and 

further provide evidence that these events are likely biologically significant since their 

entropy levels are frequently tissue-regulated, conserved, and the corresponding 

variant transcripts are highly expressed. Many of the events are reminiscent of well-

studied examples of high-entropy AS in other systems, such as the myriad of splice 

variants generated by tandem arrays of alternative exons in the Drosophila DSCAM 

gene32. In this classic example, high-entropy AS events overlap tandemly repeated 

immunoglobulin-like domains that function as interaction surfaces in neural circuit 

assembly33. Our results suggest that targeting of tandem protein repeat domains by 

high-entropy splicing represents a more widely used mechanism to modulate binding 

and functional specificity of multi-domain proteins. We further provide evidence that 
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the generation of large repertoires of mRNAs from high-entropy AS events is 

particularly prominent in post-mitotic tissues, and likely contributes to intricate 

networks of regulation and cell-cell interactions in these tissues.  

Alterations in RNA splicing by spliceosomal gene mutations and the over-

expression of RBPs contribute to the general transcriptional dysfunction that 

characterizes myelodysplastic syndromes and related cancers34. In the present study, 

we demonstrate a significant increase in AS event entropy in hepatocellular 

carcinoma, affecting genes that function in DNA damage and spindle formation, and 

we relate these changes to the mis-regulation of the splicing regulator, SRSF1. These 

data may reflect an overall loss of splicing fidelity in cancers and exemplify how the 

formalization of AS entropy is important when evaluating changes in global splicing 

patterns35. For example, such measures of entropic splicing change may be valuable 

in future diagnostic techniques for precision medicine. Additionally, the ability of 

Whippet to rapidly quantify raw read data on a personal computer renders genome-

wide analyses of AS accessible to a wider scientific community. In summary, the 

development of Whippet facilitates the efficient and comprehensive analysis of 

simple to complex AS events that function in normal and disease physiology. 

 

 

SUPPLEMENTAL SOFTWARE 

Whippet is implemented in the high-level, high-performance dynamic programming 

language Julia (julialang.org) and is freely available as open-source software for 

academic use (Git repository: http://github.com/timbitz/Whippet.jl).   
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METHODS 

Defining and Building Contiguous Splice Graphs: 

 The central data structure underlying Whippet alignment and quantification is 

the Contiguous Splice Graph (CSG), a directed multigraph whose nodes are exonic 

sequence and whose edges annotate transcription start and end positions and donor 
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and acceptor splice sites within the same gene (Supplemental Fig. 1).  Briefly, a CSG 

separates all non-redundant exon intervals into separate ‘nodes’, and each node 

boundary exists as a separate edge type, allowing for various connectivity to other 

nodes (Supplemental Table 2).  A CSG Sequence built from a given set of transcript 

annotations may not resemble any of the individual transcript sequences, however 

each of those sequences can easily be defined as a valid path or sequence of nodes 

leading through the graph. 

Formally, a CSG contains five essential parts, an CSG Node Vector (ni Î N), 

CSG Edge Type Vector (ei Î E, where E = {‘SL’, ‘LS’, ‘LL’, ‘LR’, ‘RR’, ‘SR’, ‘RS’} ), 

CSG Left Edge Vector (lei Î {Ik È Æ}), an CSG Right Edge Vector (reiÎ {Ik È Æ})  

and an CSG Sequence (si Î {A,C,G,T}).  Here, Ik represents a nucleotide k-mer of size 

k (where 0 £ k £ 32) encoded as an integer (Ik Î {0,…, 432-

1=18446744073709551615}) defined by an enumeration over the nucleotides where 

nt is a sequence of nucleotides, (ntiÎ {A=0,C=1,G=2,T=3}), and Ik = 𝑛𝑡# ∙# 	2#, with 

i Î {1,…,k}.  

Each node in N contains a genomic coordinate, an offset position within the 

CSG Sequence and a length in nucleotides.  The edge types within set E are described 

as follows: 

 

Edge 
Type 

Meaning Splice 
From 5¢ to 
3¢ 

Splice 
To  
5¢ to 3¢ 

Extend 
Through 

Must 
Splice 

Inverse= 

‘SL’ TxStart (right) no no yes no ‘RS’ 
‘LS’ 5’ SS (left) & 

TxStart (right) 
yes no no fwd ‘SR’ 

‘LL’ 5’ SS (left) yes no yes no ‘RR’ 
‘LR’ 5’ SS (left) & 3’ 

SS (right) 
yes yes yes fwd & 

rev 
‘LR’ 

‘RR’ 3’ SS (right) no yes yes no ‘LL’ 
‘SR’ TxEnd (left) & no yes no rev ‘LS’ 
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3’ SS (right) 
‘RS’ TxEnd (left) no no yes no ‘SL’ 
Supplemental Table 2. Edge types and their meaning and properties.  Left refers to 
the property of the exiting edge to the 3’ of the adjacent node to the left, or directly 
upstream of the given edge.  Right refers to the property of the leading edge of the 
next node, directly adjacent and downstream of the given edge. 
 

Each edge that has the ability to ‘Splice from’-5¢ to 3¢, (ei Î L = {‘LS’, ‘LL’, 

‘LR’} Í E), will have a k-mer entry (lei Î Ik) in CSG Left Edge Vector, while all 

others will be undefined (lei ÎÆ).  Likewise, each edge that has the ability to ‘Splice 

To’-5¢ to 3¢ (ei Î R = {‘LR’, ‘RR’, ‘SR’} Í E), will have a k-mer entry (reiÎ Ik) in SG 

Right Edge Vector, while all others will be undefined (reiÎ Æ).   

In order to build a CSG, let ti Î Tg be the set of transcript annotations for a 

given gene g, and let xj Î Xg where Xg = Èi=1,..,g  Xi be the full set of exon (start, end) 

intervals xj = (aj, bj) from all transcript annotations in gene g where aj £ bj and aj Î Ag 

and bj Î Bg. We define Xg as an ordered and enumerated set where a given exon 

interval is less than or equal to the next exon interval xj £ xj+1 satisfying the boolean 

(aj < aj+1) Ú ((aj == aj+1) Ù (bj £ bj+1)) regardless of transcript strand.  Further, we 

define a single ordered vector of exon start or end positions viÎ(Vi = {Ag È Bg}) where 

vi £ vi+1.  A contiguous splice graph is built, csgg Î G, by iterating through vi .  The 

pseudocode is given below (Algo. 1): 

```Algorithm 1. 
 
Function stranded_push!( list, element ): 
 If strand of ti is positive: 
  push!( list, elem ) 
 Else: 
  unshift!( list, elem ) 
 
Function stranded_pop!( list, element ): 
 If strand of ti is positive: 
  pop!( list, elem ) 
 Else: 
  shift!( list, elem ) 
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e = [‘SL’] 
For vi in {Ag È Bg}: 
 If Xg contains subinterval (vi , vi+1): 
  stranded_push!(n, SGNode(vi , vi+1)) 

stranded_push!(s, SGSequence(vi , vi+1)) 
(vi+1 Î Ag) Ù stranded_push!(e, ‘LL’) 

  (vi+1 Î Bg) Ù stranded_push!(e, ‘RR’) 
  (vi+1 Î Fg) Ù stranded_push!(e, ‘SL’) 

(vi+1 Î Lg) Ù stranded_push!(e, ‘RS’) 
 Else: 
  stranded_pop! 
  (vi Î Bg Ù vi+1 Î Ag) Ù stranded_push!(e, ‘LR’) 
  (vi Î Lg Ù vi+1 Î Ag) Ù stranded_push!(e, ‘SR’) 
  (vi Î Bg Ù vi+1 Î Fg) Ù stranded_push!(e, ‘LS’) 
 
If strand of ti is positive: 
 s = reverse_complement!(s) 
 e = inverse(e) 
 
``` 
 
 
Contiguous Splice Graph Alignment: 

 After building all CSGs, the CSG Sequences are concatenated into a single 

Multi-CSG Sequence that is used to create a non-redundant transcriptome FM-Index13 

for compressed full-text substring search.  Since a major computational bottleneck of 

formal read alignment is the full-text search for alignment seed location, we focused 

on making the entire seeding process as efficient as possible. Whippet therefore will 

not attempt to seed any window containing a FASTQ nucleotide entry with a QUAL 

score below the minimum threshold (Phred Q=4, P=0.398 by default), and will 

iteratively increment until a seed of acceptable QUAL distribution is obtained.  After 

choosing a seed of (constant seed-length n) at read offset i (Si,n), Whippet is very 

restrictive in the number of matching loci (Count(Si,n)) that a valid seed is allowed to 

have (by default 1 <= Count(Si,n) <= 4) in order to avoid exhaustive searching in 

highly repetitive sequence space.  For failed seeds, the reverse complement of the 

seed is tried Si,n= RevComp(Si,n), and then if that fails, the seed is incremented a 
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constant number of nucleotides (Algo. 2).  For paired-end sequencing reads, the same 

principles apply, except that mate-pair seeds (Mj,n) are locked into a relative 

orientation to one another (fwd_read & rev_mate by default) and only loci within the 

mate-pair mapping distance where || Location(Si,n) – Location(Mj,n) || <= 

MaxMateDistance, are returned. 

```Algorithm 2. 
 
seed_tries = 0 
While i+n-1 <= length(Read) && seed_tries <= MaxSeeds: 
 If minimum( Quali,…,i+n-1 ) > MinQual: 
  seed_tries = seed_tries + 1 
  If 1 <= Count(Si,n) <= 4: 
   return Locations(Si,n), positive_strand 
  Elseif 1 <= Count( RevComp(Si,n) ) <= 4: 
   return Locations(RevComp(Si,n)), negative_strand 
 i = i + SeedIncrement 
``` 
 
Given a set of mapping transcriptome loci for a sequencing read, Whippet performs 

ungapped extension of each alignment seed, storing only the offset of the alignment in 

the read (r) and transcriptome (k), and the alignment path (A) through the CSG.  An 

alignment path is defined as the vector of nodes, such that each node records the 

{Gene, Node, Score} = {g, n, s}, where the Score refers to a set of {Matches, 

Mismatches, and the Mismatch_probability_sum} = {m, x, p}. Alignments are 

extended first in the forward and then in the reverse direction from the seed offset.  

Alignment extensions continue until the edge of the read, a non-extendable edge 

(‘SR’ for forward direction, and ‘LS’ in reverse direction), the end of the CSG, or the 

mismatch_sum p exceeds the MismatchThreshold (default 2.0).  An alignment is 

considered valid if its score exceeds the MinimumScoreThreshold (default = 75% of 

read contains matches) or contains at least one spliced edge in its path.  Upon 

alignment extension into an unspliced node boundary (not a ‘Must Splice’) that has an 

‘Extend Through’ property (Supplemental Table 2), the extension traverses past the 
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boundary without splicing into the neighbor node (Supplemental Fig. 2).  If the 

alignment ends in the neighbor node within a specified distance (k-mer size) from the 

node’s boundary, then the neighbor node is removed from the path, and k-mer spliced 

extension is attempted.  If multiple unspliced boundaries are traversed before the 

alignment fails, spliced extension is attempted on each previous neighbor node. For 

spliced extension, the sorted list of (gene, node) pairs for the k-mer upstream of the 

node boundary, is intersected with the sorted list of (gene, node) pairs for the next 

adjacent k-mer (if sufficient read length exists).  Compatible (gene, node) pairs for 

intersection must share the same gene, where the 3’ splice-site node lies downstream 

of the current node in the CSG (unless circular splicing flag is enabled).  Alignment 

extension continues to all compatible downstream nodes recursively, returning only 

the best scoring alignment path.   

 

TPM Quantification and Multi-mapping Reads: 

For each alignment seed, an alignment is returned.  Multi-mapping reads with 

multiple valid alignments whose scores are within the AlignmentScoreThreshold 

distance from the maximal scoring alignment are subsequently treated as repetitive 

alignments.  Since multi-mapping reads suggest that a sequencing read could have 

derived from one of multiple paralogous gene loci, we utilize the Expectation 

Maximization (EM) algorithm to iteratively maximize the likelihood of the relative 

abundance of all CSGs in set G.  The EM algorithm alternates between estimating the 

fraction of multi-mapping read counts belonging to each CSG (E-step) and calculating 

the relative abundance of all CSGs given the total and partial counts allocated to each 

gene (M-step) 36.  In the first step, the probability of observing reads from a given 

CSG i with relative expression level µi is given by 𝛼 𝑖 = 	 0121
03233∈5

	where 𝑙# refers to 
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the mean (effective) length of the N annotated transcripts tÎ Ti used to build CSG i 

given a constant read length m, where  𝑙# =
26789:6∈;1
<

.  We then define a multi-

mapping compatibility matrix yr,i = 1 for a read r that maps to a CSG i and yr,i = 0 

otherwise 11. The probability of observing a specific multi-mapped read r from a CSG 

i in its compatible set of CSGs is then estimated in the (E-step) of the algorithm by: 

𝛼 𝑟, 𝑖 = 	
	𝒚@,#	𝜇#𝑙#
	𝒚@,B	𝜇B𝑙BB∈C

 

In the (M-step) of the algorithm, the relative abundance of each CSG is calculated by 

summing all of the full and partial read counts for each CSG i: 

𝜇# = 	
𝛼 𝑟, 𝑖@∈D

𝑙#
 

The transcripts-per-million37 of each CSG is then calculated as: 

     𝜏# = 	𝜇#10H  where 𝜇# = 	
01
033∈5

 

 
To seed the EM algorithm, a uniform probability across compatible CSGs is assigned 

for each read, followed by the standard M-step, and subsequent EM-steps until the 

end condition, (ti,iter - ti,iter-1) < 0.1, or a user-defined max-iterations is reached. 

 

Local Splicing Event (LSE) Definition and PSI Quantification: 

 After all reads have been assigned full or partial counts to the CSGs, it is 

necessary to build local splicing event (LSE) structures to quantify AS.  In order to 

define an LSE, the set of edges connecting to, and spanning over the target node (n) 

are collected (where the read count of a spanning edge must be >= 1% of the maximal 

connecting edge read count).  Subsequently for each node within the upstream and 

downstream boundary nodes, we also collect the connecting and spanning edges, 

extending the upstream and downstream boundary nodes as necessary to encompass 
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all relevant edges.  After collecting all edges for an event E as a vector of connected 

nodes, where Ei refers to one edge in the LSE, we build a vector V that contains the 

minimum set of non-redundant paths (each path Vi  contains the set of nodes in the 

connected path) through the LSE using the edges in E.  To build the set of paths V 

through the LSE, a recursive stitching algorithm is defined (see Algo. 3). 

```Algorithm 3 
 
Function has_terminal_overlap( a, b ): 
 return first(a) == last(b) OR first(b) == last(a) ? True : False 
 
Function build_paths( E, V=copy!(E) ): 
 R = Vector( Æ ) 
            i = 1 
 While R does not equal V: 
  If i > 1: 
   V = R 
   R = Vector( Æ ) 
 
  For j in 1 to length(V): 
   Added = False 
   For k in 1 to length(E): 
    If has_terminal_overlap( Vj, Ek ): 
     Added = True 
     push!( R, Vj È Ek ) 
  
   Unless Added is True: 
    push!( R, Vj ) 

i = i + 1 
 return R 
``` 
 

 In order to quantify the paths iÎI in an LSE, we utilize the set of edges eÎE in 

the LSE and the counts a for some edge e, a(e). Counts for each unique edge e that 

exist in only one path i are assigned fully, a(e,i) = a(e). Non-unique edges existing in 

multiple paths have counts initially divided among their compatible paths with 

uniform probability, and then the maximum likelihood for the relative expression of 

each LSE path is estimated using the EM algorithm.  We define a compatibility 
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matrix ye,i = 1 for an edge e existing in a path i, and ye,i = 0 otherwise.  In the M-step, 

the relative expression of each LSE path (𝜓#) is given by: 

𝜓# = 	
𝛼 𝑒, 𝑖K∈L

	𝒚K,#	K∈L
 

In the E-step, the counts a(e,i) for each edge e are divided among path i following: 

𝛼 𝑒, 𝑖 = 	
𝛼(𝑒)	𝒚K,#	𝜓#

	𝒚K,O	𝜓OO∈P
 

The percent-spliced-in Y of the node n is then calculated as the sum of the normalized 

relative expression of the paths containing the node {In Ì I}: 

ΨQ = 	 𝜓##ÎPR  , where 𝜓# =
S1
STT∈U

 . 

Since the EM-algorithm provides only a point-estimate for Y without a depth-

dependent measure of variance, we utilize the conjugate posterior distribution of the 

binomial likelihood as a means to compute a confidence interval over Y.  Given a 

total read depth for an LSE of N reads which can either support inclusion of node n, 

incÎIn, or support exclusion, excÎ{I - In}, the number of inclusion reads Ninc are 

binomially distributed such that Ninc ~Binomial(n=N, p=Y).  Given a uniform prior 

distribution of P(Y) = Beta(a=1, b=1), we obtain a posterior distribution, 

P(Ψ|𝑁#QY) 	∝ 	P 𝑁#QY Ψ P(Ψ), where P(Y|Ninc) = Beta(Ninc + a, Nexc + b).   A 90% 

confidence interval (between 5% and 95%) is then calculated through the quantile 

distribution of the posterior. 

 

Event Types and Standard Output: 

In order to define the nature of an alternative node in an LSE, a number of 

discrete categories are utilized.  These include AS specific types for alternative 5’ or 

3’ splice-sites, Core-exon nodes (which may be a whole exon or part of an exon with 
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flanking alternative splice sites that are used), or a retained intron.  Additionally, 

alternative 5’ or 3’ ends are annotated as either alternative first or last exons, or 

tandem 5’ or 3’ untranslated regions (UTR).  Supplemental Table 3 provides a list of 

the two-letter symbols for each node type and their formal definition as a set of 

flanking edge types. 

Node 
Type 

Description Flanking Edge Pairs 
(Upstream,Downstream) 

CE Core-Exon, may be part of an exon and 
never spliced with the node boundaries  

(‘LR’, ‘LR’), (‘LR’, ‘LL’), 
(‘RR’, ‘LR’), (‘RR’, ‘LL’) 

AA Alternative Acceptor splice-site (‘LR’, ‘RR’), (‘RR’, ‘RR’) 
AD Alternative Donor splice-site (‘LL’, ‘LR’), (‘LL’, ‘LL’) 
RI Retained Intron (‘LL’, ‘RR’) 
AF Alternative First exon, where the 

quantification is the percentage of 
downstream TSS used 

(‘LS’, ‘LR’), (‘LS’, ‘LL’) 

AL Alternative Last exon, where the 
quantification is the percentage of 
upstream last exon spliced 

(‘LR’, ‘SR’), (‘RR, ‘SR’) 

TS Tandem TSS (‘SL’, ‘SL’) 
TE Tandem Poly-A site (‘RS, ‘RS’) 

Supplemental Table 3. Node and event types defined by Whippet flanking edges. 
 
 
LSE Complexity and RNA-seq Simulation: 

 In order to investigate the accuracy of AS quantification tools at higher-levels 

of AS complexity, it was necessary to simulate transcripts with AS-events of 

increasing complexity.  Formalizing AS-events into discrete classes of complexity 

K(n) = 2n splicing-outcomes for K1 through K6, we randomly choose 500 CSGs for 

each complexity class with at least n total internal nodes (not including nodes with 

transcription start or end annotations).  From those CSGs, we randomly choose a set 

of n consecutive internal nodes and created partial transcript sequences from the first 

internal node until the last internal node with all combinations of those n internal 

nodes.  In the case of alternative 5’ or 3’ splice-site nodes (AA and AD types) or 

retained-intron (RI type) nodes, less than 2n total combinations were created, as the 
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AA and AD nodes cannot be included in the transcript without all AA nodes 

downstream of an AA-node until its core-exon CE node, or all the AD-nodes 

upstream and its associated CE-node.  Similarly, a retained-intron node can only be 

included in a transcript if both the upstream and downstream CE nodes are included.    

 Given the eight sets of simulated events of complexity K(n) (where n = 1, ... 

,6), we used polyester 38 to simulate RNA-seq reads from the simulated transcripts for 

each gene. To simulate AS-events with known Y-values, we randomly subsampled 

one of the n alternative nodes from each gene and assigned it a random Y-value 

sampled from a Beta distribution. At higher complexities, the assignment of a Y-

value to one node has indirect effects on the Y-values of the neighboring n alternative 

nodes.  In order to achieve a near uniform coverage of total Y-values for each 

complexity K(n), the a and b parameters of the Beta distribution were selected ad hoc 

accordingly. For K <= 2, we used Beta(a=0.9, b=0.9) which produces a near uniform 

distribution over Y. For K(n) in the range of interval n Î[3, 5], it was necessary to use 

a distribution skewed more towards 0.0 and 1.0 (such as Beta(a=0.7, b=0.7)), since a 

uniform distribution of initial Y-values resulted in a bell-shaped curve centered on 

Y=0.5.  For K >= 6, this effect was substantially increased, requiring a more skewed 

initial distribution, Beta(a=0.2, b=0.2). Transcripts containing the sampled exon were 

randomly assigned relative expression values such that their total expression would be 

proportional to the pre-assigned Y-value. Similarly, the remaining transcripts were 

randomly assigned expression values such that their total expression is proportional to 

(1 - Y). To simulate differential gene expression, each gene was randomly assigned a 

coverage multiplier value from a uniform distribution between 5 to 60x. Subsequently 
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RNA-seq reads of length 100nt were simulated for each transcript in both single and 

paired-end modes. 

 

Sequence annotation: 

All genomic and transcriptomic sequences, as well as gene transfer format (GTF) 

files, were downloaded from the Ensembl database39. Exon annotations (including 

genomic annotations) were downloaded from Ensembl using BioMart39. The 

following genome builds were used: Hg19 and Mm10 using only junctions within 

transcripts that have a transcript support level (TSL) of 2 or less. 

 

Benchmarking: 

All benchmarking has performed on a Sun Microsystem X4600M2 server with 8 

AMD Dual-Core 8218 CPU @2.6GHz, total 16 cores and 64GB RAM. Local hard 

disk was SATA 73GB, 10K RPM. Identical paired-end HeLa data of increasing read-

depths were used for all resource usage benchmarking (see Supplementary Table 1). 

All programs were run with default settings with additional settings described in 

Supplemental Table 4. Resource usage benchmarks for STAR and TOPHAT included 

conversion to a sorted BAM file (as this step is required for majority of splicing 

quantification algorithms) whereas quantification time was removed for Whippet in 

comparison to alignment programs. When necessary, initial read alignment was done 

by STAR and same BAM output file used by all splicing quantification algorithms. 

The default linux package “time” was used to measure the resource usage of each 

program. The running time was calculated by combining the User time and the 

System time.  
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Benchmarks of the mapping success used wgsim (https://github.com/lh3/wgsim) 

simulated reads based on Hg19 GRCh37.73 Ensembl transcriptome data with error 

rates of 0.005 and 0.01, respectively and a read depth of ~50M.  Identical parameters 

were used for resource and mapping benchmarks with default parameters used (see 

below for details). For Whippet mapping success only considered reads mapping over 

splice junctions by at least 9nt. 

 

RT-PCR values and matched RNA-seq datasets were extracted from datasets 

provided by Vaquero-Garcia et al. 2016 12. ∆PSI calculated by comparing PSI values 

across cerebellum and liver samples. 

Program Version Settings Used <default settings and paths excluded> 

STAR STAR_2.5.1b STAR --outSAMtype BAM SortedByCoordinate --

readFilesCommand zcat 

TOPHAT TopHat v2.0.13 tophat2 --bowtie1  

VAST-TOOLS 1.1.0 vast-tools align --sp Hsa –expr 

HISAT2 2.0.4 hisat2 –f –S 

OLEGO version 1.1.5 olego <default parameters> 

SOAPSPLICE version 1.10 soapsplice <default parameters> 

MAJIQ 0.9.1 majiq build Homo_sapiens.GRCh37.73.gff3 –conf 

HeLa_test.config .. 

majiq psi --name  

MISO 0.5.3 miso –run --read-len  

DIFFSPLICE 0.1.1 diffsplice -ps settings.cfg 

rMATs 3.2.0.beta python RNASeq-MATS.py –gtf  -t paired –len  

CLASS 2.1.4 perl run_class.pl –clean  
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BENTO Apr 21 2015 bento-seq hg19.refseq.event_set.bento-

seq_ensembl.tab --bam_files 

SUPPA V1 python suppa.py psiPerEvent <default parameters> 

Supplemental Table 4. Versions of programs used in benchmarking with parameters 
used for alignment and splicing quantification. Default settings, paths, Fastq files 
excluced. 
 

 

High entropy categories and differential entropy: 

High entropy events are defined as entropy events with a score of greater than 1.0, 

differential entropy requires a change of entropy of greater than 1.0 (unless stated). 

Highest entropy events are greater than 2.0. 

 

Only events with at least a read count over 30, and Y scores of over 0.05 and under 

0.95 were included in the analyses. Analyses limited to cassette, first and last exon 

events (as defined by Whippet). 

 

Tissue-wide analysis of splicing: 

Tissue data was extracted from Illumina Bodymap2 dataset and supplemented by 

human tissue samples from Kunming Institute of Zoology (See Supplementary 

Table 1). The maximum change in splicing entropy between tissues is the comparison 

of the lowest entropy of an exon/node compared to the highest entropy for same 

exon/node across tissues. This is therefore not a measure of tissue-specificity but 

rather a measure of maximum variability for the number of well-expressed exon-exon 

junctions an exon may have across tissues.  

 

Polysome analysis of entropy: 
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Monosome and polysome samples combined based on sub-groups identified within 

original paper 5. This included 80S (monosomes), low polysomes (two-four 

ribosomes), high polysomes (five-eight+ ribosomes), and total cytoplasmic RNA. 

Additional nuclear and whole-cell HeLa fractions originating from a different paper 

were also analysed as a comparison.  

 

Functional analysis: 

Functional analysis was undertaken using the functional enrichment analysis tool 

g:Profiler 40. Genes identified as containing mammalian-classifying splicing events 

were compared to a background of multi-exon genes conserved within vertebrates. 

Structured controlled vocabularies from Gene Ontology organization, as well as 

information from the curated KEGG and Reactome databases were included in the 

analysis. Only functional categorizes with more than 5 members and fewer than 2,000 

members were included in the analysis. Significance was assessed using the 

hypergeometric test with the multiple testing correction method created by Benjamini 

and Hochberg.  

 

Protein feature analysis:  

For all positions in a protein a score for intrinsic disorder is computed using IUPred41. 

Amino acid residues with a score larger than 0.4 are considered disordered. For each 

coding exon the ratio of disordered residues is estimated.  

 

For all positions in a protein low complexity regions were calculated using SEG42. 

Only amino acids not within ordered Pfam annotated protein domains43, putative 

transmembrane domains, signal peptides and coiled coil regions were considered as 
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low complexity regions. For each exon, the ratio of amino acids annotated as within a 

low complexity region is estimated. Tandem protein repeat regions within structured 

regions were identified using the PTRStalker algorithm for de-novo detection of fuzzy 

tandem repeats44 and filtered using IUPred (score < 0.4). 

 

Exon Duplication: 

Exon duplication events were identified using approach described by Letunic et al. 

(2002)45. In brief, exon were considered duplicates if (i) within the same gene body 

(ii) blastn comparison had an e-value of less than 0.0001 (iii) 80% similarity in 

length.   

 

Exons with peptide repeats were extracted and maximum entropy value (across 

tissues) identified. For each entropy bin, the fraction of duplicated exons was 

calculated.   

 

Splicing Motifs: 

MaxEntScan was used to estimate the splice site strength of both the 3’splice sites and 

5’ splice sites. As recommended by developers, the 5’splice site strength was assessed 

using a sequence consisting of 3nt within exon and 6nt of intron. Similarly, the 

3’splice site strength was assessed using a sequence consisting of 20nt of intron and 

3nt of exon. Exonic splicing silencer or exonic splicing enhancer densities were 

extracted from designated motifs as quantified by Ke et al.46. To calculate exonic 

splicing enhancer/silencer density, all motifs defined by Ke et al. were summed 

together and normalized by number of nucleotides in exon.  
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Cancer Data and SRSF1: 

For Figures 4A and B, all events passing the aforementioned criteria (see high entropy 

categories and differential entropy) were included in analysis. Differential complexity 

between control and tumour samples across 15 replicates (dependent on read 

coverage) described in Figure 4C was determined by a Wilcoxon rank-sum test (p < 

0.05) of entropy scores. Differential gene expression was calculated using DESeq2 

(adjusted p-value < 0.05).  SRSF1 over-expression data extracted from Anczukow et 

al. and processed by Whippet only events with high entropy (> 1.5) in either control 

or over-expression study included in analysis. Events considered aberrant in splicing 

in Fig. 4i are displayed in Fig. 4c. 

 

Clustering: 

Unless stated all heatmaps were constructed using affinity propagation clustering with 

pairwise similarities as correlations and negative correlations taken into account 47. 

 

RT-PCR: 

Predictions on size of bands were made using UCSC server and by combining exons 

together from Whippet predictions. Only predictions supported by multiple sources 

included in figures (i.e. PCR, Whippet or UCSC). 

 

Slmap: 

Forward: GAGCGCACTCAGGAAGAGTT ; Reverse: 

TTCCTTTGCTTTTGCCTGAT 

Eps15l1: 
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Forward: TTGGAACCCTAGACCCCTTT ; Reverse: 

CTTTTTCACTCTCCCGCTTG 

Asap1: 

Forward: GCCCGCGATGGAATAATG ; Reverse: 

TGAGGAAGAGGCACAGGTCT 

Eml4: 

Forward: TCCTGTATAACCAATGGAAGTGG ; Reverse: 

CATTGTAATTGGCCGACCTC 

Atp8a1: 

Forward: CGGTCGTTACACAACACTGG ; Reverse: 

GGCCAAGTTCCTCATTCAGA 

Sfl1: 

Forward: TCATGCCTCACAAAACTGGA ; Reverse: 

CCATAGCCAGCCTCTGTACC 

Mapt: 

Forward: AATGGAAGACCATGCTGGAG ; Reverse: 

GCCACACTTGGAGGTCACTT 

Lrp8: 

Forward: CGGAGAGAAGGACTGTGAGG ; Reverse: 

CAGTGCAGATGTGGGAACAG 

Gtf2ird1: 

Forward: CCCCAACACCTATGACATCC ; Reverse: 

CGCTTGGGAATGTTGTCTTT 

Rbms3: 
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Forward: GAGACAGGGTCAGAGCAAGC ; Reverse: 

AAACCGGAGGCCAACTAACT 

Cask: 

Forward: AGGGAAATGCGAGGGAGTAT ; Reverse: 

GTCATCCTTGGCTGGATCAT 

Slmap (Control): 

Forward: GAGCGCACTCAGGAAGAGTT ; Reverse: 

TTCCTGCTCAGTCATTTCAAAC 

 

siRNA knockdown & RT-PCR: 

Mouse Neuro2A (N2A) cells were transfected with SMARTpool siRNAs 

(Dharmacon) (50nM final concentration), using Lipofectamine RNAiMAX 

(Invitrogen) as recommended by the manufacturer. A non-targeting siRNA pool 

(siNT) was used as a control. Cells were harvested at 48 hours post transfection and 

total RNA was extracted using RNeasy columns (QIAGEN). Semi-quantitative RT-

PCR was performed using the QIAGEN One-Step RT-PCR kit as per the 

manufacturer’s instructions, using 50ng total RNA as template in a 20uL reaction and 

resolved on 2-4% agarose gels. Bands were quantified using Image Lab (BioRad) or 

ImageJ.  

 

Statistical Tests: 

In functional analysis the significance was assessed using the hypergeometric test 

with the multiple testing correction method created by Benjamini and Hochberg. 

Wilcoxon rank-sum test non-parametric statistical tests were used for comparing 
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distributions. Affinity propagation clustering with either pairwise similarities as 

correlations (Pearson) or mutual pairwise similarities of data vectors as negative 

Euclidean distance was used to create clustered heatmaps.  

 

MAIN FIGURES LEGENDS 

Figure 1 – Overview of Whippet algorithm, validation and benchmarking 

(a) Example gene model with two alternative isoforms and Whippet’s node 

assignments for the gene (top). The Contiguous Splice Graph (CSG) for the same 

exemplar gene model is shown, with spliced edges as solid lines with arrows, straight 

solid lines indicating spliced node boundaries, and straight dotted lines indicating 

unspliced edges between nodes (middle). A single transcriptome Full-text index in 

Minute space (FM-Index) is built from concatenated CSG sequences, with solid lines 

indicating separation between each CSG (bottom). 

(b) Diagram of the Contiguous Splice Graph Alignment (CSGA) algorithm.  An 

alignment is seeded from a raw RNA-seq read, and then extended in both directions. 

Spliced extension utilizes a k-mer-indexed associative map of (gene, node) pairs and 

sorted intersection to efficiently return the set of compatible spliced edges (see 

Methods). 

(c) Example of a Whippet analysis of a local splicing event for node N, defined as the 

set of edges between the two boundary nodes (top).  To determine the Percent Spliced 

In (Y) of some node N, the full set of non-redundant paths through the local splice 

event are enumerated (bottom left), and then quantified through convergence of the 

expectation-maximization (EM) algorithm (bottom right) (see Methods).  mle, 

maximum likelihood estimation 

(d) Comparison of ∆Y (change in PSI) values between human liver and cerebellum as 
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derived from Whippet Y predictions from RNA-seq data, and Y values from RT-PCR 

data from the same tissue types. Best fit linear regression line (dotted line) and 

diagonal y=x (solid line) are shown. 

(e) Comparison of the maximum memory-usage (y-axis) and log-scaled time (x-axis) 

requirements of Whippet relative to several published methods for RNA-seq read 

alignment and splicing quantification. The top panel compares resources used by 

Whippet with the commonly used RNA-seq aligners TOPHAT 8 and STAR 14, and 

with VAST-TOOLS 15, when aligning 10 million (M)  paired-end (PE) RNA-seq 

reads. The bottom panels compare resources used by Whippet and six other splicing 

quantification methods when analyzing aligned reads (10M, 25M or 50M) (see 

Methods). With the exception of Whippet and VAST-TOOLS, all algorithms in the 

bottom panel require initial alignment of reads by an aligner from the top panel. GB, 

gigabyte. 

 

Figure 2 – Identification and characterization of high entropy events 

(a) Formalization of AS complexity into discrete categories K(n), where n refers to 

the theoretical number of alternative nodes and K(n) = 2n spliced-outcomes. 

Schematics of K(n) are made up of constitutive exons (dark gray) and alternative 

exons (light gray) with curved lines representing all potential exon-exon junctions. 

(b) Cumulative distribution of entropy scores (i.e. entropy = − Ψ## 𝑙𝑜𝑔'Ψ# ) for 

simulated AS events of different categories of complexity according to (a). 

Cumulative distribution plots describe the proportion of data (y-axis) less than or 

equal to a specified value (x-axis). Cumulative Freq F(x), cumulative distribution 

function. See Fig. 2b legend for a description of cumulative distribution plots. 

(c) Comparison of the ability of different RNA-seq analysis methods to detect AS 
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events from artificial reads (Methods) of simulated complexity as defined in (a). Bar 

plots show (left) the absolute error rate as a function of increasing complexity of AS 

and (right) the total number of AS events detected. Error bars display the standard 

error. Y, Percent Spliced In. Color legend as in panel (b). 

(d) RT-PCR analysis confirms the presence of numerous spliced isoforms in N2a 

cells at increasing levels of complexity matching Whippet predictions for complexity 

and entropy (far right). Boxes to right of gels display UCSC (left, blue) and Whippet 

(right, yellow) in silico predictions based on expected primer amplification products 

(Methods). Colored boxes (blue and yellow) represent correct predictions whereas 

black boxes indicate possible missed predictions. Diagrams below show exon 

structures of analyzed genes with approximate positions of RT-PCR primers 

indicated. Predicted constitutive and alternative exons are indicated in dark and light 

gray, respectively.  

(e) Bar plot displaying the maximum variance of splicing entropy per gene across 

multiple human tissues. This reveals that more than 20% of genes exhibit extensive 

variance in the entropy of AS across human tissues. 

(f) Functional analysis for GO, REACTOME and KEGG functional categories of 

genes that show large changes in splicing entropy (>2.0) across human tissues. 

(g) Symmetrical heatmap of pairwise correlations of normalized AS event entropy 

across multiple tissues. Heatmap showing affinity propagation clustering of pairwise 

similarities between splicing entropy scores. Colored bars surrounding heatmap 

indicate clusters defined by the dendrogram. Darker blue represents stronger 

correlation in splicing entropy between tissues types, whereas lighter blue indicates 

weak or no correlation. r1, replicate 1; r2, replicate 2 

(h) Cumulative distribution plots comparing the cross-species variance of entropy 
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values among the same tissue in seven vertebrates (at least three species present per-

event) as compared to a permuted null control.  

(i) Violin plots of the distribution of splicing entropy in different cellular 

compartments and ribosome (mono and polysome) fractions. Kernel density is 

displayed as a symmetric curve, with white dots indicating the median, black box the 

interquartile range, and black lines the 95% confidence interval. 

 

Figure 3 – High entropy events overlap multi-domain structures and are 

characterized by suboptimal or reduced frequencies of cis-acting splicing 

elements. 

(a) Cumulative distribution plots showing: frequency of overlap of AS events (with 

different degrees of entropy) within intrinsically disordered regions (IDRs) of proteins 

(left), structured single protein domains (middle), and structured tandemly repeated 

protein domains (right). See Fig. 2b legend for a description of cumulative 

distribution plots. 

(b) Bar plot showing the frequency at which exon is undergoing AS with different 

degrees of entropy (based on Whippet analysis of tissue RNA-seq data in Fig. 2) 

show evidence of duplication. Numbers of AS events analyzed indicated above plots. 

See Fig. 3a for color legend. 

(c) Plots showing the cumulative distribution of 3´-splice site (3´ss) strength estimated 

using MaxEntScan48 and binned by maximum splicing entropy scores (bottom). The 

median 3´ss strengths for AS events with different degrees of splicing entropy are 

plotted as colored lines (top). See Fig. 2b legend for a description of cumulative 

distribution plots. See Fig 3a for color legend. 

(d) Boxplot displaying the distribution of intron length surrounding exons binned by 
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maximum entropy of AS. Boxplots display the interquartile range as a solid box, 1.5 

times the interquartile range as vertical thin lines, the median as a horizontal line, and 

the confidence interval around the median as a notch. See Fig. 3a for color legend. nt, 

nucleotide 

(e) Cumulative distribution plots showing exonic splicing regulatory elements in AS 

events with different degrees of AS event entropy. Scores were calculated based on 

density of exonic splicing enhancers (top) and exonic splicing silencers (bottom) per 

nucleotide. Motifs extracted from Ke et al. 201146.  See Fig. 3a for color legend. See 

Fig. 2b legend for a description of cumulative distribution plots. 

(f) Mechanistic model for the regulation of low-entropy (simple binary) AS events 

versus high-entropy (complex) AS events by cis-acting elements and other sequence 

features. Exon represented by boxes and introns by lines with cis-elements and 

relative splice site strength annotated in the legend.  

 

Figure 4 – Expansion of high splicing entropy in cancer tissues associated with 

over-expression of the essential splicing factor, SRSF1 

(a) Notched boxplot showing percentage of high entropy AS events (> 1.5) per 

sample identified from RNA-seq analysis of 15 matched tumour and control samples. 

Black dots represent individual data. See Fig. 3d for descriptions of boxplots. 

(b) Stacked bar plot showing the proportion of AS events of increasing splicing 

entropy across 15 matched tumour and control RNA-seq samples. 

(c) Clustered heatmap of splicing entropy values for differential entropy events with 

significant entropy changes (p<0.05, Wilcoxon rank-sum test) identified from RNA-

seq analysis of 15 matched tumour and control samples. 

(d) Bar plots for GO, REACTOME and KEGG functional categories of genes with 
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events with significant entropy changes (p<0.05, Wilcoxon rank-sum test) from (c) 

identified from RNA-Seq analysis of 15 matched tumour and control samples. P-

values were corrected using false discovery rate (FDR) multiple hypothesis testing 

correction. 

(e) Schematic diagrams of two genes showing strong and significant changes in AS 

event entropy between tumour sample and matched control. Domain structure 

extracted from SMART database 49. Light blue arrows and boxes indicate increased 

occurrence of splicing regulation in tumour samples. For BIN1, the gray box 

highlights protein region regulated by splicing in control samples. EZH2, Histone-

lysine N-methyltransferase EZH2; BIN1, Myc box-dependent-interacting protein 1 

(f) DESeq2 differential gene expression analysis50 for selected RNA-binding proteins 

(GO:0000380) identified from RNA-Seq analysis of 15 matched tumour and control 

samples. Genes with blue bars display reduced expression in cancer samples, red bars 

show increased expression in cancer samples, and gray bars show no significant 

difference between control and tumour samples. 

(g) Boxplot showing DESeq2 normalized read counts for SRSF1.  

(h) Boxplot showing relative complexity of transcriptomes, as measured by 

distribution of entropy scores for high quality AS events, between SRSF1 over-

expression (OE) sample and matched control.  

(i) Bar plot showing percentage of events from plot (h) showing differential splicing 

changes between SRSF1 OE (over-expression) samples and matched control that 

overlap with aberrant splicing changes in tumour samples from (c), as compared to 

expected events not identified as differential in (c).  

 

Supplementary Legends: 
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Supplementary Figure 1 – (a) Schematic of isoform-level (left) vs. event-level 

(right) quantification paradigms. An isoform-level approach to quantification with 

limited number of annotations, assumes dependence between transcript features, 

whereas the event-level approach assumes independence and measures the expression 

of each feature separately.  (b) Exemplar gene and isoform annotations with a 

zoomed-in view of a region with complex AS patterns.  The node diagram below 

displays how such a complex set of splicing patterns can be collapsed into a set of 

nodes for a CSG. (c) Diagram of the edge types associated with the node set in panel 

(b) (see Supplemental Table 2 for description of edge types).  (d) An overview of 

the possible spliced edges in the CSG, both forwards (solid lines) for linear products 

and backwards (dotted lines) for potentially circular products (provided as an optional 

command line parameter `--circ`). 

 

Supplementary Figure 2 – Graphical overview of the CSG Alignment algorithm.  

High FASTQ-QUAL region (black box) of sequencing reads are used to seed to the 

transcriptome. Alignment extension occurs in the forward and reverse directions, and 

spliced extension is allowed as necessary to bridge spliced edges. Unspliced 

alignment extension can occur past an edge that allows both unspliced and spliced 

extension.  If the alignment fails, then the new node is removed and spliced extension 

proceeds from the previous node(s) (see Methods). 

 

Supplementary Figure 3 – (a) Comparison of the mapping success (y-axis) and (left) 

log-scaled time (x-axis) and (right) maximum memory usage  (x-axis) requirements of 

Whippet relative to several published methods for RNA-seq read alignment. Reads 

were simulated using wgsim (https://github.com/lh3/wgsim) with base error rate of 
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0.005 (top) and 0.01 (bottom). Only simulated reads overlapping exon-exon junctions 

by at least Whippet’s k-mer size are considered in mapping success. (b) Plot 

highlights the reproducibility of PSI values when comparing RNA-seq from two 

conditions. A differentially included event is considered replicated if it maintains a 

rank at least as high as N in biological replicates, where N is the set size. (see 

Vaquero-Garcia et al. 2016 12 for details). (c) A bar chart shows the number of AS 

events identified by each method and used in (b). (d) Extension of the bottom panel in 

Figure 1e to include comparison with the splicing algorithm SUPPA. The panels 

compare resources used by Whippet and eight other splicing quantification methods 

when analyzing aligned reads (10M, 25M or 50M) (see Methods). With the exception 

of Whippet, SUPPA and VAST-TOOLS, all algorithms require initial alignment of 

reads by an aligner, in this case STAR. Resource usage of SUPPA includes initial 

alignment by the transcript-level expression quantification algorithm Kallisto11.  GB, 

gigabyte. 

 

 

Supplementary Figure 4 – (a) Extension of Fig. 1d. Comparison of Whippet and six 

other state-of-the art published splicing algorithms for Ψ predictions from RNA-seq 

data to coupled Ψ assessments from RT-PCR. ∆Ψ (change in percent-spliced-in) 

measures correspondence between liver and cerebellum samples. Regression line is 

shown as dotted line whereas diagonal is solid line. (b) Boxplots quantifying 

differences in Ψ between predictions from RNA-seq data and coupled Ψ assessments 

from RT-PCR.  (c) R-squared values of correlations between predictions from RNA-

seq data and coupled Ψ assessments from RT-PCR. (d) Same data as in (a) but 

showing absolute Ψ rather than ∆Ψ. Ψ, percent spliced in; NS, not significant; **, p < 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/158519doi: bioRxiv preprint 

https://doi.org/10.1101/158519
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 43	

1.0 x 10-05 ,Wilcoxon rank sum one sided test. 

 

Supplementary Figure 5 – Scatter plots showing correlations between simulated PSI 

values and predicted PSI values from RNA-seq analysis by multiple published 

splicing algorithms at various levels of complexity (Kn). (see Methods for details on 

data simulation). 

 

Supplementary Figure 6 – (a) Plot of entropy (y-axis) vs. percent-spliced-in (x-axis) 

for a simple binary (K1) AS event. (b) Plot of maximum entropy (color-scale) vs. 

percent-spliced-in (x-axis,y-axis) for a K2 event with two alternative exons a and b 

and two independent values for the percent-spliced-in of each exon, Ya and  Yb. (c) 

Proportion of AS events with entropy values in discrete ranges (color-scale) for the 

same simulated RNA-seq data set from sub-sampled read-depth in millions (left) and 

truncated read-lengths (right). (d) Total count of the number of AS events detected 

with the RNA-seq datasets from panel (c).  

 

Supplementary Figure 7 – Extension of Fig. 2c, showing uncropped gels for events 

in the main figure as well as additional examples. RT-PCR analysis confirms the 

presence of complex splicing events in N2a cells at increasing levels of complexity 

matching Whippet predictions. Event type, gene name, complexity type and entropy 

score are shown above each events. Control SImap demonstrates that complexity is 

not just due to number of exons monitored. Boxes to right of gels display UCSC (left) 

and Whippet (right) predictions based on primer sequences (see Methods). Colored 

boxes represent correct predictions whereas black boxes suggest missed predictions. 

Diagrams below show exon structures of analyzed genes with approximate positions 
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of RT-PCR primers indicated. Predicted constitutive and alternative exons are 

indicated in dark and light gray, respectively. 

 

Supplementary Figure 8 – (a) Symmetrical heatmap of pairwise correlations of 

normalized splicing entropy scores across multiple mouse tissues.  Heatmap showing 

affinity propagation clustering of pairwise similarities between splicing entropy 

scores. Colored bars surrounding heatmap indicate clusters defined by the 

dendrogram. Darker blue represents stronger correlation in splicing entropy between 

tissues types, whereas lighter blue indicates weak or no correlation. (b) Kernel density 

plots of mean entropy (x-axis) of AS events in the same tissue across at least three 

vertebrate species (human, chimp, gorilla, mouse, opossum, platypus, and chicken) 

for conserved exons (with liftOver) and permuted AS event labels for each species.  

Dashed density curve displays the best-fit Gaussian distribution to the permuted data. 

(c) Best fit ‘loess’ local smoothing for the variance of entropy (y-axis) vs. mean 

entropy (x-axis) for same AS events in (c). (d) Bar plots showing distribution of high 

entropy (>1.0) and low entropy (<1.0) events within 5´-UTR, CDS and 3´-UTR of 

transcripts across human and mouse tissues. (e) Bar plot showing fraction of unique 

alternative events identified by Whippet that can be detected from the multi-tissue 

human survey. All alternative events must be confidently identified with 

0.05<PSI<0.95 except retained introns events when Percent Intron Retained (PIR) > 

0.05. ***, p < 1.0 x 10-05; *, p<0.05; NS, not significant; CDS, coding sequence; 

UTR, untranslated region. 

 

 

Supplementary Figure 9– (a) Cumulative distribution plots showing: frequency of 
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overlap of AS events (with different degrees of entropy) within (left) low complexity 

(LC) regions of proteins and (right) disordered tandem protein repeats (TPRs). See 

Fig. 2b legend for a description of cumulative distribution plots. (b) Violin plot 

showing the number of exons encoded by a gene body at different degrees of splicing 

entropy (maximum splicing entropy observed within gene body used to bin genes). 

See Supplemental Fig. 9a for color legend. See Fig. 2i for description of violin plots.  

(c) Violin plot showing that genes with higher complexity splicing events tend to be 

younger (or more recent gene duplication events). The violin plots include a marker 

for the median of the data, a box indicating the interquartile range and a visualization 

of the full distribution of the data. See Supplemental Fig. 9a for color legend. (d) 

Domain diagram for LRP8 (Low-density lipoprotein receptor-related protein 8) based 

on SMART annotation 49. Dotted boxes describe area of proteins undergoing high 

entropy splicing in different tissues types. Domain diagram below illustrates exons 

undergoing splicing within N2a cells and position of primers for RT-PCR validation 

below. (e) Domain diagram for Nebulin, based on SMART annotation 49, with dotted 

box indicating region undergoing highest entropy splicing. 

 

Supplementary Figure 10 – (a) Plots showing the cumulative distribution of 3´-

splice site (3´ss) strength estimated using MaxEntScan48 and binned by different 

degrees of splicing entropy (bottom). The median 3´ss strengths for AS events with 

different degrees of splicing entropy are plotted as colored lines (top). See Fig. 2b for 

description of cumulative distribution plots. (b) Boxplot displaying lengths of introns 

surrounding exons binned by different degrees of splicing entropy. See Supplemental 

Fig. 10a for color legend. See Fig. 3d for description of box plots.   (c) Full list of 

DESeq2 differential gene expression analysis50 between tumour samples and matched 
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controls for selected RNA-binding proteins (GO:0000380). Genes with blue bars 

show reduced expression in cancer samples, red bars show increased expression in 

cancer samples, and gray bars show no significant difference between control and 

tumour samples 
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